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PROJECTIONS IN THE SPACE OF BOUNDED
LINEAR OPERATORS

DAVID ARTERBURN AND ROBERT WHITLEY

Thorp has shown that for X and Y certain Banach spaces
of sequences there is no continuous linear projection of the
bounded linear operators from X to Y onto the compact linear
operators from X to Y, In this paper, this result, as well as
related results for the weakly compact linear operators, is
demonstrated for cases including (¢)X an infinite dimensional
abstract L-space and Y an infinite dimensional space whose
conjugate contains a countable total set and (b)X a separable
B-space and Y = C(S) with S either a metric space containing
an infinite number of points or S a compact space which con-
tains a one-to-one convergent sequence,

We recall that a subspace of a Banach space X is said to be
complemented (in X) if there is a continuous linear projection of X
onto that subspace. In [14] it is shown that for X and Y certain
Banach spaces of sequences the subspace K(X, Y) of compact linear
operators from X to Y is not complemented in B(X, Y), the space of
bounded linear operators from X to Y. Here, we will prove similar
results for either X an abstract L-space or Y a space of type C(S)
and will also consider projections on the subspace W(X,Y) of weakly
compact linear operators mapping X to Y.

All maps will be linear and X and Y will be Banach spaces.
Abstract L-spaces are defined in [7, page 394]; C(S) shall be the space
of bounded continuous functions on a topological space S and we use
the sup norm. We recall that a set in X’, the conjugate of the
Banach space X, is total if the only vector mapped into zero by that
set is the zero vector.

Our main results are Theorems 1 and 2 below.

1. THROREM. Let &7 be an infinite dimensional abstract L-space
and let X have a complemented subspace Y. Suppose that Y' contains
a countable total set. Then

(a) If Y is infinite dimensional, then K(<, X) is nmot com-
plemented in B(<, X). In fact, K(<,Y) is complemented in
B(,Y) if and only if these spaces are equal and this happens tf
and only +f Y is finitte dimensional.
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(b) If weak and norm sequential convergence are not equivalent
wn Y, then K(<, X) is not complemented in W(<7, X). In fact,
K(<,Y) is complemented in W(<,Y) iof and only if these spaces
are equal and this happens if and only tf norm and weak sequential
convergence are equivalent in Y.

(c¢) IfY is not reflexive, then W(<”, X) 1s mot complemented
wm B(<?, X). In fact, W(<,Y) is complemented in B(<”,Y) if
and only tf these spaces are equal and this happens 1f and only +f
Y is reflexive.

2. THEOREM. Suppose that S is either a (not mecessarily com-
pact) metric space which contains an infinite number of points, or
that S is a compact space which contains a one-to-one convergent
sequence. Let X have a complemented subspace Y and suppose that
Y is separable. Then

(a) If Y is infinite dimensional, then K(X, C(S)) s not com-
plemented in B(X, C(S)). In fact, K(Y,C(S)) is complemented in
B(Y,C(S)) if and only tf these spaces are equal and this happens
of and only if Y is finite dimensional.

(b) If weak and morm sequential convergemce are mot the same
wm Y’', then K(X, C(S)) 1s not complemented in W(X, C(S)). In fact,
K(Y, C(S)) is complemented in W(Y, C(S)) ©f and only if these spaces
are equal and this happens tf and only ©f norm and weak sequential
convergence are the same in Y'.

(¢) If Y is not reflexive, then W(X, C(S)) is not complemented
wn B(X, C(S)). In fact, W(Y, C(S)) s complemented in B(Y, C(S))
©vf and only if these spaces are equal and this happens ©f and only
of Y ts reflexive.

We remark, in connection with part (b) of both theorems, that
weak and norm sequential convergence are the same in [ [2, page 137].
In Theorem 2, part (b), the separability of Y is essential, for if C(S)
is separable, then W(m, C(S)) = B(m, C(S)), since weak* and weak
sequential convergence are equivalent in m’ [9, Theorem 9, page 168],
yet m is not reflexive. It follows from either theorem that K{(I, m)
is not complemented in B(l, m), a result incorrectly proved in [14].

The above theorems can be extended by use of the following lemma.

3, LeMMA. Suppose that X, and Y, are complemented subspaces
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of, respectively, X and Y. Then

(a) If K(X,Y) ts complemented in B(X,Y), then K(X,, Y,) is
complemented tn B(X,, Y)).

(b) If K(X,Y) is complemented 1n W(X, Y), then K(X,, Y,) s
complemented in W(X,, Y)).

(¢) If W(X,Y) is complemented in B(X, Y), then W(X,, Y)) is
complemented wn B(X,, Y,).

Proof. Let P, be a projection of X onto X, and let P, project
Y onto Y,. For case (a), suppose that P is a projection of B(X, Y)
onto K(X,Y). Define a map Q on B(X,, Y,) by Q(T) = [P,o P(To P))] |,
where F'|; is the restriction of a map F' to X,. Then @ is a pro-
jection of B(X, Y,) onto K(X,, Y,). The other cases are similar.

