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INFLATION AND DEFLATION FOR
ALL DIMENSIONS

ERNST SNAPPER

We assume that a finite group G acts on the left on finite
sets X and Y, and that there is given a function /: X —» Y.
We assume that f(σx) = όf(x) for all σ e G and xeX; and that
f~ι(y) n a s * n e same number h of elements for all yeY. We
show that the cohomology groups Hr(X; G, A) and Hr(Y; G, A)
of the permutation representations (G, X) and (G, F) with
values in a G-module A are interrelated by homomorphisrns
inflation,-: Hr(Y; G, A) -> iίr(X; G, 4̂) and deflations
# r ( F; G, 4) -» Jϊr(Γ; G, A), for all r e Z , The main properties
of infr (inflationr) and defr (deflationr) are:

I. For all reZ, defrinfr: Hr(Y; G, A) -> H*(Y; G, A) con-
sists of multiplying the elements of Hr(Y; G, A) by /*/*, where
g ^ 1 and q depends on r.

II. If for some reZ, Hr(Y; G, A) is uniquely divisible by
h, infr is a monomorphism and defr is an epimorphism and
Hr(X; G, A) = im(infr) 0ker(defr), where 0 denotes the direct
sum of abelian groups.

III. Hr(Y; G, A) is uniquely divisible by h for all reZ
in each of the following two cases.

Ilia. A is uniquely divisible by h.
Πlb. (h, m) = 1 where m is the index of (G, Y).
We then study the special case where the permutation

representations (G, X) and (G, 7) are transitive and where
(G, X) is furthermore free of fixed points. Since the classical
inflation and deflation mappings fall under this heading, we
have now extended these mappings to all of Z. We describe
the six mappings infr and defr for r = 0, ± 1 explicity in terms
of trace mappings, augmentation ideals and crossed homo-
morphisms.

G stands for a finite group. For every normal subgroup H of G
and G-module A, the inflation (or lift) mapping Hr(G/H, AH) —> Hr(G,
A) is well known for r ^ 1; Aπ always denotes the submodule of A
whose elements are left fixed by H. Dually, there is available the
deflation mapping Hr(G, A) -> Hr(G/H, AH) for r ^ - 2 (see [7]). In
the present paper we extend the inflation and deflation mappings to
all r e Z. (Z denotes the ring of the rational integers.) We develop
the theory for arbitrary permutation representations (see [6] for the
cohomology of permutation representations) which includes the case
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that H is not normal.

The fact that the inflation mapping followed by the deflation
mapping consists of multiplying by a power of [H; 1] (see Theorem
5.1), indicates that these mappings behave particularly nicely if A is
uniquely divisible by [H: 1], or if if is a Hall subgroup of G. These
cases are worked out in § 6, 7, 8, 11, 12 and 13 and are needed for
the author's forthcoming paper on duality in the cohomology of
permutation representations. The study of deflation in dimension 1
brings to the fore natural endomorphisms of the group of crossed
homomorphisms from G to A. There is one such endomorphism for
each subgroug of G. (see § 15 and 16.)

1* Inflation for chains* X stands for a finite set and (G, X)
for a permutation representation (see the introduction of [6]); i.e.,
σxe X for all xe X and σe G, and (στ)x — σ(τx) and lx — x for all
σ, τ G G; 1 always denotes the unit element of the group under discus-
sion. Let (L, Y) be a second permutation representation of some finite
group L acting on some finite set Y, and let θ = (φf f)\ (G, X) —> (L,
Y) be a morphism of permutation representations (see the introduction
of [6]); i.e., φ:G—*L is a group homomorphism and /: X—> Y is a
function where f(σx) — φ(σ)f(x) for all σe G and xe X. The r th chain
group Cr(X; G) of the standard complex C. (X; G) of (G, X) is the G-
module Z[Xq], where Xg is the cartesian product of X with itself q
times; g = r + l i f r ^ 0 and q = — r if r < 0 (see § 1 of [6]; the
same definitions hold of course for (L, Y).) The function (x19 xq) —>
(/0&i)> "•>/(#*)) from Xq to Y9 can be extended by linearity to a
homomorphism ar: Z[Xq]-^ Z[Y9] which is a G-homomorphism if we
regard the L-module Z[Yq] as a G-module under φ: G-^L. All this
gives rise to the diagram:

. - * • CΛX; G) - i U C0(Z; G) - ^ C_ΛX; G) ^ C_2(X; G ) - H ....

•7* Cλ{Y; L) — ^ C0(Y; L) —^ C_1(F; L) —^ C_2(Y; L) —

We have primed the differentiation mappings d'r and augmentation
mappings ε', μr of the complex C.(Y;L). We know from § 1 of [6]
that μe = d0 and that μ'e' = df

0; and § 13 of [6] tells us that d'raΊ =
ar_pr for r ^ 1 and that ε'a0 = ε. The reason why one shies away
from studying ar for r < 0 is that these commutativity relations fail
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for r < 0. We show however that they fail by so little that these
maps ar are still very useful for r < 0.

We assume for the remainder of this paper that f"\y) contains
the same number of elements for all y e Y, and denote this number
by h. This implies of course that /: X—> Y is an epimorphism and
hence that ar, for all r e Z, is an epi. Conversely, if / is an epi and
the permutation representation (G, X) is transitive, the number of
elements in f~\y) does not depend on y. This follows easily from the
fact that for every morphism of permutation representations the parti-
tioning X = \Jf~\y) of X consists of domains of imprimitivity of (G,
X). (See § 146 of [2] for domains of imprimitivity.)

We replace the differentiation operator d'r of C.(Y; L) by hd[ if
r < 0, but leave d'r unchanged for r < 0. We also change μ' to hμf

but leave ε' unchanged. We now show that the following diagram
displays a chain mapping of complexes.

; G) - ^ C0(X; G) ; G) ; G)

(I) z

^ rv ί y . T \ > Γ< / y . j \ > r< / y . r \ ^ /°» / y . r \
3o 3i /t9 n hdi

PROPOSITION 1.1. The upper row of diagram (I) is a G-complex
and the lower row is an L-complex. The diagram is completely com-
mutative, that is;

( 1 ) d'rar = ar_βr for r ^ 1;

e'ao = e;

με = do;

hμ'e' = hθ'Q;

( 2 )
( 3 )
( 4 )
( 5 )
( 6 ) hθ'rar = ar_βr for r ^ - 1.

The chain mapping {arj r e Z} is an epimorphism and a G-mapping if
we consider the lower row as a G-complex under φ\ G—+L.

