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DEVELOPMENT OF THE MAPPING
FUNCTION AT A CORNER

Neil M. Wigley

Let D be a domain in the plane which is partially bounded
by two curves I',. and I'; which meet at the origin and form
there an interior angle nv > 0. Let N be an integer = 2 and
let « be a real number such that 0 < @ < 1. Suppose that for
1 =1,2,I"; admits a parametrization x = z;(¢),y = ¥;:(t),0=t < 1,
where x; and y; have Nth derivatives which are uniformly a-
Holder continueus, and |zi(¢)| + |i(¢)]| > 0. Let F(2) map the
upper half plane conformally onto D in such a way that F'(0) =
0. Then if 7 is irrational F'(z) has an asymptotic expansion in
powers of z and 2°, with error term o(2¥°®), If ¢ = plq, a
reduced fraction, then F'(z) has an asymptotic expansion in
powers of 2,27, and 2? log 2z, with error term 0(z¥*7¢). In both
cases ¢ is an arbitrarily small positive number. Furthermore
expansions for derivatives of F'(z) of order < N may be oh-
tained by differentiating formally,

The behavior of such conformal maps at corners was first investi-
gated by Lichtenstein [9]. Let F''(z) be the function inverse to F(z)
which maps D onto the upper half plane. Lichtenstein showed that
if I, and /I, are analytic then

(1.1) %Fﬂ(z) = 21"p(2)

where ¢(z) is continuous in D and o(0) = 0. This result was later
generalized in two ways. One was to weaken the requirements on
I'yand I',. 1t follows from the work of Kellogg [4] and Warschawski
[10] that with very modest conditions imposed on I', and I, one has

F7(2) = 27 p(2)

where again ¢(z) is continuous in D and @(0) == 0. In particular this
follows if one assumes that I", and I, have continuously turning tan-
gents in a neighborhood of the origin (though weaker conditions will
suffice).

The other generalization of Lichtenstein’s theorem was an improve-
ment of the result (1.1), maintaining the analyticity requirement. For
the case 7 = 1 Lewy [8] showed that F(z) has an asymptotic expansion
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in powers of z and logz. Later Lehman [6] showed that expansions
of the kind mentioned in the first paragraph are valid for all angles
nz > 0, provided I, and I', are analytic. Thus in this paper we
dovetail the results of the two developments. Furthermore we shall
indicate some applications to the behavior at corners of solutions of
elliptic partial differential equations; see [3], [5], [7], [8], [11] and [12].

2. Principal results. Let N be an integer = 2 and let a be a
real number such that 0 < @ < 1. Assume that for 7 =1, 2, I"; admits
a parametrization & = x,(t), ¥ = ¥:(t) where z,(t) and y,(t) are uniformly
C¥+« for 0 <t <1, and assume that there exists a 6 > 0 such that
|ai(t)| + |yt)| =6 for 0 <t < 1. Let F(z) map the upper half plane
conformally onto D. Then G(z) = F(z"7) maps the sector 0 < argz < ©t
onto D and we have the following theorems.

THEOREM 1. If 7 14s trrational then there exists a polynomial
P(z, z°) such that as z— 0,0 < argz < T,

F(z) = 2°P(z, z°) + 0(z"" )

where € 18 an arbitrarily small positive number and P(0,0)#0. If t=
/q, a reduced fraction, then there exists a polynomial P(z,z",z" log 2)
such that as z— 0,0 = argz = 7,

F(z) = er(z, z°, 2P log z) + O(er—s)

where ¢ 15 an arbitrarily small positive number and P(0, 0, 0) = 0.
Furthermore expansions for derivatives of order =< N may be obtained
by differentiating formally.

THREOREM 2. If © 4s trrational then there exists a polynomial
P(z, 2'7) such that as z— 0,0 < arg z < 7,

G(z) = zP(z, 2I") + 0o(z"™)

where € 1s an arbitrarily small positive number and P(0,0)=0. If t =
p/q, o reduced fraction, then there exists a polynomial P(z, 2", 2% log z)
such that as z— 0,0 < arg z < 7v,

G(z) = zP(z, 27, 2" log 2) + o(z" ™)

where ¢ is an arbitrarily small positive number and P(0, 0, 0) == 0.
Furthermore expansions for derivatives of order < N may be ob-
tained by differentiating formally.

1 This means there exists a constant K such that for 0<s<t=<1land 0<n=N

L@ — Lri)] + | Lgito) — Logat| s K fs — tle.

e am 0|+
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From Theorems 1 and 2 one can obtain an asymptotic expansion
for the inverse function F~'(z) which maps D onto the upper half
plane. The method is an iterative one, starting with F(2) = o(z°™)
and increasing the exponent of the error term; see, for instance,
Wasow [11], pp. 49-50.

THEOREM 3. If 7 s irrational thew there exists a polynomial
P(z, 27) such that as z— 0,ze DU U,

F(2) = 27 P(z, ') + o(z¥++1/77)

where € is an arbitrarily small positive number and P(0,0)# 0. If ¢ =
plq, a reduced fraction, then there exists a polynomial P(z, 2", 2% log 2)
such that as z— 0,ze DU, U I,

F—l(Z) = zlltP(z, zl/f’ zq log Z) + O(ZN—1+1/T—£)

where ¢ is an arbitrarily small positive number and P(0, 0, 0) = 0.
Furthermore expansions for deritvatives of order < N may be ob-
tained by differentiating formally,

Since G(z) = (F'(2))°, we have, by the binomial theorem.

THEOREM 4. If © is irrational there exists a polynomial P(z, z7)
such that as z— 0,ze DU, U [,

G7Y(z) = 2P(z, 2"7) + o(zV7)

where € 1s an arbitrarily small positive number and P(0,0)=£0. If T =
/q, a reduced fraction, then there exists a polynomial P(z, 2", 2" log 2)
such that as z— 0,ze DU I, U I,

G (2) = 2zP(z, 2"7, 2" log 2) + 0o(z" )

where ¢ 1s an arbitrarily small positive number and P(0, 0, 0) = 0.
Furthermore expansions for derivatives of order = N may be ob-
tatned by differentiating formally.

