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DEDEKIND DOMAINS : OVERRINGS AND
SEMI-PRIME ELEMENTS

LUTHER CLABORN

This paper develops two themes: (1) the relation of the
class group of a Dedekind domain A to that of an overring
B and (2) the question of finding a nonzero, nonunit element
x of a Dedekind domain A such that A/xA is regular. We
obtain complete results in answer to the first question, giving
a corollary concerning the realization of certain groups as
class groups. We give various sufficient conditions in answer
to the second question; some in terms of the class group, others
concerning Dedekind domains which often arise in practice.

In § 1 of the present paper, we study the class group of an over-
ring B of a Dedekind domain A and determine its class group in terms
of that of A. We generalize and also strengthen the results of § 1 of
an earlier article [1]. Combining several results, we obtain an interest-
ing fact: if G is the class group of a Dedekind domain and Gr is a
homorphic image of G, then Gr is the class group of a suitable Dede-
kind domain.

Section 2 introduces the question of finding a nonunit x in a
Dedekind domain A for which A/xA is a direct sum of fields. Although
we obtain no definitive result, various sufficient conditions are given.
These require in part the developments of § 1. We also give examples
Dedekind domains with "pathological" class groups.

I* We state two well known propositions which we will need by
way of background.

PROPOSITION 1.1. Let A be a Dedekind Domain with quotient field
F. Let B be a ring such that i c ΰ c ί 7 . Then B — f] Ap over those
prime ideals P of A for which B c i p ,

PROPOSITION 1.2. Let A be a Dedekind domain with quotient field
F. Let B be a ring such that A c B c F. Then B is a Dedekind
domain.

PROPOSITION 1.3. Let A be a Dedekind domain with quotient field
F and let B be a ring such that A c β c F . The assignment I—>IB
is a homomorphism of the set of fractionary ideals of A onto the set
of fractionary ideals of B.
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Proof. Let Q be a prime ideal of B and set P = Q f] A. Then
PB = Q. The inclusion PB c= Q is trivial, while 5Q = Aj, implies that
PBQ = (PB)BQ = QBQ. This yields PB = Q if we know that PB is not
contained in another prime ideal Q' of B. But then Q' would also lie
over P, which is not the case by Prop. 1.1.

If I is a fractionary ideal of A, then there is a d Φ 0 in A such
that dl^A. But then clearly d(IB)^B, so IB is a fractionary ideal
of B. The mapping is clearly a homomorphism for multiplication. To
see that the mapping is onto, let Q be a prime ideal of B. We have
seen above that if P = Q Π A, then PB = Q. Thus the mapping is
onto the prime ideals of B, and these generate the group of fractionary
ideals of B.

COROLLARY 1.4. Let A be a Dedekind domain with quotient field
F and let B be a ring such that A c J3 c F. The assignment
I—> IB of fractionary ideals of A onto fractionary ideals of B
induces a homomorphism ψ : J —> IB of the class group of A onto that
of B.

Proof. It is sufficient to note that if I = xA, then IB — xB.

PROPOSITION 1.5. The kernel of ψ is generated by all Pa, where
Pa ranges over all prime ideals such that PaB — B.

Proof. Suppose PaB = B, and let I be a fractionary ideal such
that I = Pa, i.e. I = xPa for xeF. Then IB = xPaB = xB, so 75 is
the identity.

Suppose now that I is a fractionary ideal of A such that IB = yB
for yeF. Then y!~λB — B, showing that yl~x is a product of primes
Pa of A for which PaB = B, and this establishes the assertion.

COROLLARY 1.6. Let A be a Dedekind domain and W = {Pa} be
a collection of primes such that {Pa} does not generate the full class
group of A. Then there are an infinite number of prime ideals of
A not in the set {Pa}.

Proof. Let B — ΓiP$w Ap. By Proposition 1.5, B is not a principal
ideal domain. Therefore there are an infinite number of prime ideals
of B9 hence an infinite number of prime ideals of A which are not in W.

COROLLARY 1.7. Let A be a Dedekind domain with class group
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G. Let H be any subgroup of G. Then there is a Dedekίnd domain
whose class group is G/H.