Proof. The upper row is the G-complex C.(X; G). The fact that
C.(Y; L) is an L-complex implies immediately that the lower row is
also an L-complex. The first three commutativity relations have been
discussed above and (4) follows from μ'ε' = 9J. For (5) we observe
that αuμ(l) = oί^Σxezx = Σxexf{x) = hΣyβYy = hμ'(l). For (6) we
select (xlf •• fxr)eXr and use the definition of Θ_r of § 1 of [6] to
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compute that a^fi^x^ •••,»,.) = a_r_λ{Σxex(x, x19 , xr) + Σr

i=1(- 1)'

Σxeχ(Xi, , Xi9 X, Xi+» Xr)) = Σ.ex(Λ«), / R ) , , / K ) ) + ^ ί - i ( - 1)*

+ hΣU(- l)%6r(/(^), , f(xt)9 y, f(xi+1), , /(O) - hfiUf(xd,
f{xr)) = ΛβUα^ίa?!, , a?r). Finally, the fact that ar: Cr(X; G) -> Cr(Y;
L) is an epimorphism and may be regarded as a G-homomorphism has
been mentioned previously. Done.

One should be careful to observe that the lower row of diagram
(I) may not be acyclic any longer. True, its r t h cycle group is the
same as the r th cycle group of the acyclic complex C.(Y; L), because
Cr(Y; L) = Z[Yq] is without torsion for all reZ. However, if r g - 1,
the r th boundary group of the lower row of diagram (I) is hBr where
Br denotes the r th boundary group of C.(Y; L).

It is convenient to think of the mappings ar as the "inflation
mappings for chains" because, if r ^ 1, ar gives rise to the customary
inflation mapping (see Definition 4.1). If however r ^ 0, either ar or
har is used to define the inflation mapping (same definition).

2. Deflation for chains* We define, for every reZ, a homo-
morphism βr: Cr(Y; L) — Cr(X; G). Again, Cr(Y; L) = Z\Y% where
q — r + l i f r ^ 0 and q = — r if r < 0. The mapping (y19 •••,!/«)—•
Σ(xh, , Xi), where the summation is over all g-tuples of the
cartesian product f~\y^x ••• xf~1(yq)f maps the Z-base of Z[Y9] into
Z[Xq] = Cr(X) G). We define βr as the extension by linearity of this
mapping to Z[YQ], We observe that βr is the dual of the mapping
0C-r-ι i n the following sense. Cr(Y; L) may be regarded as Hom2(C_r_1

(Y; L), Z) and similarly, for Cr(X; G). (See § 1 of [6].) If we apply
the functor Hom^(*, Z) to the homomorphism a_r_^\ C_r_x(X; G) —>
C_r_£Y\ L) we obtain the homomorphism βr: Cr(Y; L) -> Cr(X; G). This
observation makes the following proposition into an easy corollary of
Proposition 1.1.

PROPOSITION 2.1. The upper row of diagram (II) (see below) is

a G-eomplex and the lower row is an L-complex. The diagram is

completely commutative, that is:

( 1 ) drβr = β^kdl for r ^ 1;

( 2 ) eβo = he';

( 3 ) με = d0;

( 4 ) μrkέ = kdf

0;

( 5 ) β ^ = μ;

( 6) drβr = β^dl for r ^ - 1.

The chain mapping {βr; r e Z) is a monomorphism and is a G-mapping
if we consider the lower row as a G-complex under φ:G —> L.



INFLATION AND DEFLATION FOR ALL DIMENSIONS 1065

C0(X; G) G)
3 - i

Γ G)

(Π)

hdί

z
he/ \ μ

/ \

Observe that the lower rows of diagrams (I) and (II) are not the
same but correspond to one another under the functor Hom^(*, Z).
It is convenient to think of the mappings βr as the "deflation mappings
for chains" because, if r ^ — 2, βr gives rise to the deflation mapping
defined in [7]. If however r ^ — 1, either βr or hβr is used to
define the deflation mapping (see Definition 5.1).

PROPOSITION 2.2. arβr - hr+1 if r ^ 0 and arβr = h~r iί r S - 1.
Here, hq denotes the endomorphism of Cr(Y; L) which consists of
multiplying its elements by hq.

Proof. The ^-base of Cr(Y; L) consists of the ^-tuples (y19 •••,
yq) e Yq. Furthermore, arβr(ylf *.-,yq) = arΣ{xh, , xiq) = Σtfix^),

f(x{)) where the summation is over the hq g-tuples {xiχ, , x{) of
the cartesian product /"Xi/Jx ••• xf~\yq)- Hence the last sum is
equal to hq(yu *- ,yq). Done.

3* Inflation and deflation for cochains* We now have to
"horn" diagrams (I) and (II) with modules. Although it is possible to
work simultaneously with a G-module and an L-module, we restrict
ourselves to the case which is of principal interest for group theory.
We assume for the remainder of this paper that G — L and that φ
is the identity mapping of G. Furthermore, A stands for a
G-module.

If we apply the functor Hom^*, A) to the chain complex C.(X;
G), we obtain the cochain complex C'(X;G, A) (see § 2 of [6]). We
denote the rth cochain group of C'(X; G, A) by Cr(X; G, A) and treat
the permutation representation (G, Y) in the same way. Hence,
under the functor Hom^*, A), the mappings ar; Cr(X;G)—>Cr(Y;G)
and βr: Cr(Y; G) —> Cr(X; G) become, respectively, mappings αr: Cr(Y;
G, A) — Cr(X; G, A) and br: Cr(X; G, A) -> Cr(Y; G, A); here, ar =

1 J and δr = 1A) where 1A denotes the identity of A.
When we apply the same functor to diagrams (I) and (II) we obtain,
respectively, diagrams (III) and (IV); and Propositions 1.1, 2.1 and 2.2
give Proposition 3.1.
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C 2 ( X G U ) C ) ^ C\X;G,A)

i t t

a-i αo
;G,A)^C\Y;G,A)rC\Y;G,A)

tlδ_2 rίo_1 δ0

(IV) b-t\ b-i\ 6o|

• • .—,C-%Y;G,A)^^C-\Y;G,A)—rC<>(Y;G,A)~rC\Y,G,A)^
<5_3 <5_2 Λό_ 1 hδ0 hδ1

PROPOSITION 3.1. All four rows in diagrams (III) and (IV) are
complexes of abelian groups, and both diagrams are commutative
diagrams. The chain mapping {ar; r e Z] is a monomorphism, but
the chain mapping {br;reZ} is not necessarily an epimorphism.
Furthermore, brar=hr+1 if r ^ 0 and brar=h~r if r ^ — 1; here, hq

denotes the endomorphism of Cr(Y; G, A) which consists of multiplying
its elements by hq.