3. Applications to partial differential equations. The expan-
sions of Theorems 2 and 4 have immediate applications to a previous
paper of the author [12]. In particular §4 and 5 of [12] need only
be modified suitably to obtain the following theorems.

Let U(x, y) be a solution in D of the partial differential equation

62U+6U

o0’ 0y* +KU=F

where K and F are (N — 1)-times continuously differentiable in
DU, UTI,U{0}, U is twice continuously differentiable in D, and U,
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and U, are a-Holder continuous in every compact subset of DUI" U,
We also assume that for ¢ = 1, 2, U satisfies on I"; a boundary condition

i— + AU = B;
on

where 0, = 0 or 1, 0/0n represents the outgoing normal derivative, and
A, and B; are (N — 1)-times continuously differentiable as functions of
arc length, defined on I, U {0}, and A4,(0) == 0, if 0, = 0. Finally, we
assume that as z—0,ze DU, U7,

U(z) = o(z*)

where ¢ >max(—1, —1/7) if 6, =0, and ¢ > max(—1, —1/27) if 0, # 9,.
Then

THEOREM 5. If 51 —_ 52 = 0 then as z-»O, ze DU F1 U Fz,
U(z) = logzP, + log zP, + P, + o(z"™7™)

where P, P, and P, are polynomials in z, Z, 2'* and z'* if 7 is ir-
rational and tn z,%, 2", 24", 2" log z and Z'logz if T = p/q; and € is
an arbitrarily small posttive number. If B(0)A,(0) = B,(0)A4,(0), P,
and P, vanish identically. Furthermore expansions for derivatives
of U(z) of order = N — 2 may be obtarned by differentiating formally.

THEOREM 6. If 6, =0 and 0, =1 (or 0, =1 and 0, = 0) then as
z2—0,zeDUIl' U T,

U(z) = P+ o(z"7'7)

where P is a polynomial in z, %, 2'* and 2'* 4f © ts irrational; P
18 a polynomial wn z,Zz,2"* 2", 2"logz and z'logz if T = p/q and
q s odd; P is a polynomial in z,z, 2'*, 2%, 2" log 2z and zZ*logZ +f
o = plqg and q s even; and ¢ is an arbitrarily small positive number.
Furthermore expansions for derivatives of U(z) of order = N — 2 may
be obtained by differentiating formally.

THEOREM 7. If 0, =0,=1 then as z—0,ze DU I, U,
U(z) = log 2P, + log 2P, + P, + o(z" ™)

where P,, P, and P, are polynomials in z,Z, 2" and z'° &f T is wr-
rational and in z,z, 27, 2Y°, 2" log 2z and Z'logZ if T = p/q; and € is
an arbitrarily small positive number. If U(z) ts bounded at the
origin then P, and P, vanish identically. Furthermore derivatives
of U(z) of order < N — 1 may be obtained by differentiating formally.
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4. Some Lemmas, Later we shall need some properties of func-
tions which are Holder continuous in a set, but whose Holder constants
diverge in a certain way near a boundary point of the set. Let S be
a subset of the plane which does not contain the origin, but of which
the origin is a cluster point. Let £ and B be real numbers, 0 < 8 < 1,
and let M be a nonnegative integer. Let f(x,y) be a real or complex
valued function such that f(x,y)e C¥*® for (z, y)e S, and suppose that
for0=n=M

(1) D"f(z,y) = O™
as 2—0,z¢ S, where D" ranges over all nth order partial derivatives,
and

(i) there exists a constant K such that

L D@ — D ()|
sup T |z

mibe < K

where the supremum is taken over all derivatives D", and over all
points z, e S such that 0 < |z —{| < d|#|,0](]; 0 is assumed to be
some positive number < 1. The totality of such functions we designate
by WX+t(S). If S is the sector d, < argz = 0,,0 < |z] < |2,|, we write
Wi+E([o,, 6,]). We omit the dependence on z, because we are only con-
cerned with properties (i) and (ii) in some neighborhood of the origin.
If S is a segment 0 <z < A we write W¥'P; properties (i) and (ii)
should then be modified properly for a function of one variable. We
observe that if 8 = 0 property (ii} follows from property (i) and the
condition |z — {| < d|z],0]C].

We now list some properties of the W-spaces. We state them for
the complex case, though with suitable modifications the properties
hold for the real case. Thus we assume 0 < |z — (| < d]z],0|C], and
z,CeS.

1. 1—0<|2/{|<1+04.

2. Let < —1. If 8/6x)f(z), 8/0y)f(z) € WXAS) then f(z) differs
by a constant from a function in W;_(S). The proof is contained in
Bourbaki [2].

3. If (0/ox)f(z), (0/0y)f(z) € WS then f differs by a constant from
a funection in Wg (S),0 =< 8 < 1. The proof follows from property 2
above and the mean value theorem for functions of two variables.

4, There exists a constant K depending only on f, 8 and J such
that

2P — (P S K|z |2 — Pl = Kzl |z — (P

Here we assume that S is so chosen that z*™ and 2f are single valued

functions.
5. Let f(z) = 2, and assume 2* is single valued for z¢€ S. Then
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for all integers M = 0 and any B such that 0 < 8 <1, f(2) € WZ*A(S).

6. Let M and N be integers = 0, let « and 5 satisfy 0 < a, 8 <1,
and let 22 and v be real numbers. Let f(2) € W¥+%(S) and g(z) € WF+#(S).
Let &’ = min (a, 8), M' = min (M, N) and ¢ = min (¢, v). Then

f@) + g(z) € W' (S)
and

f(2)g(2) € Wiy=(8S) .

