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SAMPLE FUNCTIONS OF CERTAIN DIFFERENTIAL
PROCESSES ON SYMMETRIC SPACES

RAMESH GANGOLLI

In a recent paper, we have proved a formula characterizing
the abstract Fourier-Stieltjes transform of an isotropίc infi-
nitely divisible probability measures on a symmetric space.
The formula is the full analogue of the classical L§vy-Khin-
chine formula for the Fourier-Stieltjes transform of infinitely
divisible probability measures on the real line.

Now, just as in the case of the line, an isotropic, infi-
nitely divisible probability measure on a symmetric space
gives rise in a natural way to a continuous one parameter
convolution semigroup of such measures and thence to a
stochastic process with stationary independent " increments ".
It is the purpose of this paper to construct the sample functions
of such a process. We shall exhibit the sample functions of
such a process as limits with probability one (uniformly on
compact subsets of the parameter set) of sequences of con-
tinuous Brownian trajectories interlaced with finitely many
isotropic Poissonian jumps.

Our construction brings out clearly the significance of the Levy
measure of the process as a measure of the expected number of jumps
of the path having a given size and occurring in unit time. (See
details below.) It also follows from our construction that the sample
function of these processes can be assumed to have only discontinuities
of the first kind. This fact, however, was known and indeed a more
general result of this kind was proved in [13] by J. Woll. Thus the
main new results of this paper must be considered to be the actual
construction of the sample paths, and the geometric information that
it gives about the process.

Our results are inspired by the work of Itδ [8]. Itδ considers
such processes on the line. However, the noncommutativity of the
groups that concern us and the nonlinear nature of our spaces force
us to use techniques quite different from his. Our methods are of
independent interest and indeed they can be utilized to construct a
theory of " addition" of isotropic random variables taking values in
symmetric spaces.

We consider in this paper only the case of a noncompact sym-
metric space. Surprisingly enough, the compact case is somewhat
more messy in technique, due to the fact that in compact symmetric
spaces the conjugate locus of a given point interferes with a routine

Received January 10, 1964.

477



478 R. GANGOLLI

reworking of our construction. Galmarino's result in [2] for S2 is
therefore not contained in ours. However, his method is special to
S2 and does not seem to be susceptible to generalization.

We should like to acknowledge a valuable conversation with
J. M. G. Fell recently and another one with H. P. McKean Jr. over
a year ago.

2Φ Preliminaries* We are forced to ask of the reader some famili-
arity with the theory of symmetric spaces. We shall sketch here the
notation we use frequently in this paper. Any symbol to which a
meaning is not given here is to have the same meaning as in [3, § 2]
or [6].

G will stand for a noncompact connected semi-simple Lie group
with a finite centre and K for a maximal compact subgroup of G. g0, Io

are the Lie algebras of G, K respectively. The Cartan-Killing form
B on g0 x g0, given by B{X, Y) — Trace (adX adY) where X—>adX
is the adjoint representation of g0 on g0, is nondegenerate on g0 x g0

and if p0 is the orthogonal complement of ϊ0 in g0 w.r.t. B, we have
q0 = f0 0 ρ09 B is negative definite on ϊ0 x ϊ0, positive definite on p0 x p0.
This is called a Cartan decomposition of g0. p0 can be identified in a
natural way with the tangent space at π(e) to the manifold G/K,
where π : G —> G/K is the natural projection and e the identity of G.
The restriction of B to p0 x p0 gives by translation, a Riemannian
structure for G/K endowed with which G/K is a symmetric space
conversely every symmetric space of the noncompact type arises in
this way [6]. We shall have occasion to use the Iwasawa decompo-
sition G, described as follows : g0 = f o φ ^ o 0 t t o , where ^ 0 is a maxi-
mal abelian subspace of p0, rt0 a nilpotent subalgebra of g0 and π0 is an
ideal in \Q φ π0. If Ap, N are analytic subgroups of G with Lie
algebras ί)po, π0 respectively then Ap9 N are simply connected, A^ N is
solvable, N is normal in AN and G = KAN in the sense that the
map (k, a, n) —* kan of K x A x N to G is an analytic diffeomorphism
of K x Apx N onto G. Given x e G, we denote by k(x), H(x), n(x)
the unique elements of K, ί)w N such that x = &(&)(exp H(x))n(x).
Note that by the very definition, we have H(xy) — H(xk(y)) + H(y),
cf. [4] we shall use this later.

The left and right translations L{x), R{x) given by y —+xy, y~^ yx
respectively, induce operations on functions, measures, distributions
etc. on G; e.g. f£{x)(y) = f(xy) = (f-L(x))(y). We shall say that a
function, measure etc. is spherical or isotropic on G if it is invariant
under L(fc), R(k), keK i.e. fL^ = fR™ = /.