It is clear from the previous sections that it is convenient to
think of the mappings ar and br as, respectively, the "inflation map-
ping" and "deflation mapping" for cochains.

4* Inflation for cohomology groups* We denote, as in [6],
the r th cocycle group (coboundary group, cohomology group) of the
complex C'(X; G, A) by Z'(X; G, A), (Br(X; G, A), H'(X, G, A)); we do
of course the same for C'(Y; G, A). We read immediately from dia-
gram (III) that ar(Zr(Y; G, A)) c Zr(X; G, A) for all reZ; and that
ar(Br(Y; G, A)) c Br(X; G, A) if r ^ 1. If r S 0, ar may not transform
coboundaries into coboundaries (see Example 9.1); this depends on the
nature of our morphism (G, X) —> (G, Y) and the G-module A. How-
ever, diagram (III) does tell us immediately that har(Br(Y; G, A)) c
Br(X; G, A) and that har(Zr(Y; G, A)) c Zr(X; G, A) for all reZ.

The above implies the following for the cohomology groups. The
homomorphism har always induces a homomorphism (haΊ)*: Hr{Y\G,
A) —* Hr(X; G, A) for all reZ. The homomorphism ar induces a
homomorphism a*\ Hr(Y; G, A) -> Hr(X; G, A) for r ^ 1 but, depending
on the morphism (G, X) —> (G, F) and on A, not for r ^ 0. Whenever
α* exists, that's the mapping we want. If however αf does not exist
we should not despair but be satisfied with {har)*. The following
definition reflects this attitude.

DEFINITION 4.1. Let reZ. If it happens that ar(Br(Y; G, A)) c
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Br(X) G, A), we call the homomorphism α?: Hr{Y; G, A) — Hr(X; G, A)
the inflation mapping or lift mapping for dimension r. If ar(Br(Y;
G, A)) qL Br(X; G, A), we call the homomorphism (har)*: Hr(Y; G, A) ->
Hr(X; G, A) the inflation mapping or lift mapping. We denote the
inflation mapping by inf or infr.

The above definition gives the customary inflation mapping when
r ^ 1. We repeat that, when r S 0, it depends on the morphism
(G, X) —> (G, Γ) and the module A whether infr = α? or infr = (feαr)*.

REMARK 4.1. One could obviously have proceeded differently.
Namely, diagram (III) shows that ar always induces a homomorphism
from the r th cohomology group Hr of the lower row of that diagram
into Hr(X; G, A). The groups Hr for r ^ 0 seem to be of no particular
interest for group theory which is why we proceeded as in Definition
4.1.

EXAMPLE 4.1. Consider the morphism of permutation representa-
tions (1*,/): (G,G)-+(G,G/H). Here, X = G and the permutation
representation (G, G) consists of G acting by left multiplication on
itself. Furthermore H is a subgroup of G, not necessarily normal,
and Y is the set G/H of the left cosets of H. The permutation re-
presentation (G, G/H) consists of G acting on these cosets by left
multiplication. Finally, f(σ) — σH for σ e G. The number of elements
in f~\σH) is the order h of H and hence is independent of σH.
Consequently, Definition 4.1 applies and inf/. Hr(G/H; G, A)->if r(G; G, A)
is defined for all reZ. As is well known, Hr(G; G, A) is the classical
cohomology group Hr(G, A), and Hr(G/H; G, A) is the relative group
Hr(G: H, A) defined in [1]. If r ^ 1, infr coincides with the inflation
mapping defined in §7 of [1], If if is a normal subgroup of
G, Hr(G: H, A) is isomorphic with the classical cohomology group
Hr(G/H, AH) (see the Corollary on page 68 of [1]) and we obtain, if
r ^ 1, the customary inflation mapping from Hr(G/H, AH) into Hr(G,
A). We shall frequently come back to this example.

5* Deflation for cohomology groups* We read from diagram
(IV) that br(Br(X; G, A)) c Br(Y; G, A) for all r e Z; and that br(Zr(X;
G, A)) c Zr(Y; G, A) if r ^ - 2. If r ^ - 1, br may not transform
cocycles into cocycles. Diagram (IV) also tells us that hbr(Zr(X; G,
A)) c Zr(Y) G, A) and that hbr(Br(X; G, A)) c £ r (Γ; G, A) for all r e Z .

Consequently, hbr induces a homomorphism (hbr)*: Hr(X;G, A)—>
Hr(Y:G, A) for all reZ. The homomorphism 6r induces a homo-
morphism 6?; ίf r(X; G, A) —> i ϊ r ( F ; G, A) for r g - 2 but, depending
on the morphism (G, X) —> (L, F) and the module A, not for r g - 1.
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We proceed as in the case of inflation.

DEFINITION 5.1. Let reZ. If it happens that br(Zr(X; G, A)) c
Zr(Y; G, A), we call the homomorphism b*: Hr(X; G, A) -> Hr(Y; G, A)
the deflation mapping for dimension r. If br(Zr(X; G, A)) ς£ Z r ( F ; G, A),
we call the homomorphism (hbr)*: Hr(X;G, A) -> Hr(Y;G, A) the
deflation mapping. We denote the deflation mapping by def or defr.

We repeat that, when r ^ - 2, defr = (br)*. If r ^ - 1, it
depends on the morphism (G, X) —* (G, F) and the G-module A whether
defr = b* or defr = {hbr)*. Remark 4.1 applies of course equally well
to deflation.

EXAMPLE 5.1. Consider the morphism (1&, / ) : (G,G)-*(G,G/H)
of Example 4.1. Definition 5.1 defines the deflation mapping defr:
Hr(G, A) — Hr(G: H, A) for all rεZ. If if is a normal subgroup of
G, defr maps Hr(G, A) into Hr(G/H, AH)\ if furthermore r ^ - 2,
defr coincides with the deflation mapping studied in [7]

THEOREM 5.1. Let h9 denote the endomorphism σf Hr(Y; G, A)
which consists of multiplying its elements by hq. For each reZ
there exists an integer q ^ 1, depending on r, such that defr infr =
h'.