Proof. The first statement follows from the fact that W%'+*'(S) 2
wi+e(Sy N WYtE(S), and because the W-spaces are linear. For the
second statement we observe first that f(z)g(z) e C*'**'(S). Then

f(2)g(2) = 0(")0(2") = O(z"*) ,

and
[fR)g(z) — f(D9(O) | = /@) [ 19(x) — 9(©) | + 9D [1/(2) — F (DI
= K|z Pl —CP + K|z |z = ()"
= K|z [z = C|"
since
2= CPP=le— LP= e = LY S 7 2P [z — (I
and

2= L1T S 0 2l |z — LI

The proof then follows easily from induction.

We now state three lemmas. The analogous theorems for the real
case follow without difficulty.

LeMMA 1. Let 1> 0 and let f(z) € W2*(S). Suppose also that
|f(2)| = 8,|2*, 2z€ 8, for some 6, > 0. Let S’ be the range of S and
suppose g(z) € WI8(S)., Then

h(z) = g(f(2)) € Wis**(S)
where M' = min (M, N).

Proof. 1t is clear that h(z) = O(z*). Next, for |z — | < d|z],d|{|

| 1(z) — h(Q) | = | 9(f(2)) — 9(f(D)) |
= Kimax (| /(@) ', [ (O ) 1) — fO 1P

= Komax (|20, [LP0-P) |0 | — (|0
= K|z |z — L]
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provided | f(z) — f(Q)| =0 |f(2)|,d]f(C)]. In the contrary case, however,
suppose [ f(z)| = [A(Q)] and |f(2) — f(Q)| > 0[f(2)|. Then

LD — 0O < K| o(7@) — o Q| 212 17@) = A1
< Kymax (1 £G) Py | FO )| £G) 7 |zl

= Kymax ([z [, [C[?) [z]**
= K [z

and thus A(z) € W24(S).
Writing f = @ + iy, @, 4 real, we have
%h(z) = 4,(f(@)p:(2) + g(F V() -

Now by definition g, € W¥3'"#(S’), and thus ¢, (f(2)) € WL L*¥(S) as
well as ¢, ¥, € W2'**(S), and thus, by Proposition 6,

9 1z) e Wrmrras(S)
ox
The lemma follows by similar arguments.

LEMMA 2. Let f(z) map S onto a set S’ in such a way that f(z)
18 conformal on the interior of S, and suppose f(z) € Wit(S), 1 > 0.
Assume also that | f'(z)| = 0,z |* " ze S, for some 6, > 0. Let g({) be
the function inmverse to f(z) which maps the interior of S’ tnto S,
and assume that g(C)e C¥**(S') (this is the case if S and S’ have
suffictently smooth boundaries).

Then

9(8) € Wiji(S") .

Proof. Let 2z, be fixed. Then for |z| sufficiently small we have

| f(2)| = |f(z)]. Thus
f@) | — @] = |1f )| — [fR)]] = [f(z) — f)]
[ 7wy |

gg"’mnww—wdw\ < K+ |z — |29

where the path of integration is taken to be a union of paths argw -
const. and |w| = const. Thus
| f(2)| = K, + Ky |2 ]* = K, | 2]" .

Since | f(z)| < K,|z|* we have
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19O = 17"@ 7 = 0 |27+ = K [ L
By Propositions 2 and 3 we have g({) € W.(S).
Next,

19'(C) —g'@)| _ |f'(z2) — ['(2) ] |2 — % |°
18— &l [ @)@ 2 — 2" [ & — G )7

= Kolz [z a [ f(2) |7

where z lies between 2z, and z,. Since 1 — 0 = |2,/2,] =14 6 we have

1g'€) — g &) <K lp—a—(p—la < K (1 p)—1—a
=g < e < K| G

Thus ¢(z) € Wii*(S’). The proof follows by induction.

LEMMA 3. Let f(z) e W{t*(S) and let P(z) be a polynomial of
degree < p with P(0) = 1. Let v be a positive real number. Then
there exists a function fi(z) € WYt(S) and a polynomial P,(z) of
degree < pt such that

(P(z) + f(&) = Pi(2) + fi(2) .
Proof. The proof follows easily from the binomial theorem.

In obtaining the asymptotic expansions we shall come across certain
integrals which were studied in [8], [5], and [12]. To estimate these
integrals we use the following lemmas. The first was proved in [8]
and [5]. The second is a generalization of a theorem in [8], [5], and
[12] and will be proved in § 9. The integrals are Lebesgue integrals
extended over positive values of ¢. The variable z lies on the logari-
thmic Riemann surface with branch point at the origin. The kernel
of the integrands is the function log (t — 2) which we define in the
following way. For fixed t we make cuts along the Riemann surface
from te*™* to oce®* k=0, 1, +2, ---. The logarithm is uniquely
defined, except for z lying on these cuts, as the analytic continuation
of the logarithm which is real for 0 < |z| < ¢, argz = 0.

LemMMA 4. Let A be a positive number, 1 a real number > —1,
and n o nonnegative integer. For 0 < argz < 2x, let

f) = S:t"(log £ log (t — 2)dt .

Then there exists a polynomial P(logz) and a power series p(z) which
converges for |z| < A, such that
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f(z) = z#"P(log z) + p(?) .
If ¢ is an integer the polynomial P is of degree m + 1; otherwise
it s of degree n.

LemmA 5. Let ¢t be a real number > —1 which is not an integer,
and let B(t)e Wi for 0 <t=A. For 0 <argz<m, let

A
9(z) = Soﬁ(t) log (t — 2)dt .
Then there exists a polynomial q(z) of degree < p + 1 such that
P(2) = g(z) — q(») € WIE%((0, 7)) .

A similar result obtains for —mw < argz < 0, with the same poly-
nomaal q(z).

5. Preliminary results., It follows from Warschawski [10] that
F~'(z), which maps D onto the upper half plane, satisfies the relation
(5.1) F~'(2) = 2"p(2)

where ¢(z) is continuous in DU /", U I, U {0} and ¢(0) = 0. We shall
show in this section that F~'(z) € Wi;“(D U [, U [).
It follows easily from the Cauchy integral theorem that

F~'(z) ¢ Wil “(In, wT — \])

where A is a small positive number: one simply examines the integral

e nl IR(9]8
d ()_2m§(c 2)n

taken over a circle about z of radius o0|z|, bearing in mind that

F(z) = O(z”’) as 2—0,ze DU " U I,. Thus it will suffice to show
that F''(z) € WHi*(D') and F~(z) ¢ Wi, *(D") where D'=DN{z:argz=
T — 2\} and D” = DN {z:argz = 2\}. Because of the symmetry be-
tween 7, and /', we need only show that F~'(z) € Wi «(D’).