A G-valued random variable (r.v.) ξ is a map of a probability space
(£?, ^ , P) to G, measurable relative to the α -field of Borel subsets of
G ξ carries the measure on Ω to a probability measure Fξ on G which
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we call the distribution of ξ. A r.v. is called spherical if its distri-
bution is spherical. It is easily seen that a G-valued spherical r.v.
can be thought of as a G/K valued r.v. whose distribution is invariant
under the left action of K, and conversely. We find it more con-
venient to work on G as far as possible. All r.v.s in this paper will
be G-valued spherical r.v.s unless expressly stated otherwise.

Given independent r.v.s ξu ξ2 their product ξί-ξ2 is also a r.v., and
Fh.h = Fξi-Fξ2, the product on the right being convolution. It will
be important to us that if ξl9 ξ2 are independent and spherical then
Fξ .h = Fξ2.ξl, because convolution of spherical measures is commutative

[6].
The theory of spherical functions developed by Harish-Chandra

[5] and others is a powerful tool for analysis on symmetric spaces.
For v e Eo the space of complex valued linear functionals on ΐ) , let
<Pv(x) be the corresponding elementary spherical function (see [3, §3]
where a fuller description is found), defined by

(2.1) φv(x) = f exp [iv{H(xk)) - ρ(H(xk))] dk

where p is the half-sum of the positive roots. Then φv(e) = 1, and

\ φv(xky)dk — φAx) φv(y). φv is analytic and is an eigenfunction of
JK

every differential operator on G which commutes with left translations
by elements of G and right translations by elements of K. For a
spherical measure μ on G, we defined in [3] its Fourier-Stieltjes trans-
form by

(2.2) β(X) =

EB being the real valued linear functionals on t) . It was shown in
[3] that μ determines μ. Further, calling a spherical probability
measure μ infinitely divisible if for each integer n, μ = Θn where θ
is a spherical probability measure and the product is the convolution
product, we proved in [3] the theorem:

THEOREM 2.1. A spherical probability measure μ on G is infi-
nitely divisible if and only if

(2.3) μ{X) = exp \PD(X) - \ [1 - φλ(x)]dL(x)\

where L is a spherical measure on G such that \ [\x\2/l + \x\2]dL(x)

< cc f and PD(X) is the eigenvalue, corresponding to the eigenfunction
φx, of an elliptic second order differential operator in D(G/K) which
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annihilates constants.
Here, |cc| stands for the distance of xK from eK in the natural

metric on G/K.
A few consequences of Theorem 2.1 may be noted here as they

will be needed in § 5.
First of all, as observed in [3], given a spherical probability

measure μ, μ may be defined not only for λ e EB by \φλ(x)dμ(x), but

also for all those v e Eo for which \φ*(x)dμ(x) makes sense. For X e ER

consider the linear functional X — ip e Eo. It is easy to check that

\φ\-iP{x)dμ(x) makes sense. Indeed, it is equal to \ex$iX(H(x))dμ(x);

so that if a random variable ξ has the distribution μ, then β(X — ip) —

\φλ-iP{x)dμ{x) is the ordinary Fourier-Stieltjes transform of the distri-

bution of the ί) -valued random variable H{ξ).
In particular, if ξ is a r.v. whose distribution Fζ is infinitely

divisible, then one may conclude that, D, L being as above, the distri-
bution of H(ξ) has the ordinary Fourier-Stieltjes transform given by,
(λ e EB),

(2.4) (Fξ)(X - ip) = exp \pD(\ - ip) - ί [1 - φλ_iμ(x)]dL(x)}

= exp ίPviX - ip) - [ [1 - exp iX(H(x))]dL(x)\
I J|s|>0 J

using (2.1).
It follows from this that the real and imaginary parts of

[1 - exp iX(H(x))]dL(x)
\x\>0

both exist as convergent integrals, from which,
since sin z ~ z and 1 — cos z ~ z2 near z = 0, it is possible to conclude
that the integrals

H{x)dL{x)\ \\H(x)\\2dL(x)
l Jθ<|a:|<l

both exist. (Here, as elsewhere || || stands for the norm on £)po given
by the Cartan-Killing form.) This remark will be crucial in § 5.

Lastly, it is not hard to show, though we did not mention it in
[3], that the only second order elliptic differential operators in D(G/K)
which annihilate constants are just positive multiples of the Laplace-
Beltrami operator of G/K, if we assume G/K irreducible, which we
may do with impunity. Indeed if D — {c/2)Δ where c > 0 and Δ is
the Laplace-Beltrami operator, then PD(X) = (—c/2){<λ, λ> + ζp, py}
where < λ, λ> is the inner product given by the Cartan-Killing form.
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We may normalize c — 1 for future purposes.
As a final remark on notation, for a real linear functional λ e ERt

we denote by Hλ the unique element 6 Jj such that B(Hλ, H) — λ(ϋΓ)
H e \0. Thus < λ, λ > - B(Hλ, Hλ) = \(Hλ).