Proof. defr infr is equal to δ?α* or to (feδr)*α? or bf(har)* or
(hbr)*{har)*. Proposition 3.1 tells us that 6rαr, (hbr)ar, br(har) and (hbr)
(har) all consist of multiplying the elements of Cr(Y; G, A) by a
positive power of h. Done.

We now study various special instances of inflation and deflation.
Hereto, we need some material on uniquely divisible modules.

6. Uniquely divisible modules* In this whole section, ke Z
stands for a fixed, nonzero integer. If F is a module (i.e., an abelian
group written additively) we denote the identity mapping of F onto
itself by 1^. Hence, klF denotes the endomorphism of F which con-
sists of multiplying its elements by fc. As always, F is called divisible
by k if klF is an epimorphism; and F is called uniquely divisible by
k if klF is an automorphism.

PROPOSITION 6.1. Let 0 > D — -̂> E -^-> F > 0 be an exact
sequence of modules. If two of them are uniquely divisible by k, so
is the third.

Proof. Consider the commutative diagram
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0 >D—^E-^->F >0

where the vertical arrows denote, respectively, klD, klE and klF. We
conclude from the "5 lemma" (see [3], page 5) that, if two of the
vertical arrows are automorphisms, so is the third. Done.

PROPOSITION 6.2. Let v:E—+F be a homomorphism from the
module E to the module F. If E and F are both uniquely divisible
by k, so are ker(V), coker(f), vccι{v) and coim(^). (Coim stands for
coimage.)

Proof. Since E is divisible by k, im(/y) is evidently divisible by
k. The fact that, actually, im('y) is uniquely divisible by k then
follows from the fact that klF is a monomorphism. This also takes
care of coim(v) ~ im(v). We now apply Proposition 6.1 to the exact
sequences 0 —• im('y) —+F-+ cokerO) —>0 and 0 —• ker(v) —+E—+ coim(ΐ ) —>
0 and we are done.

REMARKS 6.1. Propositions 6.1 and 6.2 together say that the
category of modules which are uniquely divisible by A; is a complete
subcategory of the category of abelian groups (see page 138 of [5]).
This subcategory is not "epaisse" (same reference) since the additive
group of Z is a subgroup of the additive group of the rational numbers;
the latter group is uniquely divisible by k but, if k Φ ± 1 , the first
one is not.

PROPOSITION 6.3. Let E and F be two ̂ -modules where A is some
ring with unit element. If one of the modules is uniquely divisible
by k, so is Ή.omΛ(E, F).

Proof. Suppose that klE is an automorphism. Then,
1 )̂: Hom/1(jE

r, F) —* HomΛ(E, F) is an automorphism, and it consists of
course of multiplying the elements of Hom/E, F) by k. We proceed
similarly if klF is an automorphism. Done.

We now return to our permutation representation (G, X). Since
(G, X) is entirely arbitrary, Lemma 6.1 is valid for all permutation
representations.

LEMMA 6.1. Let A be a G-module which is uniquely divisible
by k. Then, Hr(X; G, A) is uniquely divisible by k for all reZ.



1070 ERNST SNAPPER

Proof. Let reZ. Cr(X; G, A) = ΈlomG(Cr(X; G), A) is uniquely
divisible by k by Proposition 6.3. We apply Proposition 6.2 to the
homomorphisms Cr-\X, G, A)-*Cr(X; G, A) -> Cr+\X; G, A) and find
that the cocycle group Zr(X; G, A) and the coboundary group Br(X,
G, A) are uniquely divisible by k. Since Hr(X; G, A) is the cokernel
of the inclusion mapping Br(X; G, A) —• Zr(X; G, A), the same proposi-
tion gives the desired result.

REMARK 6.2. Lemma 6.1 gives a cute proof of the well known
fact that Hr(G, A) = 0 if A is uniquely divisible by the order n of G.
Namely, nHr = 0 and, by Lemma 6.1, nHr(G, A) = Hr{G, A). More
generally, if A is uniquely divisible by the index of the permutation
representation (G, X), then Hr(X; G, A) = 0 for all r e Z . (See Corol-
lary 10.2 of [6].)

7* The case that ffr(Y; G, A) is uniquely divisible by h. We
recall that the set Y is partitioned into the domains of transitivity
Tu , Tu of the permutation representation (G, Y). If 2^ has m<
elements, the greatest common divisor m of ml9

 β , m w is called the
index of (G, Y) (see §4 of [6]).

Lemma 7.1. Let d — (h, m). If A is uniquely divisible by d,
then Hr(Y; G, A) is uniquely divisible by h for all reZ.

Proof. Hr(Y; G, A) is uniquely divisible by d by Lemma 6.1, and
mHr(Y; G,A) = 0 by Corollary 10.2 of [6]. Done.

The following proposition is an immediate corollary of Lemma 7.1.

PROPOSITION 7.1. In each of the following two cases Hr(Y, G, A)
is uniquely divisible by h for all r e Z.

(a) A is uniquely divisible by h.
(b) {h, m) = 1.

EXAMPLE 7.1. Case (b) of Proposition 7.1 is important for Hall
subgroups. (A subgroup H of G is called a Hall subgroup if the
order of H is relatively prime to the index [G: H] of H.) In the
morphism (G, G)->(G, G/H) of Example 4.1, the index of (G, G/H) is
the index [G: i f]; hence, (h, m) = 1 if and only if H is a Hall
subgroup of G.

THEOREM 7.1. Let reZ and let Hr(Y; G, A) be uniquely divisible
ly h. Then, infr is a monomorphism and defr is an epimorphism;
and Hr(X; G, A) — im(infr) φ ker(defr) where φ denotes the direct
sum of abelian groups.
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Proof. defrinfr = hq for some q ̂  1 by Theorem 5.1. Since hq is
an automorphism of Hr(Y; G, A), Theorem 7.1 follows from routine
group arguments.

EXAMPLE 7.2. Consider the morphism (G, G) -> (G, G/H) of Ex-
ample 4.1 and suppose that, for some r e Z, Hr(G/H; G, A) is uniquely
divisible by h. Since mHr(G/H; G, A) = 0 where m = [G: H], it is
obvious that m(im(infr)) = 0. It may however very well be that
Hr(X) G, A), which is equal to Hr(G, A), contains further elements
which are annihilated by m. For instance, if A is uniquely divisible
by k, all elements of Hr(X; G, A) are annihilated by m. This follows
from (1) Hr(X; G, A) is divisible by h (it is even uniquely divisible by
h by Lemma 6.1); (2) mhHr(X; G, A) = 0 since Hr(X; G, A) = Hr(G,
A) and mh is the order of G.