Next, if we have V(z) = Im F~'(z) € Wi{j}*(D’), then, by Wars-
chawski’s result above and the Cauchy-Riemann equations, we have
Re F'(z) ¢ W:*(D’), and thus F'7'(z) € W{;*(D'). Thus we shall show
V(z) € Wiie(D').

Now we make a transformation which has the effect of straighten-
ing out /,. Let y = B(x) be a parametrization of /I, (if = = 1/2 or
3/2 this is impossible; but a small rotation about the origin would
take care of this difficulty). Then it can be shown that B(x)e C¥**
for 0 < a2 < A, where A is a small positive number; furthermore, by
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the hypotheses of §2, for 0 =n =< N,0= 2, 2, = x,

sup IIB(')L)(xI) - B(n)(xz)\ < - .

@17y |2, — 2, ]°

We make the transformation & =w,7 =y — B(%), and set v(&,9) =
V(x,y). Then v is defined (at least) for 0 < & + 7* < 4,, —&tand <
7 < 0, provided A, and ¢ are chosen small enough. The points (&, %)
are images of a subset of the points (x,y) such that (77 —d)x <y <
B(x), where 0, is a small positive number. Since B(x) = O(x), we find
that d, = y/x < 1/0, for some d, > 0, and thus, since

£t =+ ¥ — 208(x) + (B=)),
o2 LIV <1,
&+

for some 0, > 0. Since V(z,y) = O(z%), we have v(&, ) = O({"*), where
L=¢&+ .

We now state a lemma which is a special case of a theorem of
Agmon, Douglis and Nirenberg ([1], pp. 657-660). Let 0 < R <1 and
let S be the semicircle &+ 7* < R, =< 0. For {eS let d; denote the
distance from { to the circular part of the boundary of S.

LemMMA 6. Let w(&,n) be a solution of a uniformly elliptic partial
differential equation

Lu = au,, + 2bu,, + cu,, + du, + eu, + fu =0,

whose coefficients are C¥*** 4m S with uniform a-Holder constants.
Let u(§,0) =0 for —R< &< R. If ueC**(S) then ue C¥*%(S), and
there exists a constant K, tndependent of w and R, such that

U | ysa = Kségglu(C)l

where

_ via | D"UE) — D¥u(E) |
e A 12— G

N
+ >ysup df | D*u(l) | ;
k=0 €S
the suprema are taken over all kth and Nth order derivatives of wu.
Since V(zx, ) is harmonic, we have

Ly = v + 1 + B0y — 28'(E)vey — B"(E)vy, =0
for 0 <&+ 7 <A, —§tand =9 =0. Also
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(&, 0) = V(z, B(x)) =0.
We now apply the lemma to v and the semicircles
E—-é)y+n=¢&sin’o,n=0

where 0 < &, < (1/2)A,; these semicircles are tangent to the rays » =0,
and 7 = —&tand. In each semicircle we have, for some K, > 0,

sup [v(0) | = K. | L7

In the semicircle (5 — &)+ 7* = ((1/2),sind)’, » < 0, we have d; =
(1/2)&,sin 6. Thus for (& — &)* + 7* = ((1/2)é,sin 0)*, » = 0, we have

1090 = (41 + Lsino)) | D@

k
= (2 (14 Lsind)ds) | DYu(©)| = K| L1
sin o0 2 J

for 0 <k < N. Thus v({) ¢ W¥.(|—9,, 0]) where §, is small. By the mean
value theorem v({) € W& ***([—d,, 0]). To estimate | D¥v({)) — D¥v({,) |
we use the lemma again; the details are similar to those above. Thus
we can conclude that v() € Wir*([—d, 0]). Since

5. < o +y 1

3 = 52_‘_02 :537

it follows, by easy calculations, that for some small positive \,
V(z) e Wit*(lmz — N, 7))
Thus we conclude that F='(z) € Wi«(D U ', U I').

6. A preliminary transformation. From now on for the sake
of definiteness we will assume that [, is tangent to the positive x-
axis at the origin and that I”, is tangent to the ray argz = nr at
the origin.

We set H(z) = (F(2))'". Then H(z) maps the upper half plane
conformally onto a domain D’ which is the image of D under the
transformation z— 2zY*, D’ is partially bounded by curves I", and I7
which have horizontal tangents at the origin. From the binomial
theorem it is clear that theorem 1 is equivalent to an asymptotic ex-
pansion

H(z) = 2P(z, 2°) + o(z"~"7) (a irrational)

(6.1)
H(z) = 2P(z, 27, 2" log 2) + o(z""7=) (@ = plq)

as 2— 0,0 < argz =< 7w, where ¢ > 0 can be chosen arbitrarily small
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and the polynomial P has a nonvanishing constant term; furthermore
we must show that we can differentiate (6.1) N times. Since Theo-
rems 2, 3 and 4 follow directly from Theorem 1, we need only prove
(6.1).

By Lemma 1, and since F~'(z) € Wi (DU ", U I',), we have

H(2) = F'(z*) e Wr+(D'y I ury.
By Lemma 2, H(z) ¢ W¥*([0, ]).