3* Brownian paths interlaced with isotropic Poisson jumps*

DEFINITION 3.1. Let X = {x(t), t e [0, oo)} be a separable stochastic
process. We say that X is differential if given 0 ^ tx < ίa < *s < *4 < °°»
cc(s)~1x(t) and x{u)~τx{v) are independent for all s,t e [tu t2] and u, v e
[ί3, ί j , s ^ t, n ^ v. It is said to have stationary increments if α?(0)~1x(s)
and xitf^xit + s) have the same distribution for any t, s ^ 0.

If X is differential with stationary increments and if Fι is the
distribution of cc(O)~1α;(ί), it follows without difficulty that Fι is infi-
nitely divisible and by applying Theorem 2.1, we conclude that for
λ e ER1

(3.1) (#*)(λ) = exp t {PD{X) -\ [1 - φλ(x)dL(x)]\ .
I J\χ\>o )

as in § 2.

DEFINITION 3.2. We say that X = {x(t), £ e [0, oo)} is a Gauss
process if L == 0 above and that it is a Levy process if D — 0.

A Gauss process δ(£) is none other than a Brownian motion on
G/K, essentially, i.e. π(b(t)) is a Brownian motion on G/K as defined
in [7] for example. The properties of such a process are well known.
It can be seen e.g. by appealing to [7], [12] that if B — {b(t), t e [0, co)}
is a Brownian motion, then it has continuous sample functions almost
surely. By its very definition,(1)

EiφMOrW)) = exp tPD(\) - exp - ± *{< λ, λ> + ζp, Py}

cf. § 2. Conversely given a second order elliptic differential operator
D e D(G/K) which annihilates constants, D — c/2D and one may
construct as in [7] or [11] the process B — {b(t), t e [0, c>o)} which
stands in the above relation to D. We assume c — 1 without loss of
generality.

Given (D, L) as described above, we first of all construct a
Brownian motion B — {b(t), t e [0, co)} given by D as above. Let
{£?', P'} be the sample space for this process. We shall now explain
what we mean be interlacing a Brownian path with an isotropic jump
of size x at time t1# Let x e G, and t—+b(t) be a Brownian path.
The path b(t) is to be unchanged for times t < tx. At time tL it jumps

E stands for the expectation operator.
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to b(t^)kxk' with probability dk dk'. After time tλ it continues as
before so that at time t ^ tx it is at bitjkxk'bit^bit), with probability
dk dk'. It is clear that to describe this more rigorously we shall have
to enlarge the sample space a little. This will be done in detail later.
For a jump of size x we shall refer to \x\ as the length of the jump.

Given the Levy measure L on G — if, denote by dt x L the
product measure on [0, oo) x G — K, where dt is Lebesgue measure
on [0, oo). In what follows, we denote by B* a Borel subset of
[0, oo) x G — K which has the following two properties

(i) I?* has finite dt x L measure
(ii) there exists a δ > 0 such that if (t, x ) e ί * , then \x\^δ.

We now describe what we mean by stationary random selection of
points of G — K according to the measure L namely, we select randomly
points (τ, x) e [0, oo) x G — K so that

(3.2) Given I?* c [0, oo) x G — K, the number of selected points which
lie in I?* is a random variable with a Poisson distribution whose
mean is (dt x L)(J3*).

(3.3) If Bf, i = 1, I are disjoint subsets of [0, <*>) x G — K then
the numbers #< of selected points which lie in Bf are all mutually
independent random variables.

See in this connection [9]. Since dt x L is σ-finite, it is almost
sure that we shall select only countably many points. The above
description can be formalized somewhat awkwardly as follows. We let
our sample space fl" be the space of all sequences ω" = {(τjt Xj)} "=ι

(with (τh Xj) e [0, °°) x G — K) such that

I Xj+i I ̂  I xj\ and Tj < τj+1j = 1, 2, .

(This ordering is for convenience only.) We can build on this space a
Probability measure P " by requiring

(3.4) P"(ω" I # B*(ω") - I)

= exp - {dt x L)(S*) ((dt x L)(B*)ιjl!)

(3.5)
ί=l

- i ί P"(a>" I # Bf(ω") = i,) ,

if £? U β ; = Φ when i =£ i

where # B*(ω") stands for the number of terms (τj9 x5) in the sequence
ω" — {(τjf a?i)}JLi which belong to 2?*, and Z, ϊ i f i = 1, ••• r are non-
negative integers. P " can now be extended to an appropriate Borel
field of subsets of Ω" in the usual way. We propose to omit specific
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mention of the underlying er-field without risk of confusion.