Proof. In [1], we constructed the Dedekind domain A! — A\X\S,
where S denotes the set of all monic polynomials of A[X], We showed
that A has the same class group as A [1, Prop. 2.3] and also that A
has a prime ideal in every class of the class group [1, Cor. 2-5],
Identify G and H at the class group and a subgroup of the class
group of A'. For each class of H, choose a prime P' of A! in the
given class. Let W denote the set {Pf} so chosen. Then B — f)Q0W AQ

has class group G/H by Proposition l β5.

2. DEFINITION 2.1. Let A be a Dedekind domain. An element
x of A which is not zero and not a unit will be said to be semi-prime
if A/xA is a regular ring.

REMARK 2.2. This condition is equivalent to (1) A/xA is a direct
sum of fields, or (2) xA is not contained in the square of any prime
ideal of A.

In what follows, sufficient conditions will be given for A to contain
semi-prime elements. If A has only a finite number of prime ideals,
then A is a principal domain and obviously A contains semi-prime
elements. This case (A has only a finite number of prime ideals) will
be excluded from the developments which follow.

PROPOSITION 2.3. If A has a finite class group, then there are
semi-prime elements in A.

Proof. Since we are assuming that A has infinitely many prime
ideals, there must be at least one class of the class group containing
an infinite set {PJ of the prime ideals. If n is the class number of
A, then P1 Pn must be principal, say xA ~ P1 Pn. x is then a
semi-prime element.

PROPOSITION 2.4. Let A be a Dedekind domain, and suppose that
every class of the class group (except possibly the principal class)
contains a prime ideal. Then A contains a semi-prime element.

Proof. If A is a principal ideal domain, then there is nothing to
prove. Otherwise let P be a nonprincipal prime ideal and let Q be a
prime in the class of P~\ Then PQ is principal, say PQ = xA, and
x will be semi-prime unless P — Q. We are therefore done unless
every class has exponent 2 and there is only one prime in each class.
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Choose P to represent one nonprincipal class and Q to represent a
different nonprincipal class. Choose a prime ideal R in the class of
PQ. Obviously Rφ P, Rφ Q, while PQR is principal. This gives a
semi-prime element in A.

We can actually prove a little more.

PROPOSITION 2.5. Let A be a Dedekind domain, and suppose that
for every prime ideal P there is a prime of A in the class of P" 1 .
Then A contains a semi-prime element.

Proof. As in the proof Proposition 2.4 we may assume that every
class has exponent 2. The class group of A may therefore be regarded
as a vector space over the field with 2 elements. Since the prime ideals
of A generate the class group, we may choose a basis {Pa} for the class
group consisting of classes of prime ideals. Let P be any prime ideal
of A and let P be its class. Let P = Pai Pak be its representation
in terms of the given basis. Thus PPaχ Pa]c is principal and we get
a semi-prime element unless P is in the set {P«}. We may assume
then that the set {Pa} contains all prime ideals of A. But this con-
tradicts Corollary 1.6, and the proposition is established.

Before giving an example violating the hypothesis of Proposition
2.5, we present a lemma which will be useful in constructing such an
example and in a later proof.

LEMMA 2.6. Let F be a field of characteristic p such that
[F11^: JΓ] — pm Let K be a separable extension of F then [KllP: K] — p.

Proof. Since K is a separable extension of F, we have K = F(KP)
[3, Thm. 8, p. 69]. Thus K1!P = F1}P(K). But F11P and if are linearly
disjoint [3, Thm. 35, p. I l l ] , so we get [K1** : K] = [F^P(K) : K] =

[Fi,p :F] = p.

EXAMPLE 2.7. Let Ff = Z/SZ(a) where Z denotes the integers
and a is indeterminant. Let F be the separable closure of Ff in its
algebraic closure. By Lemma 2.6, [.F1/3: F] — 3. Consider the integral
closure A of F[X] in the field F(X, Γ), where Y3 = aXd + X. It is
not difficult to show by a direct computation that A = F[X, Y], but
it is easier to notice that since the matrix of partial derivatives of
the equation Y3 — aX* — X has always rank 1, F[X, Y] is regular
[2, Thm. 1. p. 201]. Over each prime ideal of F[X] there lies only
one prime ideal of A and for the relative degree / of the residue field
and the ramification index e we have e = 3, / = 1 or e — 1, / = 3 [3,