7. An integral representation, We will now construct an in-
tegral representation for H(z) based on the equations for I, and I,.
Let F'(2) = ¢ 4+ 1. Then we have

N-1
=3 0l + o)

where ¢, € WF*%; this is merely the Taylor series for /', and is valid
for 0 =& Eo-

We will now adopt the convention of dropping subscripts on coef-
ficients whose value is unimportant; then we have

n= 308 + o) .
With w = H(z) = u + 4v, we have

w = (& + i)t = slff(l i Syes 4 saf))”’

= E”T<a + g{ c&" + %(E)) ,

and by Lemma 3, ¢, € WF#?. It is readily seen that Rea # 0. Then
we have, by separating real and imaginary parts,
(7.1) w =& (L + ¢& + c& + -+ + &V 4+ @)
(7.2) v =8¢+ & + & + -0 + &V 4 @ 8))
with ¢, @, € Wi#?. Next,

w' = aiE(L + ¢& + ¢& + + -+ + &V + py(8))
with @, € WFi*. As af # 0, we have, by the inverse function theorem,
(7.3) E=u'(c+ cu® + cu™ + +++ + cu T 4 pg(u7))

where ¢, considered as a function of u°, belongs to Wy%*. Thus by
Lemma 1, @ (u) = ps(u’) € Wi&'%.. Substituting (7.3) in the right side
of (7.2), we obtain



DEVELOPMENT OF THE MAPPING FUNCTION AT A CORNER 1447

N—2 . 1z
v = u(z cu’t + @,(u))
=0

(7.4) N2 N3 j
X (Jgo cW”(% cut® + 907(u)>J -+ %(E)) .

We set
piw) = p&) = pw (S w + piw)) -

It is easily checked that &(u) e W¥+** as a function of w, and thus
ps(u) € WEY.. Thus, expanding the right side of (7.4), it follows
that

v =u(c + cu” + «++ 4 cu™V 7 4 py(u))
with ¢, ¢ W&%.. Finally, (dv/du)|,-, = 0, and thus
(7.5) v = uleu’ + cu 4 oo + cu¥ T 4+ py(u)) .

This equation is valid for » and u defined on the segment y = 0,
0 <2 =< A, provided A is chosen small enough.

If 0<7<1/2 or 3/2< 7 =2 we can repeat the same argument
on /',: note that we never used the fact that /°, has a horizontal
tangent, but only that /7 (and /}) has a horizontal tangent at the
origin. If 1/2 < 7 < 3/2, we replace ¢ by |&]; and for 0 <7 = 2, we
replace u by |u].

Finally, if 7 = 1/2 or 3/2 we begin with the equation

N
§= >;1| on* + @u(n)
and carry through with the roles of & and » reversed. Thus we have,
for —AZ2=0,y =0,
(7.6) v = uleu’ + cu* + -+ + cu¥ I 4+ p,(u))
with @, ¢ Wite..
We now consider the Green’s function for the upper half plane

(1.7) G(t,z):~§1;{log|t~z|—l—log|t—2|},

where t =z, + 4y,. It is easily seen that (0/0y,)G(x,,2) = 0. We apply
Green’s theorem to the functions G(t,2) and u(t) = Re H(f) on the
semi-circle 0 < |t| < A, y, > 0, and obtain

Yt
lt|=4

u(z) = SA G(t, z)aﬂu(t)dt -+ S g (uG,, — Gu,,)ds,
-4 Y
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where s, represents arc length and n, the outward normal. By (7.7)
we have

1,00 W, — Gu,)ds, = p(2) + p(@)
lt]=4

where p(z) is a power series which converges for |z| < A. Also, for
Yy = O’

G(t,z):—%{log]t——z[—i—loglt—él}
1
= —Lojog|t—2p
2T[ogl z|

il

——-217{10g (t —2) + log (t — 2)} .

Here we define log (t — z) as the analytic continuation of the logarithm
which is real for 0 < |z| < ¢, argz = 0. The congruence holds modulo
2m1; however, each of the logarithms on the right side has imaginary
part >—7m and <mw. Thus we may replace the congruence by equality.
With these observations in mind, we obtain

(1.8)  u(e) = —%S:{%u(t)
x {log (t — 2) + log (t — 2)}dt + p(2) + p() .

Since u(z) = Re H(z) and p(z) has real coefficients, we replace (7.8) by
the equation of which it is the real part, namely

H(z) = — lSA iu(t) log (t — 2)dt + p(z) + const. ,
T J-40y,

where the constant takes care of the nonuniqueness of the conjugate
harmonic function of u(z). We now drop this constant, changing p(z)
if necessary, and use (7.5) and (7.6), together with

D iy - 0
%%(t) - axt v(t) ’
to obtain
o H(z) = %S;ut(t, 0){1:;: w4 @(u)} log (¢ — 2)dt

+ —l—gAu,(t, 0){%1 cu’® + a/r(u)} log (t — 2)dt + p(z) .
T Jo j=1

Here
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o) = L (upy(w) ¢ Wi
and

/ _ d N—-1+a®

y(u) = %(u@g(u)) e WY .
Furthermore, (7.9) is valid for 0 S argz = 7w, 0 < [2]| < A.

8. Obtaining the asymptotic expansions. We have, for —A <
t <0, H(t) ¢ W¥** and thus u(t) ¢ W¥*<*, Hence
(u(t))= e Wi

w, € Wit

and thus

(8.1) wt, o>{”§; cui® + gj(u)} e Wl
as a function of ¢, —A < ¢ < 0. Similarly

(8.2) w(t, 0){?}3_; cuit + qy(u)} e Wr-tiad
for 0 <t < A. Thus by Lemma 5, if 7+ 1, 2,

H(z) = az + b2* + x.(2)

where y.(z) € WXi“((0, ©)). As H(z) has «-Holder continuous Nth
derivatives for 0 < arg z < &, we must have ¥.(z) € WA+*([0, x]).

If =1 or 2 Lemma 5 will not apply. However, if ¢ is any
small positive number we can replace the W>-'t** of (8.1) and (8.2)

with W27 and thus we can always write
(8.3) H(z) = az + bz* + ¥.(7)

where 7.(z) € W20, 7).

We now prove Theorem 1 by induction. In the future we shall
use the symbol «a to represent any number between 0 and 1, and ¢ to
represent an arbitrarily small positive number such that nt — ¢ is not an
integer for 0 < n = N. In particular we write () € W20, =]).