Given the Brownian motion {b(t), t e [0, co)} our idea is to make a
stationary random selection of points (τj9 Xj) according to the Levy measure
L, independently of the Brownian motion and then to interlace the
Brownian path by isotropic jumps of sizes xs at times τ3 j — 1, .
As seen above, this involves choices of k3, k! 3- at each interlacing.

oo oo

Precisely, let Ω — Ωr x Ω" x Π K x Π K a n d endow it with the product
ί=l i=l

measure P = P' x P" x Yl dk x J[ dk where dk is the normalized
Haar measure of K. The space (Ω, P) will serve for our construction.
A generic point o) 6 Ω will now furnish us with a Brownian path
t-^b(t,ω); a sequence (τ3(ω), χά(ω))?=ί of points of [0, oo) x G — K,
(selected stationarily and randomly according to the measure L); and
sequences kj(ω), kr

3{ω),j = 1, of points of Ky these last being
distributed uniformly over K; all these random objects being inde-
pendent mutually. For typographical convenience we shall omit the
underlying point a).

Now let δn be a sequence such that 1 ^ δn ^ δn+ί > 0 and δn —> 0
as n—> co. For any real number a > 0, let

B*(a, t) = {(«, x) I (s, x) e [0, oo) x G - K, s ^ ί, | x \ > a} .

Given ω e Ω, let δ(£), {(r, , flCj)}JLi, fcj, /c'̂  be the items that it furnishes.
Let j(a, t) be the largest integer j such that (τu xt) e J5*(α, t) for all
I S j . Now define for a ^ 1, n — 1,2, .

^(^)

(3 7)

In spite of its unprepossessing appearance, t —> 2/%(£) is just the
Brownian path interlaced with independent isotropic jumps of length
> δn occurring before time t, selected stationarily randomly according
to the Levy measure L while yt(t) is just the Brownian path into
which those jumps of lengths between δn and a have been interlaced.
It is clear that j(a, t) is finite with probability one because of (2.3),
so that the path t —• yn(t) has with probability one finitely many jumps
in [0, t] at times τu τ2, r J (βw,t)

We shall show below that the sequence π(yn(t)) will converge as
n—> oo with probability one uniformly on compact subsets of [0, oo)
to a process whose law is given by (3.1).
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4* Convergence in distribution*

THEOREM 4.1

(4.1) E{φλ{yn{t))) = exp t \PD(X) - ( [1 - φκ(x)]dL(x)\ .

Proof. Since {b(t), t e [0, oo)} is differential and since (τj9 Xj), kj,k/,
{b(t), t e [0, oo)} are mutually independent, it follows that the r.v.s

6(0)-^); klXlk\; biτ,)-1^); k2x2k'2

are mutually independent and spherical. Hence their distributions
commute under convolution cf. our remarks in § 2. Therefore the
distribution of yjίt) is the same as that of

Jc^'k^xJc'^ -kj{8n,t)xj{8nft)k'j{bn,t) .

Therefore

E(φλ(yn(t))) = EiφάbiOy'HW^k'^zXzk',- 'kj{K,t)xj{5

(4.2) = EiφMOrW))) E

because φλ is spherical. Since

(4.3) E{φMQ)~%t)) - exp {tPD{X)} ,

it remains to compute E( f[ φκ{xά) ).

Denote by C*(n, a) the set {x \ dn < | x | g a}, a being a real
number ^ 1 say. Then it is clear that

[0, t] x C*(n, a) = £*(<5W, t) - £*(α, t), and so, EΓJI φx(χs)\

/3i8n t) \

= limE' ( f[ φλ(Xj)) recall j(oof t) — 1) .

Let now, Λ, Λ> * *> ί̂>Λ be a partition of the closure of C*(n, a) by
subsets of diameter ^ ε, ε being > 0, and let zlf zVob e G be points
in zfi, , Ap . It is known that φλ is a uniformly continuous function
on G, therefore we can conclude that | φλ(zp) — φλ{z'p) \ — o(ε) as ε —> o,
uniformly for s'p G 4P 1 ^ p ^ pΛ, α = 1, 2, .

Suppose that exactly lp of the points



SAMPLE FUNCTIONS OF CERTAIN PROCESSES 485

fall in [0, t] x Ap, p = 1, , pa. The probability of this event is

(4.4) Π exp - tL{Ap).({tL{Av)Y*llp!)
p=l

On the other hand, if exactly lp of these points are in Apy the
product

Π φM = Π {φ&p) + O(6)Y*

by our remark above. We therefore have

Π
j(C6,t

= lim Σ Π K ( ^ ) + o(e)}'p exp - {tL(ΔP)} {tL(dp)}hβp \
ε->0 i, ,Pa=0 p=i

a ~ = Km if exp [- tL{Av) + ίL(J!)){^λ(3!)) + o(e}]

= lim e x p - ί { Σ [1 - ψχ{zP)\L{Δv) + o(e)L(C*(wf a)}

= exp {lim - t J Σ (1 - Ψκ(zf)W,) + o(e)L(C (w, «))}}

= exp - t \ [1 - φλ(x)]dL(x).
J8n<\x\^cύ

Letting a —> oo f and remembering (4.2), (4.3) we have the assertion
of the lemma.