In this connection, it is interesting to recall that Faddeev proved
in [4] that, if H is a Hall subgroup of G, and r ^ 1, im(infr) consists
of all the elements of Hr(G, A) which are annihilated by m. We
conclude: Let r ^ 1, let A be uniquely divisible by h and let H be
a Hall subgroup of G. Then, infr and defr are both isomorphisms.
In particular, Hr(G, A) ~ Hr(G: H, A). (This last isomorphism and
the fact that inf is an isomorphism also follow from Faddeev's results
on the restriction mapping. All one has to observe is that Hr(H, A) =
0, since A is uniquely divisible by h.) The author conjectures that
this result remains true for r S 0.

8* The case that A is uniquely divisible by h. We know from
Lemma 6.1 that, if A is uniquely divisible by h, Theorem 7.1 may be
applied for all r e Z. We now add to this that in this case infr = α*
and defr = b* for all r e Z. In other words, the factor h in Definitions
4.1 and 5.1 can be omitted. For deflation this is even correct if hlA

is only a monomorphism.

THEOREM 8.1. If A is uniquely divisible by h, infr = α? for all
r e Z. If hlA is a monomorphism, defr = 6* for all r e Z.

Proof. Let A be uniquely divisible by h and select r e Z. We
see from diagram (III) that the rth coboundary group of the lower
row of that diagram is Br(Y; G, A) if r ^ 1 and is hBr(Y; G, A) if
r ^ 0. We see from the proof of Lemma 6.1 that Br(Y; G, A) is
uniquely divisible by h and hence hBr(Y; G, A) = Br(Y; G, A). Since
{ai9 ieZ} is a chain mapping it is now clear that ar(Br(Y; G, A)) a
Br(X; G, A); hence, by Definition 4.1, infr = a*.

Let hlA be a monomorphism and select r e Z. We see from
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diagram (IV) that the r th cocycle group of the lower row of that
diagram is Zr(Y; G, A) if r ^ - 2 and is keτ(hδ'r) if r ^ - 1. Since
hlA is a monomorphism the endomorphism which consists of multiply-
ing the elements of Cr+1(Y; G, A) by h is evidently a mono; hence,
ker(hδ'r) = ker(δ ) = Zr(Y; G, A). Since {bi9 ie Z} is a chain mapping
it is now clear that br(Zr(X; G, 4 ) ) c Z r ( 7 ; G, A); hence, by Definition
5.1, defr = &?. Done.

We are now going to study inflation and deflation for dimensions
0, - 1, and 1.

9* Inflation in dimension zero* We restrict ourselves in the
remainder of this paper to the morphism (1G, / ) : (G, G) —> (G, G/H)
of example 4.1. Hence, from now on, X — G, F = G/£Γ, h = [iϊ: 1]
and m = [G: if] where m is the index of (G, G/H). We denote the
order of G by w. The trace mapping SQιH: AH —> A0 is the customary
one; we usually write SQ, SH instead of Sen or SH/1.

We know that there exists an isomorphism j : A—> C°(X; G, A)
given by (j(a))(l) — α, where ae A and 1 is the unit element of G.
(See Proposition 4.2 of [6].) The same reference tells us that there
exists an isomorphism k: AH —> C°(Y; G, A) given by (k(a))(H) — a,
where a e AH.

PROPOSITION 9.1. The following diagram commutes

A - ^ C\X) G, A)

i\ \ao

where i: AH —> A is the inclusion mapping.

Proof. Let a e AH. Then {ji{a)) (1) = i(a) = a, while (aQk(a))

(1) = (fe(α)) (iϊ) = a. Done.

We conclude that inflation for 0-cochains is nothing but the
inclusion mapping i: AH -> A. Since Z°(Y; G, A) = Z°(X; G, A) = A0

(see Proposition 4.1 of [6]) and i\AQ is the identity, inflation for

0-cocycle is the identity mapping of Aσ. We have observed in § 4
that we cannot expect that ao(B\Y; G, A)) c B°(X; G, A). Let's see
what the situation is.

B\Y] G, A) = SG,BA
B and B°(X: G, A) = SGA by Proposition 4.3

of [6]. However the inclusion goes the wrong way, that is, SGA c
SβlπA

H as follows from SGA = SG,ΠSHA c SGιHAH. We conclude from
Definition 4.1:
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PROPOSITION 9.2. inf0 = α0* iff SGlπA
H = SGA. In that case, inf0

is the identity mapping of AG/SGA. Otherwise, info(α + SG,ΠAH) =
ha + SGA for all a e AG.

EXAMPLE* 9.1. Let A = Z with trivial G-action. Then, AH =
AG = Z, S9lHAH = mZ, SgA - nZ and hence, if H Φ {1}, SgΠAH Φ SgA.
Furthermore, AQISGίHAH — Zm (the cyclic group with m elements)
and AG/SGA = Zn. We see from Proposition 9.2 that inf0: Zm —> Zn is
the natural monomorphism z + mZ -*hz + nZ where ze Z; this is
also true if H — {!}. It is immediate from Proposition 9.2 that in
general, if G acts trivially on A and hlA is a monomorphism, inf0

is a monomorphism.
REMARK 9.1. We always have hSG,HAH c SGA c SG/SA

Π. The
right hand inclusion was observed before Proposition 9.2. The left
hand inclusion follows either from hao(B°(Y; G, A))(zB°(X; G, A) (see
§4) or from SGA => SGA

H = SG/IΪSffA
H = hSβlHAH.

10* Deflation in dimension zero* Let j : A —> C°(X; G, A) and
k: AH —• C\Y; G, A) denote the same isomorphism as in Proposition 9.1.

PROPOSITION 10.1. The following diagram commutes.

A -?-> C°(X; G, A)

Sπ\ I δo

A* JUc°(F;G, A)

Proo/. Let aeA. Then, (fcS^α) (i ϊ) = SHa, while (ftoί (α)) (fl") =
j(a) (ΣpeHp) = ΣPSHρa = SHa. Done.