First let « be irrational. Assume that for some m, with 0 <m <
N — 1, that

H(z) = 2P,(2, 2°) + Yu(?)

where P,(z,2°) is a polynomial in its arguments such that P,(0, 0) = 0
and y,(z) e W% ([0, 7]). That this is the case for m = 1 follows
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from the fact that the constant @ of (8.3) is not equal to zero; this
follows from (5.1) and the definition of H(z).
Then by the inductive hypothesis we have, for —A <t < 0,

u(t, 0) = t( SVttt + wlz(t)>

k+lz<mzt

with @u(t) € Wii% and ¢, 0. A similar equation holds for 0 < ¢ < A.
Then

urc = tnr{ Z Ctk+lr + (])ILg(t)}

k+lr<
with ¢} € W24, and

UL, 0) = > ok + 1+ lo)thts + @ (t)

k+lt<mrt

with ¢, € WXZ2+*. Also, since o(u) e Wi%. as a function of u,
pu(t)) € Wi2t® as a function of ¢. Thus, cross-multiplying, collect-
ing terms, and using Lemmas 1, 2 and 3, we obtain

wlt, 0){];7;_11 cu’t + @(u)} = > ctF T 4 Pi(t) + @i(t)

k+lc<mzt

with @,(t) € Wit. and ¢, € W52, By the inductive hypothesis
m+ 1< N—1and we may write ¢, = @, + ¢, € W2, Clearly
a similar equation holds for 0 <t < A, and, applying Lemmas 4 and 5
we obtain

H(z) = > cu2"" + Yni(2)

with %..:(2) € W% 11-((0, 7)), As H has continuous Nth derivatives,
Lmir € WES (10, m]). By Warschawski’s results ¢, = 0. Finally,
setting m = N — 2, and Yy_,(2) = o(¥V"""*), we have, with 2¢ re-
placed by e,

H(z) = 2Py_i(2, 2°) + o2 =7"~)

as z—0,0<argz=<m, and, for 0 = n = N
_d@‘;;(H(z) . zPN—l(zy zr)) — O<z(N~—lJri*1~n—s)

as 2— 0,0 = argz < 7.
Now let z = p/q, a reduced fraction. For 0 < m < N — 1 we as-
sume that

H(z) = 2P,(z, 27, 2" log 2} + ¥.(2)
with y.(z) e W2 (0, x]), and P,(0,0,0)# 0. Then, for —A<t=<0,
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u(t, 0) = ¢35 et/ (" log 8)! + @u(t)
ut, 0) = 3% ct? (1" log t)! + pu(t)
w = (S et log ) + pult))

where ¢, ¢, € WHLZ_ . and @, € WY ®,  Thus
N -1
w(t, O S cw” + pu®)] = et og ' + pul®
=1

where 12 0,1=k=q,0=1=7/p,j + kr < (m + Dz and @, € Wi "
A similar equation obtains for 0 < ¢t < A. Applying Lemmas 4 and 5
we obtain

H(z) = 3. 05,27 (log 2)"" + Y :(2)

with Y, € Wiis.. (0, w]). Terms of the form ¢ "**(logt)’, with
k < q, contribute terms of the form z/*****(log 2z} with I’ <1<+ 1.
With k& = q, however, higher powers of the logarithm appear, and we
must then show 7 + 1+ kr =1 + 1, where I’ <1 + 1. But then

J+1l4+kr=74+1+p
>pl+1+pzpl++1=1l+2=1+1.

Thus we can write
H(z) — sz-! 1(2, zz" zp IOg Z) + Xm%-‘,(z) ’
and, for m = N —2 and 0 < n < N,

d'rb
dz"

H(z) = ad_<zPN__1(z’ 27, 2" log 2)) + oz W rLn=s)
z'fb
as 2— 0,0 = argz = .

9. Proof of Lemma 5. Suppose that ¢{z) exists and ¢(z) =
9(z) — q(z) € WY ,((0, ]). Then it follows that o(z) e W30, x]).
Hence we need only show that there exists a polynomial ¢(z) such
that

PMR) = g(2) — ¢(2) e Wy, (0, 7)) .
We break the proof into three parts, numbered I, II and III.

I. First we assume 0 < argz < 0. We have

yw@:~ﬁN_n%é%ﬁp

We write, with » = |z],
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A x—rf2 z+r/2 A4
S:S +S +S — L+ L +1.
z+r/2

0 0 z—r[2

Throughout the proof we shall use constants C,, C,, C,, ---, which are
independent of z; to simplify notation we shall use one symbol C to
denote all such constants. I, is bounded in absolute value by

CSa:—-r/Zt“(ax)-—th é CT;/.+1—N ,

where we have used |B(t)| < Ct*
For I, we expand A(t) in a Taylor series about the point 2 and
get

(N ) (g5 TRt — )"
=5 B Dl gy ™™ et

BTN — )T g
+ 81—7/2 (t — Z)N

9.1)

where 7 lies between = and ¢.
The integral term J, arising from the kth term of (9.1) can be
written in the form

J, = C’e(k)(m)g—m(—t—%y—)f"dt
= 23( >Ig(k)( )g_’:z (t ?t?,z);gl)%)k—: it
= soemnt-{(5 i) " - (-5 - )",

and thus, since |B8%(x)| < Ca**,
k j—N+1
il = 0 Sarypa( L) s opve
7=0

The last integral on the right side of (9.1) we write in the form

Srm B(N—n(z.l uE m)tN—l dt

i (t— ty)”

_ S”%N—i {,B(N“l’(‘[} + @) BT, + oc)}dt
(t — )™ (t + y)~

0

where 0 < 7, —7, < t. We write the term in brackets in two parts,
and get

rf2 N1 B(N—l)(TI + x) . IB(N—-I)(TI + a,/.)
(9.2) S t { e i }dt
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v BT + @) BT + @) g
+got { & + wy)¥ (t + 1y)~ }

The first integral is equal to
2i Imgr - BTTE ) gy
(& — )"

_ 9 Imsm $E + i)Y e + )t
t* + v

We make the change of variables ¢ = sy to obtain

2i ImS’“”S”"%s + "BV (g + w)ds
0 (s* + 1)¥

s N /N[ SQN—l—k,b'kB(N—l)(a + x)ds
=2 Imkg(k)S (s* + 1)¥

where o < 7/2; this is bounded in absolute value by

C i Sws—m—l— |7r/2 & x| tids < Copr—V+
k=1 Jo (s* + 1)V -

The second integral on the right side of (9.2) is bounded absolutely
by

r/2
M2t 1o £ mj2 i imide = opeey
0

To handle I, we observe that

1 _oo k+N—1 fep—N—k
(t—-z)N_kgo< I >zt .