COROLLARY 4.1

lim E(φλ(yn(t))) = exp t{pD(X) - ( [1 - φλ(aO]dL(αθ} .

5* Convergence with probability one* We begin with a lemma
which has independent interest.

LEMMA 5.1. Suppose we have a sequence yn, n = 1, 2, contained
in a compact subset A of G such that for each z e G and each positive
definite elementary spherical function Φ, the sequence Φ(zyn) converges.
Then the sequence τc(yn) converges in G/K where π is the natural
projection of G onto G/K.

Proofo Suppose / is a continuous function with compact support
in G such that f(xk) = f(x) for all k e K. We first of all claim that
such an / can be approximated uniformly on its support B by a finite
linear combination of left translates of a spherical function. To see



486 R. GANGOLLI

this let fn be an approximate identity in LX{G). Then as is well known,
f*f«~*f uniformly on B, where the dot stands for the convolution.

Let now Fn(x) = I [ fn(kxk')dkdk'. Then Fn is spherical. Further,

using the fact that f(xk) — f(x) for k e K, it can be easily shown
that f Fn~>f uniformly o n ΰ a s w ^ o o , Since

= \ Λv)Fn(y-1χ)dy ,

and since B is compact, we may approximate this last integral by
suitable Riemann sums to get the following conclusion. Given e > 0,
there exist complex numbers αx ar, elements gx gr e G and a
function F e C(G) with F(kxkf) = F(x) for k,k' e K such that

(5.1) I f(x) - Σ a>iF(g&) \ < e x e B .

We next claim that if F is any function εC(G) such that F(kxkf) =
F(x) k, k' € K, then given ε > 0 and a compact subset C c G, there
exist complex numbers &x 6, and elementary positive definite spherical
functions Φu -* ,Φι such that

(5.2) I F(x) - Σ Wax) | < ε x e C .

To see this let D = {fê Z^ | fclf k2 e K, x e C} then 2) is compact.
By Godement's theorem [10, p. 403] there exist complex numbers
&i> •••>&«» a n ( i elementary positive definite functions (^ Φm on G
such that

(5.3) \F(g)-±biΦi(g)\<ε geD.
i=i

Then if x e C, we have

(5.4) F{kxk')dkdk'

If we suppose that of the functions Φλ - - Φm the first £ (say) are
of class 1 (see [6, p. 414] for the definition) it is easy to show that

ΦJUcxV) = Φi(x) 1 ^ i ^ I, k, k' e K and ( ( Φ^kxk^dkdk' = 0 for

ί + 1 ^ i ^ m. Since ^tofc') = F(a?) k, k' e K, it follows from (5.4)
that

(5.5) I F(x) - Σ hΦfa) l< « ^ C

which is what we claimed.
Putting together (5.1) and (5.5) we see that given ε > 0, we can
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find complex numbers c19 , cmf elements zlf , zm e G and elementary
positive definite spherical functions Φ1 Φm such that

(5.6) \f(x)-tciΦi(zίx)\<e xeB.
ί=l

Now we turn to the proof of the Lemma. π(A) is compact in
G/K. Suppose that the sequence π(yn) has two cluster points say
yf y" in π(A), yf Φ y". We can find a nonzero function / continuous
with compact support in G/K such that y', y" ε the interior of supp
/ and f(y') Φ f(y"). Let f — foπ. Then / is continuous on G, we
may take it to have compact support in G, and f(xk) — f(x) k e K.
By (5.6), we have, given ε < 0

<5.7) I f(y) - Σ cMtiV) \<e ye supp f .

If Vn', Vn" are subsequences of yn such that π(yn) -* y\ π(yn,,) —> y",
then since we know by hypothesis that Φ^ yn) converges for each
i as n —> co, (5.7) implies easily that f(y') — f(y"), contradicting the
choice of /. Thus π(yn) cannot have two distinct cluster points and
the lemma is proved.

LEMMA 5.2. Suppose that ξu ξ2 are independent r.v.'s; let z e G.
Then the ^-valued random variable H(zξι ξ2) has the same distribution
as H{ξ)

Proof. For λ e ER

(5.8)

= j
H(y))dFh(x)dFh(y)

exp iλ(fΓ(y)).[jexp iX(H(zxk(y)))dFh(x) ] dF,t(y) .