So, for example, Theorem 1 gives useful information about maps
with range in a space which contains a complemented subspace iso-
morphic to an abstract L-space.

Note that by Lemma 3 it suffices to prove Theorems 1 and 2 under
the assumption X = Y. We now find canonical subspaces of & and
C(S) and reduce the problem still further.

From Corollary 4, page 221 of [12] we see that any infinite dimen-
sional complemented subspace of an abstract L-space contains a com-
plemented copy of I. So we may assume in the proof of Theorem 1
that & = 1.

In [1] Arens has shown that if S; is a metrizable compact sub-
space of a paracompact space S, then there is a projection of C(S)
onto a subspace isomorphic to C(S,); this is a generalization of Borsuk’s
theorem [4], in which S, is a separable closed subspace of a metric
space S. From Arens’ result we see that if S is a compact space
which contains a one to one convergent sequence, then C(S) contains
a complemented copy of ¢. From Borsuk’s result, if S is a metric
gspace containing an infinite number of points, then C(S) contains a
complemented copy of either m or ¢. (We remark that a particularly
nice proof of Borsuk’s theorem is given in [10]). Thus it suffices to
prove Theorem 2 for C(S) = m and C(S) = c.

We have now reduced the problem to its essentials. We will need
the following representation theorems [15]:

Let T: X— C(S) be a linear operator. Then T defines a function
p:S— X’ by p(s)(x) = Tx(s) and p is continuous as a map into (X', X),
i.e. into X’ with the weak™ topology. Then T is continuous if and
only if p(S) is bounded and in this case, || T'|| = sup {||p(s)||: s in S}.
Also, T is compact if and only if, in addition, p(S) is conditionally
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compact (i.e., if and only if the (norm) closure of p(S) is compact) and
T is weakly compact if and only if, in addition, p(S) is conditionally
compact in the weak topology of X'.

Let T: l— X be a linear operator. Then, letting e; denote the
characteristic function of the set {¢}, T is continuous if and only if
{Te;: 1=1,2,---} is bounded and in this case || T'|| = sup|| Te;||. The
map T is compact if and only if the set{Te;: 4 =1, 2, ---} is conditionally
compact and is weakly compact if and only if that set is conditionally
compact in the weak topology of X.

The first representation theorem is due to Bartle [3], for compact
S, and the second is due to Dunford and Pettis [6].

The following lemma is the backbone of all our proofs. We denote
the space of all bounded functions from a set S to a Banach space X
by m(S : X) with || f]|| = sup{||f(s)]|: s in S}. If the space X is the
scalar field we write m(S), which is also called B(S), and if S is a
countably infinite set we have the space m of bounded sequences. For
any f in m(S : X), the support of f, supt (f), is given by {s : f(s) # 0}.

4. LBEMMA. Let M and N, N< M, be closed subspaces of m(S: X)
and let N contain all the functions which have finite support.
Suppose that there is a function f in m(S: X) and an uncountable
family of functions in m(S), {g.: a in A}, with the properties:

(1) [lg.ll =1 for all a in A,

(2) fg., the function whose value at s is f(s)g.(s), isinm M — N,
and

(3) supt(g,) N supt(g,) is finite for a + b.

Then (M/N) does mot contain a countable total subset. Hence, vf M’
contains a countable total subset, then N is not complemented in M.

Proof. Let f, be the coset in M/N which contains fg, and note
that f, # 0. To show that (M/N) does not contain a countable total
subset it will suffice to show that a functional #’ in (M/N)’ can fail
to annihilate only countably many elements in the set {f,: a in A},
so it will suffice to show that the set C(n) = {f,:|2'(f.)]| = 1/n} is
finite for each natural number n. To see this let &, hy, <<+, h, be in
C(n), set b, = a'(h,)/|#'(h;)| and let x = 3bh;,. The critical point is
to note that ||2|| = || f|l. Then, since || «'||]|fIl = |2'(x)| = m/n, we
see that C(n) is finite.

If the subspace N is complemented in M we have M= N@O R
where R is a closed subspace of M. Then, since R’ contains a countable
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total subset whenever M’ does, and M/N is isomorphic to R, we see
that (M/N)' contains a countable total subset if M’ does.

We use the next lemma in constructing functions g, which are as
described in Lemma 4.

5. LEMMA. Let I be a countable set. Then there is an un-

countable family {U,: a in A} of infinite subsets of I with U, N U,
Jinite for a + b.

Proof. See problem 6Q, page 97 of [8].

The above lemmas are a generalization of the method of [16] and
the basic idea can be found in [11] and [13].
As we have noted, Theorem 1 is reduced to the following lemma:

6. LEMMA. Theorem 1 holds im the special case X =Y and
& =1

Proof. Let I=1{1,2,---}. By the representation theorem, B(l, X)
corresponds to m(I : X) and K(I, X)[ W(l, X)] to the subspace of m(I: X)
congisting of those functions whose range is [weakly] conditionally
compact.