OVERRINGS AND SEMI-PRIME ELEMENTS 803

Thm. 22, p. 289], We show first that for all nonlinear prime elements
of F[X], we get e = 1, / = 3, so these remain principal. Let Q be a
prime ideal of i^[X] generated by a nonlinear element Q = XQ — ί,
where q is a power of 3 and te F. The residue field F[X]/(Xq — t) is
.F[£1/(Γ], while the residue field relative to A will be F[t1/q, w], where
w* = atf'q + tllq. Since [F1'3: F ] = 3, we have 2^ / 8 cF[t 1 / f f ] , hence
a1* e F[tllq]. Thus αί3/ff is a cube in F[ί 1 / g ]. But tllq is not a cube in
F[tllq], so [F[t1/ff, w] : F[tllq]] = 3. That is, / = 3, e = 1; thus we see
that nonlinear prime elements of F[-3Γ] remain prime in A.

For the linear primes X — ί, έεi*7, we get e = 1, / = 3 if at3 + ί
is not a cube in F, while e = 3, / = 1 if at3 + £ is a cube in F.
Certainly we have the latter case at least for t ~ 0. Let P be a
prime ideal of A lying over a linear prime ideal of i^tX] for which
β = 3, / = 1. Then P is not principal. For if P were principal, say
P = (co(X) + dί-XΓJΓ + c2(X) F2) we would get

— \C0\Λ.) -\~ Cι\Λ. )\CLΛ. -f A.) -f- C2\Λ. )\d Λ. -γ ΔCLJL -γ- Λ. ) .

But P 3 = (x — t) for some te F. Comparing degrees and using the
fact that 1, α, a2 are independent over F3, we get a contradiction.
Again let P be such a prime and suppose that the class of P 2 (which
is the clsss of P"1) contains a prime Q. Q is certainly not principal
therefore Q lies over a linear prime ideal of i^[X] and e — 3, / = 1
for Q. We also get that P2Q2 is principal, say

pzQ* = (do(X) + d1(X)Y+ d2(X)Y2) .

Cubing, we get

(P3)2(Q3)2 = (dl(X) + d\(X){aX3 + X) + d3(X)(α2X6 + 2αX4 + X2)).

On the left side of this equation we have a polynomial of degree 4,
while on the right we have a polynomial whose degree is divisible by
3, a contradiction.

PROPOSITION 2.8. Let A be a principal ideal domain and let K be
a finite separable extension of the quotient field F of A. Let B be
the integral closure of A in if and let C be a ring such that B c= C c K.
Then C contains a semi-prime element.1

Proof. There are only a finite number of prime ideals Qlf •••, Qk

of B whose reduced ramification index is greater than 1 [3, Thm. 28,
p. 302], Let P = πA be a prime ideal of A not lying under any
Qif * ,Qk* Then πB is a product of distinct primes and is a semi-

1 The referee has kindly pointed out that this Proposition (and thus the following)
hold when B is not necessarily integrally closed.
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prime element in B. π will also be a semi-prime element in C unless
all prime ideals of B dividing π generate C. The result now follows
by Proposition 1.5 and Corollary 1.6.

PROPOSITION 2.9. Let A be the coordinate ring of an algebraic
curve over a perfect ground field F. If A is a Dedekind domain, then
A contains a semi-prime element.

Proof. A — F[xu , xn]. Choose X in A such that A is integral
over F[X] this is possible by [2, Thm. 1, p. 22]. Since A is inte-
grally closed in K — F(xl9 •••, a?n), A is the integral closure of F[X]
in K. Let Kr be the separable closure of F(X) in K, and let A! be
the integral closure of F[X] in K. The conclusion holds for A' by
Proposition 2.8.

Since [F(X)1IP : F(X)] = p, we have [Kn'p : K'] = p by Lemma 2.6.
if is a purely inseparable extension of K\ so we may break the
extension from Kr to K into a chain of extensions each of which is
pure inseparable of exponent p. This chain can only be

K' = Kod K}'p c Kr2 c • • c KVpm = if .

But then we have an isomorphism of K onto Kr given by x —+ xvm

which induces an isomorphim of A onto A'. Since A! contained semi-
prime elements, so does A.
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