We conclude that deflation for 0-cochains is the trace mapping
Ss: A —> A^. Furthermore, deflation for 0-cocycles consists of multi-
plying the elements of A? by h, since this is the effect of SH on AG.
This comes as a mild surprise since it shows that bo(Z°(X; G, A)) c
Z°(Y; G, A.) which, as we observed in §5, can not be expected to be
true for all morphisms of permutation representations. We know
from the same section that bo(B°(X; G, A)) c B°(Y; G, A) which is
equivalent to saying that hSGA c SG,HAR; this last inclusion follows
from SGA c SG!HAH

f observed before Proposition 9.2.
Since SGA c SG,HAH c Aθ, the natural epimorphism 7: A°jSGA —> AG\

SΘ/HAH is given by τ(α + S^A) = α + SGjHAH, where aeA. It would
have been nice if 7 had been def0, but we regretfully conclude from
Definition 5.1:

PROPOSITION 10.2. def0 = K. Explicitly, defo(α + SGA) = ha +
SG/HAS for all aeAG; i.e., def0 = hy.
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EXAMPLE 10.1. Let A = Z with trivial G-action. Then, def0:
Zn —* Zm is /z/y, where 7: J£w —* Z w is the natural epimorphism given by
7(2 + nZ) — z + m 2 for ^ G Z . It is clear from this example that def0

may be neither a monomorphism nor an epimorphism.

11* Coboundaries in dimension —I* In order to study infla-
tion in dimension — 1 we need some material on the ( —l)-coboundaries
of the permutation representation (G, Y) = (G, G/H).

Let σl9 , σm be a set of representatives for the left cosets of
H, i.e., Y = G/H = {σjl, •• ,σmiϊ} . We assume that the enumera-
tion is such that o îf, , σuH (1 ^ u ^ m) is a set of representatives
of the permutation representation (H, G/H). (According to §4 of [6]
this means that (H, G/H) has u domains of transitivity and that σJS
belongs to the ith domain.) We shall use the following notation.

NOTATION 11.1. H, = H n ojiσt and Mi = H Π σ^Hσ, for i = 1,
• , u. Observe that M{ — a^H^.

NOTATION 11.2. S{ e Z[H] is the sum of a fixed set of represent-
atives for the left cosets of H{ as a subgroup of H; SI e Z[H] is the
sum of a fixed set of representatives for the left cosets of M{ as a
subgroup of H, where i = 1, •••, u. Hence the trace mapping AHi-+
AH(AMi —> Aπ) consists of multiplying the elements of AΠi by Si (of
AM* by S ).

We must first get a hold on C~2(Y; G, A) = RomG(Z[Y2], A).

PROPOSITION 11.1. The permutation representation (G, Y2) has the
pairs {H, σ{H) for i = 1, , u as a set of representatives.

Proof. Let 1 ^ i Φ j ^ u. Then, σ(H, o,H) Φ (H, σόH) for all
σ e G. Namely, oH — H means that σ e H and this implies that
σσ{H Φ OjH. Now consider the arbitrary pair (σH, τH) of Y2 where
σy τ e G. T h e n , σ ~ \ σ H , τH) = (H, σ ^ τ H ) a n d t h e r e e x i s t s a p e H
such that pσ^τH — σ{H for some 1 ^ i ^ u. Since pσ~\σH, τH) =
(iϊ, ^^iί) we are done.

The subgroup of G which leaves the pair {H, σ{H) fixed is the
group Hi of Notation 11.1; ΐ, •••, u. Hence we conclude from §4 of
[6] that there exists an isomorphism ί: A* 1 © φ A^->C~ 2(Γ; G, A)
given by: If α< e A ^ for i = 1, , u, then (ί(αx, , au)) (H, a{H) =

We can also consider the homomorphism cί_2:
given by d_2(αi, , au) = ΣLΛS ίtfT1^) - S^O where again α< e
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As* for ί = 1, •••, u. (It is immediate that, if ^ e i ^ , then σ^a^

Finally, since C~\Y; G, A) = C\Y; G, A), there is available the
isomorphism k: AB —>C~XF; G, A) of Proposition 9.1.

PROPOSITION 11.2. The following diagram commutes.

C~\Y; G, A) - ^ C-HX; G, A)

1 Y
As

d-2

Proof. Let a{ e AEi for i — 1, , u. Then (M_2 (au , au))
(H) = d_2(alf •• ,α ω ) . Furthermore, using the formula for δ_2 of §1
of [6]> (̂ _2 (̂̂ i> * * *, ttu)) (H) = t(au , au) (Σf=i(CΓ'jH, H) — ^™=i{H,OjH)).

In order to compute the sum Σ ΐ=i(H, (T3Ή) we consider the permutation
representation (H, {(H, σjl), , {H, σmH)}). It is immediate that the
pairs (H, σjl), •••, (H, σuH) also form a set of representatives for
this permutation representation. Since Hi is the subgroup of H which
leaves (H, σ{H) fixed, Σ ?=i(H, σόH) = Σ ^S^H, σ{H) and hence t{au

•••» ttB) ( Σ *=i(jff, tfj-ff)) = Σ?=i^iα i I n order to compute the sum
Σ 7=i(σjH, H) we consider the permutation representation (fZ, {(0ΊJ3, if),
• , (σmH, H)}). Since σ,-α(ίί, σjl) = (or1!/', if) we see easily that the
pairs {στλH, H), , {σ~ιH, H) from a set of representatives for this
last permutation representation. Since Λf< is the subgroup of H which
leaves {σjΉ, H) fixed, Σ Γ-ifoS", J6Γ) = Σ USXσγΉ, H) and hence
Φ n , αβ) ( Σ ?=ι(σjH, H)) = Σ LiSK^ι~

1αί). We conclude that (δ_2

ί(c6x, " , <xM)) (-ff) = Σ ϊ=i(ίSί(<7ϊ"Jctί) — SiCLi) = d_2iβu * * * > β«) Done.

REMARK 11.1. The above elements σu •• ,σi

tt are nothing but a
set of representatives for the double cosets of H as a subgroup of
G. This remark makes it easy to check that our expression Σ ?=i(^ί
(σ^di) — Sidi) for the (— l)-coboundaries of (G, Y) is equivalent to,
although not identical with, the expression * on page 69 of [1].

We denote the kernel of the trace mapping SGίH: AH —> AQ by
kerOStf/jr). The ideal of Z[G] which has as ideal base the elements
(7 — 1, where σ e G, is as usual denoted by I.