The integral in the square brackets is seen to be independent of y on
making the substitution x —> xkiy)-1 and remembering Fffk) = Fh, k e K.
Hence

(5.9) = ^expix(H(y))dFh(y)^expi\(H(zx))dFh(x)

=E(exp iλ(

which finishes the proof.
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REMARK. Only the fact that Fffk) — Fζl is used in the above
proof, and not the sphericity of Fξl. This remark becomes important
when general nonspherical random variables taking values in G/K are
considered.

COROLLARY 5.3. If ξifi — l, -- ,n are mutually independent
r.v.'s and z e G, then H {zξγξ2 fw) has the same distribution as

- +H{ξn).

LEMMA 5.4. Let &, ^ i = 1, * ,n be mutually independent
r.v.'s such that E(H(ξi)), E{H{η-)) exist. Let z e G,k e K be fixed.,
Then,

(5.10) E(H(zξlVlξΆ) ξnηjc) I ξu ξ2,---, ξn)

ξjo) + E(H(ηlV2 τ]n)) .

Proof. It will be enough to show that if fuf2, , fn are bounded
complex valued Borel functions on G then

(5.11) = E(f&d f%(ξu)H(zξ& ξM
+ E(md - fn{ξn))E{H{Vlη2 ηn)) .

The left side

(5.12) = j j J/iίSi) * * * fn(xn)H(zxlVl X

Because of the sphericity of jPe<, FVi, this integral is invariant
under the substitution xt —> x^k{, k{ e K. Hence we can and do assume
to begin with that f^x) — fi(xk) x e G,h e K, (if necessary by replacing

fi(x) by \ fi(xk)dk). Now in the above integral let us subject the yi
JK

to the substitutions yt—^fc^fc^. Remembering that Fh is spherical
we get that the left side of (5.11) (call it I)

dFtfa) dFξn(xn).dFηi(yi) dFVn(yn).

(5.13) =\\ \f^) -fM-\\ \

H(zx1k1y1k\ x2k2y2k
r

2 xnknynk!\k)dkx dkndk\ dk'n
dFh(xd dFζn(xn)-dFVi(Vl) dFVn(yn) .

Now, using H(xy) — H(xk(y)) + H(y), it is quite easy to check
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that \\H{xkyk')dkdk' = \H(xk)dk + \H(yk')dk', so

11 ^{zxjc^jc'x yjc'jcjdki dkβk[ dk'n

= [Hizxjc^dki. + [H(xjc2)dk2 ••• + \ll(xnkn)dkn

(5.14) + ^H{yjc[)dk[ . . + \H{ynK)dk'n

= 11 I Hizxjcjxjc^ - xjc^dkβki dkΛ

+ \\'~ \WvMyX • - yjc'n)dk[ dk'n

I=\\'" \fl(Xl)'''fM [Jl "'

( 5 Λ 5 ) ff f Γff

dk\ dΛ'.Jd^ί*,) dF;n(xn)dFVi(yi)

Using the fact that FVi are probability measures and that /<(») =
fi(xk) for all k e if, we have

I = j j j fi(xύ - UxMzxM xJe)dFtl(x0 ''' dF(n(xn)

+ [\\ " j/ifo) * * * UxJdF^x,) dFφn)

(5.16) x [J J ' | # t a * vJdFvSVi) ''' dFVn(yn)\

fΛ(ξ.)H{zξ& ξjc))
fMn))E{H{VlVi ηn)),

which is (5.11). (Note that in the first step of (5.16) we introduced
k with impunity because in (5.15) the measure dkn is right invariant.)

COROLLARY 5.5. If ξi} i = 1, •••,» are independent r.v.'s such
that E(H(ξi)) exists, then if z e G, k e K the sequence

Zn = Hizξ, ξje) - E{H(zξx • ξjc))

is a martingale sequence.
The proof follows directly from the lemma.

LEMMA 5.6. Let {b(t), t e [0, co)} be the Brownian motion. Then
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(5.17) jEr(£Γ(6(0)-16(ί)) = tHp .

Proof.

E(exp iλ(iϊ(6(0)~1δ(έ))))

= \ expiX(H(x))-dFb{or\{t)(x)

= I I expiMH(xk))dk-dFb{Q)-\a)(x)
(5.18) J *

J &

= exp - \ {<λ - ip, λ - ΐp> + <lo, py\
2

= exp - JL <λ, λ> + iίλ(flp) .

This is clearly the Fourier-Stieltjes transform of a Gaussian distribution
on ί)Po, with mean at tHp, concluding the proof.

COROLLARY 5.7. If z e G, then

E(H(zb(0)-1b(t))) = f H{zk')dkf + tHp,

and

E{\\ HizbiOy^it)) - ^ ( ^ ( ^ ( O ) - ^ ) ) ) ||2) = ί t + C2

where I — dim ^ o , α^cί C2 is α constant depending only on z.