Let m be the integer such that # < m < ¢+ 1 and assume m = N.
We have

I, = miN(_k_"‘_J!__l)_ S B(E)t—>-"dt

=R
(9'3) — "‘iN ,(_IE__]—_J\L:_szS“—T B(t)t—lv—-k dt
k=0 k' 0
* S &—!—_A_]:]h_)' k —N—L
+ Sx+rl2 k:mZ‘NTl %! B(e)t dt .
We set

0.(z) = — gﬂ%‘—w SB(t)rA “kdt .

If m <N we set ¢(z) =0, and the last sum of (9.3) begins with
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k=0. In any event, q(z) will be taken such that ¢(z) = ¢,(2); its
exact form is given in [12].

Thus to prove that 9™ (z) = ¢g"™(2) — ¢.(2) € W._»+:((0, 6)), we need
only estimate the last two terms on the right side of (9.3). We have

5 Mzkrm,@(t)t‘l"‘kdt '
=0 k!

0

m—N z+r/2
= ¢S5y | rar = ooy
k=0 0

and

SA = (k+ N —1)

z+r[2 k=m—N-+1 ,Ic!

sz(t)t”N"‘dt]

<¢c 3 E£N-D, S” Nkt

k=m—N+1 k! z+r/2
= (b N1 e 1 sk
< il
:Ck=7r§‘N+l k! ]y—N—k—{—l](cosa—l— 2>
= Cpwtt-¥

where we assume cos 0 > 1/2. Thus p"™(z) € W,_»..((0, 9)).

II. For 6 < argz =< 7, observe that @(z) is analytic for |z| > 0.
That ¢(z) € W,., follows from [12]. By Cauchy’s theorem

where the integral is taken around a circle with 2z as center and radius
0,|z|, where 0, is a small positive number. Then

|9(E) | S C@x o, (2] (L& 8)) 0, 2]y~ = Cresi=

III. We will now show that
]¢(N)(z) . ¢(N)(C)l _S_ C ] 2 ]u+1-—-N—-a ]z . C'a ,

for |z —C|=0|z|,0|C|. First, this inequality follows immediately
from (9.4) for 0 < argz,arg{ =< w. Thus we will restrict ourselves
to the range 0 < argz,arg{ < d. We have

() — (V) _ mori —_— 1 —_— 1
) — ) = — W = s - e

— S;Z(N - 1)! B(t){(t _IZ)N T __1 C)N}dt

N ¥k + N — 1)!(27‘ _ Ck)SxHIzB(t)t—N"‘dt
=0 k! 0
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A4 o . !
— S Z (k + N 1) (zk — Ck)l@(t)t—-zv—k Clt
)2 k=m—N +1 k!
k20
Sy S N (NN
Then

C B s—r[2 e ) L [
r= - - e 5 @ 2" 0"

Since |{ — 2| =<d|z| and |{| = (1 + 0)|2], we have

i@—wném—zwm~zwf§mw+WMf
< Claf|C— 2|

Hence

I =cC ;:; |z — L] | 2]k S:_mt“"w"k%)w(r% - 3>>~th

< Clz— (|2,

Similarly, we can assume the sum in I, begins with k¥ = 1, and
we obtain

m—N x4+r[2
IPISClz =gl Sy e | e ta
k=1 0
=Clz— ||z,
Likewise
ez —gp 5 G oD " gy
k==l k! otr/2

1 )}L—N—k“l’l

<cosb‘—|—~
SC!z——C["‘ (k—i_N_l)!IzI;L—Nﬂ_a 2
- S AL J [t =N —F +1]

k>0
=C |z ¥z — (|,

Finally we must evaluate I*. We write

B(t) = E%(t — )+ @, £

where

¥z, t) = St ((tN— = )21;2’8 @ (o)do

and
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80 =% 0@ — o+ 41 .

Then we have

2 _ N—2 (N . 1)[ z+r/2 B(k)(w)(t _ m)" . B(k)(é)(t _ E)k
F=-2x k! SM,Z{ (t — 2)¥ t— 0~ }dt

- 1)Si;2{(qtp(f:))lv a (Zf - ’z;t))N}dt

N—2
= gk T
k=0

With

oot — o (BNt Ni(e — )i
t =2 =3 (j)(t )z — )
we have, for £ = N — 2,

A a1t

X S:i::['g(k)(x)(t — )N (z — w)Fi — BER(E)E — LYN(E — m)+=i]dE

_ (N &k 1
B k! j§o<a>j_N+1

X {B<k>(w)(z )i ((x + _12~_ _ z)i-z\m B (x B -;_ - >.1'—N+1>
~sroe—a((e+ -9 == -9
To the term in brackets we add and subtract

BUWN(@)(C — &y ((x n _72"_ B C>J‘—N+1 _ (00 —r C>f—N+1) .

Then the jth bracketed term becomes
) . i —,)—,._ B j—N+1 _( __lﬁ_ _ j—N+1
B (x)[(z x) J((m -+ P z) x 2 z> >
r
2

(9.5) —E=97 <<” 5 Cy_m B <” T C>j_N+l)]
+ (B%(x) — BH(E))

oo (e g -9 (-39

Thus to evaluate J*, k < N — 2, it suffices to evaluate each term of
(9.5).
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Since |{ — &l =|n|=[{|=|2] (@ +0), and
r > s 1
lm—{—z C‘=¢<cos5 0 2>
1
— > i,
Cl = T<2 5> ’

the second term of (9.5) is bounded absolutely by

‘ r
m —_— —
2

Cm;t.—lc-—a | x — E la q,.k—N-H é CT/J.—N1'~1—01 |z . C la .

