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A REMARK ON THE LEMMA OF GAUSS

FRED KRAKOWSKI

Let R be the ring of integers of some algebraic number
field K and $β = R[xo, •• , xr, yo, , ys], where the Xi's and
y3

Js are indeterminates. Call two ideals of $ equivalent, if
after substitution of the indeterminates by arbitrary elements
of R they always yield identical ideals in R. For example,
consider the ideal I generated by the coefficients of the pro-

r s

duct of the two polynomials fit) = Σ %& and g(t) — Σ yft*
i=0 j=0

According to the so-called Lemma of Gauss, I is equivalent
to the product J of the ideals (x0, , xr) and (yo, , ys).

The object of this note is to show that the ideal I has the
following minimal property: It has the smallest number of
generators, namely r + s + 1, among all ideals in $ which are
equivalent to J in the above sense.

LEMMA 1. For every nonconstant polynomial f e R[t], t an in-
determinate, there exist infinitely many prime ideals PaR, such
that the congruence f(x) = 0 (mod P) has a solution xe R.

Proof. Denote by f19 , fm the polynomials conjugate t o / over the
rationals and l e t / = fγ. Consider their product F = f1 fm. The coeffi-
cients of F are rational integers and thus there is an infinite sequence
of rational primes plf p2, and corresponding rational integers xu x2, ,
such that F(Xi) = 0 (mod pt), i = 1, 2, (see e.g. [1], p. 33).

Let now L be a normal extension of the rationals containing K.
For each Pi choose a prime ideal P { c L containing p{. Then F(Xi) = 0
(mod Pi). Since (pi9 pό) = (1) for i Φ j , we also have Pt Φ Pj. Thus
there exist infinitely many prime ideals of L which divide numbers of
the sequence F(Xi), i = 1, 2, .

Assume now there exist only finitely many prime ideals in R, say
Qi, *- <>Qk> such that the congruence f(x) = 0 (mod Qj) has a solution
in R for j — 1, , k. Denote by Qί, , Q'k the ideals in L generated
by Qu •••> Qk A prime ideal of L containing F(x{) would then have
to be also a divisor of some Q) or of an ideal conjugate to Q', because
F(Xi) is the product of the conjugate elements /i(^), •,/»(#<). It
would follow that there are only finitely many prime ideals of L con-
taining numbers of the sequence F(Xj), F(x2)9 •••, which is a contra-
diction. This proves the lemma.

The next lemma gives a necessary condition which is satisfied by
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equivalent ideals of a polynomial ring over R. Denote by Rn the set
of %-tuples of elements of R. If tlf •••,*» are indeterminates and

/ = (/i, , fr) c R[tly , tn], α G Λ , let 7α - (Λ(α), , / r(α)). Further
let C stand for the field of complex algebraic numbers, Cn for the
^-dimensional affine space over C and VΊ for the algebraic variety in
Cn defined by the ideal /.

LEMMA 2. Let I and J be ideals of R[tu •••,*»] and suppose

that for all a e Rn we have Ia — Ja. Then VΣ = Vj.

Proof. Let f19 , fr be a basis of I and glf , gs a basis of Λ
Suppose Vz Φ Vj and assume there is a point a = <αx, , αw)> of F 7

not contained in Vj. We must show that there exists a w-tuple
aeRn, such that Iα ^ J α .

Now fi(a) = 0, i = 1, , r but, say, ^(α) ^ 0. K(al9 . , an) is-
a separable algebraic extension of ίΓ, and let θ be a primitive element.
We then have α^ = /&*(#), i = 1, , w, where fe< is a polynomial whose
coefficients may be assumed, without loss of generality, to be integers
of R. Also let p(t) be a polynomial in R[t], of which θ is a root and
which is irreducible in K[t\.