Proof. Both assertions follow by observing that

= I <P>,-iP(z%)dFb{0)-h{t)(x)

= 1 I φλ-ip(^kx)dkdFb{0)-
1

b{t)(x)f since F is spherical

(5.19)

- Y <λ, λ> + iίλ(jgrp)

= Γί exp iλ(iϊ(^))^ΊΓexp - — <λ, λ> + i

Thus we know that this is the Fourier-Stieltjes transform of the
distribution of Hizbφy^t)). The two quantities of the corollary are
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merely the mean and the trace of the covariance matrix of this
distribution and the corollary follows after a painless computation.

LEMMA 5.8. With the notation of § 3, we have for z e G, k e K,

(5.20) E{H{zy\{t)k)) = EiHizbiOy^t))) + t H(x)dL(x) .
Jδn<\x\<i

Proof. By sphericity, E{H{{zy\{t)) = E(H{zy'n{t))). Now recall the
definition of y\(t) viz. (3.6). Because {δ(t), t e [0, oo)} is differential
and because kjXjkj j = j(l, t) + 1, ,j(δn, t) are mutually independent,
it follows from Corollary 5.3 that

(5.21) E{H(zy\(t))) = E{H{zbφ)~%t))) + E

The second term can be computed by exactly the same method as the
one followed in theorem 4.1. We omit the computation. The result is

ίί ί [ H{kxk')dL{x)dkdkf.

Remembering that L is spherical, this is t I H(x)dL(x) finishing

the proof.

LEMMA 5.9. Let z e G,k e K and write

Zn(t) = H{zy\(tyk) - E{H(zy\{t))) .

Then for a fixed n, Zn(t) is a martingale in the parameter t for a
fixed t, it is a martingale in the parameter n.

Proof. Let s < t, then yι

n(t) = yι

n{s)-ζn{s, t) where

Note that because {b(t),te [0, oo)} is differential, ζM(s, t) is inde-
pendent of y\{u) u < s. Moreover, we have

E(H(ζn(s, t)))

= E(H(b(s)-W)))

= (ί - 8)J2p + ( * - « ) ( H(χ-
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by Lemmas 5.2, 5.6 and 5.8.
Using Lemma 5.4, we get

E{H{zy\{t)k) I yi(u) u g s)

= E(H(zyl(sKn(s, t)k) \ y\(n) u ^ s)
(5.24) = H{zyl{s)k) + E(Us> t))

= H{zy\{s)k) + (t - s)H9 + (t - s)\ H(x)dL(x).
JSn<M£l

On the other hand, since

E(H(zyl(t)k)) = ( H(zk')dk' + tH9 + t[ H(x)dL(x)
JK J δ < | τ l < l

by virtue of Corollary 5.7 and Lemma 5.8, (5.24) now implies the first
assertion of the present lemma.

Turning to the second assertion, fix t. The only difference between
yKt) and yl+i(t) is that the latter has interlaced jumps of lengths in
[δn+1, δn] while the former has no such jumps. Indeed by (3.6) we
see that

(5.25) yi+1(t) - yln{τ^t))ΘM

where

(5.26) ΘM "

We now use Lemma 5.4 with the random variables

b(τj)"1b(τj+1) j = 1, , j(δn+1, ί), ksXjkj, j = 1, , j(δnf t)

playing the roles of the ξ's in that lemma and the r.v.'s

kjXjkj, j = j(δn,t) + 1, , j(dn+1, t)

playing the role of the rfs of that lemma. Recalling also Lemma 5.2,
we have

St \

9xifj = 1, •• , ί ( δ Λ , t ) /

= H{zy\{t)k) + El Σ HikjXik'j)
v=y(8Λ,ί)+i

(5.27)

= H(zyi(t)k) + t\ H(x)dL(x)
J8n + 1<\x\^l
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- ί[ H(x)dL(x)
Jδn<\x\<l

in view of Lemma 5.8, this last easily leads to the second assertion
of the present lemma.

LEMMA 5.10

(5.28) E(\\ Zn{t) ||2) - It + t \ || H(x) \\2dL(x) + Cz

where I = dim ̂ 0 , and Cz is the constant of Corollary 5.7.

Proof. E(\\ Zn{t) ||2) is just the trace of the covariance matrix of
the distribution of H(zyl(t)k), call it the variance (cf §2). The distri-
bution of H{zyι

n{t)k) is by Corollary 5.3, the same as that of

jtfn,t)

H(zb(0)-1W)+ Σ HikiXjk').