LEMMA 11.1. im(d_a) c (IA Π

Proof. The following diagram commutes.
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C-2(Y; G, A) — C-^Y; G, A) — C°(Γ; G, A)

Ί
φA

The left hand square commutes by Proposition 11.2; the right hand
square commutes by § 4 of [6]. Since k is an isomorphism and δ_1§_2 =
0 we read from this diagram that SQ}Hd_2 — 0, i.e., that im(d_2) c
keΐ(SG/H). We now turn to im(c£_2) c I A. We observe that the groups
Hi and Mi of Notation 11.1 are conjugate (in G) and hence contain
the same number, say cif of elements. Hence the two decompositions
of H into the left cosets of Hi9 respectively Mif both consist of
subsets of H with ct elements. We conclude from Theorem 4 on page
12 of [8] that there exists a common set of representatives for the
left cosets of H{ and of M{ as subgroups of H. We now use such a
common set of representatives to compute Si and S- of Notation 11.2,
and obtain that St = SJ. Hence, if α̂  e AΉi for i = 1, , u, d_2(au

• , O = Σ "-Afar1- i)α*e ^ D o n e

COROLLARY 11.1. // G αcίs trivially on A, im(d_2) = 0.
Proof. G acts trivially on A if and only if IA = 0. Done.

12* Inflation in dimension — 1* The homomorphism a_x;
C~\Y; G, A) —> C'XZ"; G, A) is identical with the homomorphism α0:
C°(F; G, A) -> C°(X; G, A). Consequently, Proposition 9.1 is valid with
a0 replaced by α_x; i.e., ji = α_!&. We conclude that inflation for
(— l)-cochains is the inclusion mapping i: AH —> A. Since Z"\Y\ G,
A) = ker(S^/jy) and ^"XX; G, A) = ker ί^) , inflation for (— l)-cocτ/cies
is ίfee inclusion mapping ker(£^/i7) —> ker(S^). (The fact that

) c ker(S0) follows from §4 or from SG — SG}HSH.) Since
; G, A) = im(ίZ_2) (see Proposition 11.2) and B^(X; G, A) = IA we

see from Lemma 11.1 that a^B-^Y; G, A))aB-\X) G, A); this could
not have been predicted from §4. We conclude from Definition 4.1:

PROPOSITION 12.1. inf^ = a%. Explicity, i n f ^ α + im(d_2)) = a +
IA for all a e ker(SθjH).

The following theorem is crucial for the duality theory of transitive
permutation representations.

THEOREM 12.1. Let d = (h, m). If A is uniquely divisible by d,
then im(d^2) = IA Π ker(& / f f). This happens for instance in each
of the following two cases:

(a) A is uniquely divisible by h;
(b) II is a Hall subgroup of G.
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Proof. We see from Proposition 12.1 that ker(inf_!) = (IA Π
))/im(d_2). Lemma 7.1 and Theorem 7.1 tell us that inf_x is a

monomorphism if A is uniquely divisible by d. The remainder of
Theorem 12.1 follows from Proposition 7.1 and Example 7.1. Done.

13* Deflation in dimension — 1* The homomorphism b^:
C~\X] G, A)~> C' Λ(Y; G, A) is identical with the homomorphism b0:
C°(X; G, A)-+C°(Y; G, A). Hence we conclude from Proposition 10.1
that deflation for ( l)-cochains is the trace mapping SH:A~-*AH.
It follows immediately from SG = SGIHSΞ that SH(ker(SG)) c ker(SG!H),
which signifies that b.Λ{Z"\X) G, A)) c Z~\Y; G, A); this could not
have been predicted from §5. We conclude from Definition 5.1:

PROPOSITION 13.1. def^ = bllm Explicitly, d e f ^ α + IA) = SHa +
im(dL2) for all a e keτ(SG).

The following theorem is the dual of Theorem 12.1.

THEOREM 13.1. In each of the following two cases, im(cL2) +
SH(ker(SG)) = kev(SG/H).

(a) A is uniquely divisible by h.
(b) H is a Hall subgroup of G.

Proof. We see from Proposition 13.1 that im(def_i) — [im(cL2) +
Sjff(ker(SG))]/im(d_2). Hence, def_x is an epimorphism if and only if
im(riL2) + SH(ker(SG)) = ker(S^/^). Proposition 7.1, Example 7.1 and
Theorem 7.1 tell us that def.^ is an epimorphism in each of the cases
(a) and (b). Done.

Lemma 13.1. Stl(IA) c :im(d ,).

Proof. Since H \X] G, A) = IA and B-\Y; G, A) = im(ώ_2), Lemma
13.1 is equivalent to saying that 6_1(β-1(X; G, A))dB~\Y; G, A). This
last inclusion was observed in §5. Done.

14* Inflation in dimension l We denote by M the additive
group of the crossed homomorphisms from G to A; and by MH the
subgroup of M whose elements are zero on H. We know from §6 of
[6] that there exists an isomorphism v: Z\Y; G, A) —> MH which is
defined by (vc) (σ) = c(H, σH) for c e Z\Y; G, A) and σ e G. Similarly,
the isomorphism w: Zι(X; G, A)—>M is defined by (we) (σ) = c(l, σ)
where c e Z\X; G, A), σ eG and 1 is the unit element of G. We
denote the inclusion mapping M,, - > M by u and recall from § 4 that

\ G, A)) c Z\X) G, A).
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PROPOSITION 14.1. The following diagram commutes.

Z\X\ G, A) -^-> M

i i
Z\Y;G, A) >M,

V

Proof. Let ce Z\Y; G, A) and σeG. Then, ((waj (c)) (σ) =
(aλc) (1, σ) = c(H, σH); and (uv(c)) (σ) = (vc) (σ) = c(ίf, 0\ff). Done.

We conclude that inflation for 1-cocycles is the inclusion mapping
u: MH-^M. In order to study inflation for 1-coboundaries, we recall
from §6 of [6] that v{Br\Y-9 G, A)) is the subgroup MM of MH which is
described as follows: If ge Mr

H and σeG, then g(σ) = (σ — l)α for
some fixed a e AH. The subgroup Mr — w{B\X; G, A)) of M is described
similarly with AH replaced by A. Since Mr

HciMf we see that a^B1

(Y G, A))dB\X;G, A) which checks with §4. We conclude from
Definition 4.1:

PROPOSITION 14.2. in^ = α*. Explicitly, inf^ + M'H) = g + M'
for all geMH.

It is well known that inf̂  H\Y; G, A) —• H\X; G, A) is always a
monomorphism. (see Theorem 7.3 of [1] or Theorem 15.1 of [6].) This
also follows from Proposition 14.2 and the observation that MH =
M' ΓΊ MM.