Let {U,: a in A} be a family of subsets of I as in Lemma 5 and
let g, be the characteristic function of U,.

For case (a), suppose that X is infinite dimensional and select a
sequence {x;} of points from the unit sphere of X so that {x;} contains
no convergent subsequence. We define f in m(I:X) by f()=«,.
Now we apply Lemma 4 to see that B(l, X)/K(, X) = m(l: X)/K,
where K is the subspace of functions with conditionally compact range,
is a space whose conjugate contains no countable total set. But m(I: X)
does have a conjugate which contains a countable total set, since we
are assuming that this is true of ¥ = X; so by Lemma 4 K(I, X) is
not complemented in B(l, X).

For case (b) let {x;} be a weakly convergent sequence of points on
the unit sphere of X which contains no norm convergent subsequence,
assuming that weak and norm sequential convergence are not the same
in X, and proceed as above.

For case (c), assume that X is not reflexive and let {x;} be a
bounded sequence which contains no weakly convergent subsequences.

That the spaces are equal under the conditions given follows
directly. This completes the proof of Theorem 1.

Now Theorem 2 has been reduced to the case X = Y and either
C(S)) = m or C(S,;) = ¢; since S, and S, are separable Hausdorff spaces
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which contain a countably infinite number of isolated points, the
following lemma will suffice:

7. LEMMA. Let S, be a separable Hausdorff space which contains
a countably infinite number of isolated points. Then Theorem 2
holds if X =Y and S = S,.

Proof. The proof is quite a bit like the proof of Lemma 6. Let
I ={s, s, +++} be the countably infinite set of isolated points of S = S,
and let U, be a family of subsets of [ as in Lemma 5. Let g, be the
characteristic function of the set U,.

For case (a), assume that X is infinite dimensional and choose a
sequence {x;} of elements in X’ which converge to zero in the weak*
topology of X’ and yet contain no norm convergent subsequence.
Define f to be zero on S — I and f(s;) = ;. Now, via the representa-
tion theorem, B(X, C(S)) corresponds to the subspace B of m(S: X’)
which consists of those functions in m(S : X’) which are continuous
as maps from S to X’ with the weak* topology, and K(X, C(S)) cor-
responds to the subspace of B which consists of those functions which
have conditionally compact range. So the proof for case (a) will be
completed by Lemma 4 if we can show that the function fg, is con-
tinuous as a map from S to (X’, X). To see this, suppose that {s(a)}
is a net in S which converges to s. If s is isolated the net is eventually
s and then {f(s(a))g.(s(a))} is eventually f(s)g.(s) and so fg, is con-
tinuous at s, S0 we may suppose that s is not isolated. Since s is not
isolated, f(s)g.(s) is zero and so we must show that {f(s(a))g.(s(x))}
converges to zero; this net will converge to zero if for each natural
number N there is an «, such that s(a) is not in {s,s,, ---, sy} for
a = oy, if there is no such a, for some N we find that s is isolated,
a contradiction.

For case (b) we assume that weak and norm sequential convergence
are not the same in X' and choose a sequence {x;} which converges
weakly to zero but has no norm convergent subsequence. Since x}
converges weakly to zero it converges to zero in the weak* topology
and so fg¢., as above, is continuous.

For case (c), let {x!} be a sequence which converges to zero in the
weak* topology but contains no weakly convergent subsequence. A bit of
caution is necessary here. We are assuming that X = Y is separable
and so the weak* topology on the unit sphere in X’ is metrizable
[7, Theorem 1, page 426] and so if weak* and weak sequential con-
vergence are the same, then the sphere is weak sequentially compact
and hence weakly sequentially compact, hence weakly compact and so
X is reflexive. However, if X is not separable, we may have weak*
and weak sequential convergence the same in X’ without X being
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reflexive; for example, X =m [9, Theorem 9, page 168].

It follows from the representation theorem that the spaces are
equal under the given conditions.

This completes the proof of Theorem 2.

There is no known example where K(X, Y) is complemented in
B(X, Y) and yet is not equal to B(X, Y), ditto for the subspace
W(X, Y) and for K(X, Y) as a subspace of W(X, Y).

A simple case which remains open is whether K(m, c) is comple-
mented in B(m, ¢). If m had a separable complemented subspace which
was infinite dimensional, then Theorem 2 would solve this problem;
but m does not [12, Theorem 6, page 221].

Added in proof. The argument following Lemma 3, which relies
on references [1] and [4] to show that for certain S the space C(S)
contains a complemented subspace isomorphic to either m or ¢, ecan be
replaced by the elementary Corollary 6 of D. W. Dean’s paper Sub-
spaces of C(H) Which Are Direct Factors of C(H) (Proc. Amer. Math.
Soc. 16 (1965), 237-242).

We thank E. O. Thorp for his support.
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