To evaluate the first term of (9.5), consider the function

S, q) = (ig)*~7 ((9(; + _;_ —p— iq>j_N+l _ <90 . % p— ’iq)j_NH)

and its first partial derivatives, fi(p,q) = fu(p,q), and fyp,q) = fi(p,q).
Then we must evaluate

BE(x)(f(w, y) — fE, D) .
By the mean value theorem we have, for some M with 0 < A < 1,
S, y) — f& 7)) = (@ —Hflx + M —x),y + My — v))
+ (¥ = DS + ME—2),y + My —¥)) .

Then using previously mentioned inequalities for ({ — &I, |z + 7/2 — (],
ete., it follows easily that for k = N — 2

,Jk‘ é Cru-—N+1——a lz - C|a .

Thus to finish the proof we must evaluate
x-+r[2 z
J¥1— (N—1 "#(x, t) _ "k(gy t) dt
( )Sﬂv—‘r/?{(t . z)N (t . C)N}
r/2
SN T N A 7 2 ),
( )S—rﬂ (f, — zy)N

(T AE e+ Y
sv-n et

We will assume 2« = &; were = < & another similar argument would
prevail. Then

N—-1 __ . e "#(Ev 5 + t) — Q#(x) T + t)
RIS e e e s

(TG e+ Y
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By definition, for ¢ = 0,

|9, & + 0| = S:”(f_(*};_;z"):if | BY(0) | do < Carreigr-

and thus the third integral on the right side of (9.6) is bounded abso-
lutely by

r—E4r[2 r -1
—N+1 —1J1 < —~N+1
Clap=r [ ar s clapr o+ 61 (L)
é Clz . Clalz|/.L—N+1-—a .

We handle the second integral of (9.6) in the same fashion.
Thus we have left to evaluate

g E+ ) Y, a1
S~r/2{ (t — i)™ t — )™ }dt

o Lt —ap”¥ (t + i)~
Y@, qwv@, e — 1)
@0 el e Pl L

e Py g T G e 7 L
Bz 4+ 8) , BV — s)
Gy | Gra)r jas

where we have recalled the definition of .
We write

B + 5) = BUTIE) + Ki(§, s)s”
BID(E — 5) = BY(E) + K&, 8)s"
BYD(x + 8) = BV (w) + Ky, s)s*
BE(y — 5) = BU() + K(w, 5)s*
where | K(s)| = C|z[*"+~*, Also
(9.8) s* | K&, 8) — Ky, 8)| = C|z[+=¥+a |z — (|
and
8" | K&, 8) — Ky(w, 8)| = C |z rs",

Similar inequalities hold for s* | K, — K,]|.
Next, (9.7) becomes
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(N—1) l . 1
8O~ e )
r/2 t(t . S)N-—z Kl(éy S)Sa
* S dtSo N — 1)1 {(t — i~
K& 8)8*  Kix,8)s* | K(x,s)s"
G+ G—i - iy)N}dS

9.9)

Notice that

go/ tS: ((tN— = );)_12 <(t —17;77)N T +17:77)N> s

SI (Nt 11—11)1 <(t —1z'y;>N N0 +1a;7;)N> a
=5 1>(N—11—),
% (4 = iyt — (¢ i)
=5 o{(% — i) iy — (L + in) (—iny} .
Thus the first term of (9.9) is bounded absolutely by terms of the form
FEE) {<¢~/—2zz_ﬁ> - (;/2;377])}
B 'Q(Nmn(ac){&"/;z zy>k B (T/Z——T-yiyy}
= 268N(E) I [(wz%z 7;77>k B (r/zzz zy)k]

+ 2 Im [(7/-21{—@)’“](@““(5) — BN(g))

The second term is bounded by C |z [*~"*"~*|z — {|*. The first, using
the mean value theorem, is bounded by

k—1pa0k
(9.10) Clz|="*y — 7] lfm(T/g‘_—Zf)T

where o lies between y and 7. But then ¢ < Cr,[7/2 — 0| = 7/2,
and hence (9.10) is =

C]z’u—l\r—.LI ’ Yy — 77 la plap—t é C|Z|“—N+1_a lz _ Cla .

Thus we are left with the second term of (9.9). By symmetry
we need only consider
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[afo—ore 2, B

©11) = S:’zdtgf)(t — sy"—s*(Ki(&, 5) — Ky, 8))(t — i7)~"ds

- S:Izdtgz(t — 8)"*s* K, s) ((t —1z'77)N NG —1W)N> “

By (9.8), for any ¢ > 0 we have
8| Ki(§, 8) — Ky(w, s) | = CiC1~° |z |#= 7 imm s [ — &0,

Thus the first term on the right side of (9.11) is bounded in absolute
value by

CCiCy | — CJeo=n |z preioe | Mae] vrteer | ¢ — i | ds

= CCiey 2 — g0 |z oo | Vg
0
= COICY™ |2 — {0 | g pomrbimerer

Now let ¢ — 0.
Finally, to evaluate the second term on the right side of (9.11),
we observe that

] 11
=yt w)?
= SRty =it — a1t — g

N . -
= 2 — CIF S eyt — gl | ¢ — iy |

where we have assumed that y = 7. Then

S:ﬂdtSZ(t — sy s Ky(w, 5)(t — i)Y — (¢ — iy)~N)ds
= 5G| g e g = ey |t — i Y ¢ — iy Y e
= Clap=ros |z — LI 5 S:’ZtN~k—l+ayk~a 't — iy | d .

With the change of variables ¢t = ty, the kth integral becomes

r[2y . @ .
S gt |z — g |V dt < S ghV—k=tte |z — 4| dt = C
0 0

since 1 < k < N. This completes the evaluation of J?¥! and the theorem
is proved.
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