Hence the variance of H(zyι

n(t)k) is the sum of the variances of
J(δn,t)

and £, Hφ&jkj). The variance of iϊ(a;6(0)-1δ(έ)) has al-
ready been computed in Corollary 5.7 to be It + Cβ. As for 2 H(kjXjkj),

Fourier-Stieltjes transform of its distribution can be computed to be

Eexpix(^ 'Σ?'"HfcXjk'j))

(5.29) - Eζll I

- exp - t Jδ ̂  [1 - 0λ_ip(αO]dL(aO

= exp - t ί [1 - exp iX(H(x))dL(x)

where we have omitted computations sufficiently similar to ones gone
before.

From a knowledge of its Fourier-Stieltjes transform the variance

°f Σ H(xjXjkj) can now be easily computed to be t \ \\ H(x) \\2dL(x).

This finishes the proof.

THEOREM 5.11. Let z e G,k e K. There exists a sequence 8n [ 0
such that H{zy\(s)k) converges with probability 1 as n —> oo f uniformly
for 0 ^ s ^ t and k e K.
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Proof. We have seen above that if

Zn(s) = H{zy\{s)k) - E{H{zy\{s))) ,

then for fixed n, Zn(s) is a martingale in s. It follows that Zn+1(s) — Zn(s)
is also a martingale in the parameter s. By the Martingale inequality
of Doob [1, p. 314] we have

(

(5.30) ° ψ

^±
On the other hand, for fixed t, Zn(t) is a martingale in the para-

meter n. It follows that

(5.31) E{\\ Zn+1(t) - ZJjt) | |2) = E(\\ Zn+1(t) | |2) - E(\\ ZJjb) | |2) .

(Indeed for a martingale Zm we have always E(\\ Zm — Zn ||2) =

m ||2) - E(\\ Zn ||2).) In view of Lemma 5.10, we get

(5.32) E(\\ Z.+1(ί) - Zn{t) ||2) = ί J4 ^ ^ || # ( * )

since I || H(x) \\2dL(x) < co (cf. §2) we may choose the sequence

δn so that ί ί || jff(aj) ||2dL(a0 < 2"% for large n. Then (5.29) with

e = 2-%/3 yields

(5.33) P(sup || Zn+1(s) - Zn(s) \\ ̂  2~w/3) ^ 2~nl3 .

It follows by the Borel-Cantelli Lemma that ZJβ) must converge
as n—> oo uniformly in 0 ^ s ^ ί with probability 1. Now,

Zn(a) = H(zyl(s)k) - E(H(zyl(s)))

(5.34) = H(zyl(s)k) - \ H(zV)dk' -

JΪ(a?)(iL(a?)

and since \ H(x)dL(x) exists (cf. §2), we conclude that H(zyι

n(s)k)
Jθ<|x|^l

must converge as w —> ^ uniformly in 0 ^ s ^ t with probability 1.
The estimates (5.32), (5.33) being uniform in k e K, the theorem now
follows.

COROLLARY 5.12. {yJ»(a)}Γ=i is contained in a compact subset of G
for 0 ^ s ^ t with probability one.

Proof. We know by the theorem that H{yι

n(s)) converges as n —> °o
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uniformly for 0 S s ^ t almost surely. If some subsequence yl^s)
were to —* ^ on G with positive probability, then by considering the
map x —> H(x), it could be shown easily that H(y\3(s)) —• oo on ^ 0 with
positive probability, contradicting the theorem. Therefore the corollary
follows.

THEOREM 5.13. The sequence π(yn(s)) converges on G/K as n—+ ©o
with probability one uniformly for 0 ^ s ^ ί. // yoo(s) is the limit,
then i/oo(s), s e [0, <*>) is differential process on G/K. If Fι is the
distribution of yjt) on GjK, then Fι is given by (3.1).

Proof. If φ is an elementary positive definite spherical function
on G, by Harish-Chandra's formula (2.1) we have

(5.35) φv(x) = exp [iv(H(xk)) ~ p(H(xk))]dk

for some complex valued linear functional v on ΐ)po. We have seen
above that for z e G k e K, H(zyι

n(s)k) converges as n —> oo uniformly
for 0 gΞ s ^ t and k e K almost surely. It follows from (5.35) that
φ(zyln(s)) must therefore converge as n —> oo uniformly for 0 ^ s ^ t
almost surely. By Lemma 5.1, we conclude that τr(^(s)) must do the
same. But yn(s) and yι

n{s) differ only in that yn{s) has in it jumps of
lengths bigger than 1. Since there are almost surely only finitely
many of these for s ^ t, it follows that π(yn(s)) must converge as
n—>oo almost surely, uniformly for 0 ^ s ^ ί. That y^s) is differential
is obvious though messy to check. The last assertion follows from
Corollary 4.2.

In particular, the process given by (3.1) may always be assumed
to have sample functions whose discontinuities are only jumps. The
Levy measure L has the interpretation that tL{Δ) is the expected
number of jumps of sizes x which the path experiences till time t, for
which x e A.
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