Since /i(α) = 0, i — 1, , r and g^a) Φ 0, we have F^θ) — 0, i = 1, ,r
and Gi(0) ^ 0. Hence there are polynomials q^t) e i2[t] and elements
Si e R, i = 1, , r, with sj^(£) = p(t)?i(ί), i = 1, , r . On the other
hand, since p(£) is irreducible and Gλ{θ) Φ 0, p(t) and G^ί) are relatively
prime in K[t], and there are polynomials A(t), B(t)eR[t], such that

A(t)p{t) + BίQG^ί) = c ,

where c € R and c ^ 0.
By Lemma 1 there are infinitely many prime ideals P in R, such

that the congruence p(x) Ξ= 0 (mod P) has a solution in iϋ. Each one
of the numbers slf , s r and c is contained in only a finite number
of prime ideals. Hence there is a prime ideal PaR and an element
xe R, such that p(x) = 0 (mod P), but β< =£ 0 (mod P), i = 1, , r
and c Ξ£ 0 (mod P ) . Therefore B(x) Gx(x) =£ 0 (mod P ) . If we now
let α = <hί(x), , hn{x)y, then α e i?% and we get ^(α) = G±(x) Ξ£ 0
(mod P) and thus also Ja ^ 0 (mod P ) . On the other hand, since s{ g P, it
follows that 2̂ (0?) Ξ 0 (mod P), hence f^a) = 0 (mod P), i = 1, , r
and thus /α = 0 (mod P ) . Therefore Ia Φ Ja, which was to be shown.

COROLLARY. If for all α e Rn we have Ia = (1), then VΊ = ^.
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LEMMA 3. Consider polynomials fu ,/ f t e R[t]. Assume that
for all nonzero elements reR the k numbers fir), β ,Λ(τ) generate
the same ideal IaR. Then we also have I— (/i(0), * ,Λ(0)).

Proof. If D is an ideal in R,Dz)(f(0)9 ---,fk(0)) and r is an
arbitrary nonzero element of D, then ί^r) e D for i — 1, , k. Since
I=(Λ(r), ••-,/*(*•)), we have / c f l .

Conversely, if JD Z> I and r e A r =£ 0, then f(r) = /,(0) (mod D).
Since / ^ e f l , also fMeD for all i and hence (/^O), , Λ(0)) c D.
This proves the lemma.

LEMMA 4. Lei fu ,/ f c &β arbitrary and gu * °, gm homogeneous

linear polynomials in R[tu

 a-9tn]o Assume that for all aeRn we

have

denote by hlf •••, Â  £/&e subpolynomials of fu

 β ,/ f c formed by

their linear terms. Then (h^a), , hk(a)) = (^i(α), , gTO(α)) / o r αii

Proo/. Since (^(0), , fflIl(0)) = (Λ(0), • • •, Λ(0)) = (0), we have
/.(0) = = . . . = /Λ(0) = 0. Thus fi = ki+ terms of degree ^ 2, i =
1, ••%&„ Take a fixed %-tuple aeRn and let r e i ? be arbitrary but
Φ 0. Then

. . ,Λ(rα)) = (r/^α) + r2( •), , rhh(a) + r2( •))

= (g1(ra)f ,

J? being an integral domain, we get

{hλ{a) + r( •), , ^(α) + r( •)) = (ffi(α), , ί/»(α))

for all nonzero r e i?β By Lemma 2 therefore

(^(α), , hk(a)) = (^(α), , gm(a)) ,

which was to be proved.

THEOREM. Consider in R[x0, , xr> y0, , /̂s] the ideal J —
(xOf , Xr)(Vo9 , Vs) and suppose I is an ideal such that for all
aeRr+8+2 we have Ia — Ja. Then the number of elements in a basis
of I is at least r + s + 1.
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Proof. Let fly , fn be a basis of I and let Γ be the ideal
generated by the subpolynomials blf , bn of fu , fn, which are
linear with respect to xQ9 •••,%* and with respect to y09 •••,#,. Since
also the generators of J are bilinear and for all a e Rr+s+2 we have
Ia = Jaf by Lemma 3, we also have I'a = Ja for all α.

Now the ideal J has only trivial zeroes in C r + S + 2, either all x{ — 0
or all y, = 0. On the other hand, if ^ ^ r + s, it follows from a
theorem of Macaulay (see [2], p. 54) that Γ has a nontrivial zero in
Cr+S+2. By Lemma 2 this cannot happen. Hence n Ξ> r + s + 1.
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