15* Endomorphisms of the group of crossed homomorphisms*
Let M and MH be as in the previous section. In order to study de-
flation in dimension 1, we define what should be regarded as the
natural homomorphism D: M—*MH. If </eikf and σeG we denote the
sum Σg(y), where 7 runs through σH, by sg(σH). In particular sg(H) =
Σg(p), where p runs through H. We now define the homomorphism
D: M-+ MM.

DEFINITION 15.1. If geM and σeG, (D(g))(σ) = sg(σH) - sg(H).

One proves routinely that D is a homomorphism from M into MH.
We observe that sg(σH) = Σg(σp), where p runs through H. Using
that g(σρ) = g(σ) + σg(p), we find:

P R O P O S I T I O N 1 5 . 1 . If g e M a n d σeG, (D(g)) (σ) =

EXAMPLE 15.1. Let G act trivially on A. Then, M = Hom(G, A)
and AT* consists of those homomorphisms from G to A which vanish
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on H. If g e Hom(G, A), we see from Proposition 15.1 that D(g) = hg
and indeed, multiplication by h is the most naive way to change a
homomorphism belonging to Hom(G, A) into one which is zero on H.

We now prepare for the study of ker(D).

PROPOSITION 15.2. If g e M9 Sa(8g(H)) = 0.

Proof. Let peH. Then, psg(H) = Σpg(y) where 7 runs through
H. Since g(py) = #(|0) + ^ ( 7 ) , this last sum equals — hg(ρ) + sg(H).
Consequently, SE(sg(H)) = — hsg(H) + hsg(H) = 0. Done.

We know from §6 of [6] that the homomorphism δ'o: C°(Y; G, A) —
Z\Y; G, A) may be interpreted as the homomorphism δ'o: A

π —> MH, where
(δr

0(a)) (σ) — (σ — l)α for aeAs and σ e G. Similarly, the homomorphism
δ0: C°(X; G, A) —> Z\X\ G, A) may be interpreted as the homomorphism
δ0: A—*M, where (δo(a)) (σ) — (σ — l)α for α e i and σ e G . We also
recall from §10 that the homomorphism b0: C°(X; G, A)-*C°(Y; G, A)
may be interpreted as the homomorphism SH: A —> A2*.

PROPOSITION 15.3. The following diagram commutes.

SB\ \D

Λ«—•if.

Proof. Let α e A and σ e G. Then (δ'0SB(a)) (σ) = (σ -
Furthermore, denoting δo(α) = g, (Ddo(a)) (σ) = (Dg) (σ) = hg(σ) + (σ —
l)sg(H) = h(σ — l)α + (σ — l ^ ^ o — l)α where |O runs through H.
Since 2 ^ - l)α = Su(a) - ha, (Dδo(a)) (σ) = (σ - l)SH(a). Done.

If K is a subgroup of M we denote the larger subgroup {g \ g e M,
hgeK} by if: /&. We continue the investigation of the diagram of
Proposition 15.3.

PROPOSITION 15.4. Kkeτ(D)c:δo(ker(SH))c:keτ(D). If hlΛ is a
monomorphism, ker(D) = <50(ker(Sy): h.

Proof. The inclusion δo(ker(S^)) c ker(Z)) is read immediately
from the commutative diagram of Proposition 15.3. In order to show
that hker(D)cδo(kev)SH)), we select gekeγ(D) and show that hge
δo(kev(SH)). That is, we prove that for all σeG, hg(σ) = (σ — l)a for
some fixed a e ker(SH). We see from Proposition 15.1 that hg(σ) =
(σ — 1)(— sg(H)) and from Proposition 15.2 that — sg(H)eker(SH).
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The first line of Proposition 15.4 has now been proved. We conclude
from it that ker(D) a δo(ker(Ss)): haker(D): h. If hlΛ is a monomor-
phism, hlM is a monomorphism and hence ker(D) = ker(D): h. Done.

REMARK 15.1. We shall see in the next section that the homo-
morphism hD: j|f—• MH is precisely the deflation for 1-cocycles. Clearly,
ker(M)) = ker(D): h and hence we have good information about the
kernel of the deflation mapping.

16 Deflation in dimension 1. One proves easily that the
isomorphism v: Z\Y; G, A) —> MH of Proposition 14.1 has as inverse
the isomorphism v': MH—*Z\Y\ G, A) defined by: If geMH and σ,
τeG, then (v'(g)) (σH, τH) = g(τ) - g(σ). (The proof uses that geMH

if and only if g e M and g is constant on the left cosets of H.) We

shall regard v' as a monomorphism v': Mπ-^ C\Y; G, A). Similarly,

we have the monomorphism wr\ M—>C\X\ G, A) defined by: If geM

and σ,τeG, then (w\g)) (σ, τ) = g(τ) - g(σ).

PROPOSITION 16.1. The following diagram commutes.

hϋ\ I δi

Mz-^+σiY G, A)

Proof. Let geM and σ,τeG. Then, using Definition 15.1,

(v'hD(g)) {σH, τH) = (hD(g)) (τ) - (hD(g)) ((σ) = h(sg(τH) - sg(σH)).
Furthermore (bjw'ig)) (σH, τH) = w'(g) (Σ(σp, rγ)), where the summation
is over all pairs (p, 7)6 HxH. Consequently, (b1w

f(g))(σH, τH) =
Σ{g(τΊ) — g(σp)) = hsg(τH) — hsg(σH). Done.

We conclude that deflation for 1-cocycles is the mapping hD:
M-*MH. We see that b^Z\X\ G, A))tzZ\Y\ G, A) which could not
have been predicted from §5. In order to study deflation for 1-
coboundaries we return to the groups Mf and M'H of §14.

PROPOSITION 16.2. D(M') c M'H.

Proof. We read from the diagram of Proposition 15.3 that
DδQ(A) = δ'QSff(A). Since δo(A) = M and δ'0SH(A) c δ'0(AΞ) = M'H, we

are done.
It follows trivially from Proposition 16.2 that hD(M')aMB, i.e.,

that b^BXX; G, A))dB\Y; G, A) which checks with §5. We conclude
from Definition 5.1:
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PROPOSITION 16.3, def, />Γ. Explicitly, def^ + Mf) = hD(g) +
Mi for all geM.

REMARK 16.1. Proposition 16.2 shows that D induces a homomor-
phism D*: H\X; G, A) > IP(Y\ G, A), given by D*(g + M') = D(g) +
MH for all geM. Evidently, D* is the natural mapping from H\X;
G, A) into H\Y\ G, A) and defx = IiD*. The factor h is pure waste;
and that, in times of deflation!
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