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DEVELOPMENT OF THE MAPPING
FUNCTION AT A CORNER

Neil M. Wigley

Let D be a domain in the plane which is partially bounded
by two curves A. and Γ2 which meet at the origin and form
there an interior angle πτ > 0. Let N be an integer ^ 2 and
let a be a real number such that 0 < a < 1. Suppose that for
ί — 1,2, Γi admits a parametrization x = Xi(t), y = Vi(t), 0 ̂  t ^ 1,
where Xi and yι have Nth. derivatives which are uniformly a
Holder continuous, and | Xi(t) \ + | y[(t) \ > 0. Let F(z) map the
upper half plane conf ormally onto D in such a way that F(0) =
0. Then if τ is irrational F(z) has an asymptotic expansion in
powers of z and zτ

9 with error term o(zNτ~*). If τ = p/<7, a
reduced fraction, then F(^) has an asymptotic expansion in
powers of z,zτ, and zp logz, with error term o(zNτ~2). In both
cases ε is an arbitrarily small positive number. Furthermore
expansions for derivatives of F{z) of order ^ N may be ob-
tained by differentiating formally.

The behavior of such conformal maps at corners was first investi-
gated by Lichtenstein [9]. Let F~\z) be the function inverse to F(z)
which maps D onto the upper half plane. Lichtenstein showed that
if Γ1 and Γ2 are analytic then

(1.1) §-F~^) = z^Φ)
dz

where φ(z) is continuous in D and φ(0) Φ 0. This result was later
generalized in two ways. One was to weaken the requirements on
Γ1 and Γ2. It follows from the work of Kellogg [4] and Warschawski
[10] that with very modest conditions imposed on Γ1 and Γ2 one has

where again φ(z) is continuous in D and φ(0) Φ 0. In particular this
follows if one assumes that Γ1 and Γ2 have continuously turning tan-
gents in a neighborhood of the origin (though weaker conditions will
suffice).

The other generalization of Lichtenstein5s theorem was an improve-
ment of the result (1.1), maintaining the analyticity requirement. For
the case τ = 1 Lewy [8] showed that F(z) has an asymptotic expansion
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in powers of z and log 2. Later Lehman [6] showed that expansions
of the kind mentioned in the first paragraph are valid for all angles
πτ > 0, provided Γ1 and Γ2 are analytic. Thus in this paper we
dovetail the results of the two developments. Furthermore we shall
indicate some applications to the behavior at corners of solutions of
elliptic partial differential equations; see [3], [5], [7], [8], [11] and [12].

2* Principal results. Let N be an integer ^ 2 and let a be a
real number such that 0 < a < 1. Assume that for i = 1, 2, /\ admits
a parametrization x = Xi(t), y = yt(t) where x{{t) and y^t) are uniformly
QN+a f o r o ^ ί ^ 1/ and assume that there exists a δ > 0 such that
<(t) I + I yl(t) I ̂  δ for 0 ^ t ^ 1. Let .F(z) map the upper half plane

conformally onto D. Then (?(#) Ξ F(zllτ) maps the sector 0 < arg 2 < πτ
onto D and we have the following theorems.

THEOREM 1. // τ is irrational then there exists a polynomial
P{z, zτ) such that as z —> 0, 0 ^ arg z ^ π,

F(z) = zτP(z, zτ) + o(zNτ~ε)

where ε is an arbitrarily small positive number and P(0,0) ̂ 0 . If τ —
p/q, a reduced fraction, then there exists a polynomial P(z, zT, zp log z)
such that as z —> 0, 0 ^ arg z ^ π,

F(z) = ^rP(^, z\ zp log ») + o(zNτ~ε)

where ε is an arbitrarily small positive number and P(0, 0, 0) Φ 0.
Furthermore expansions for derivatives of order ^ N may be obtained
by differentiating formally.

THEOREM 2. // τ is irrational then there exists a polynomial
P(z, zllτ) such that as ^ 0 , 0 ^ arg z ^ πτ,

G(z) = zP(zf zιlτ) + o{zN~ε)

where ε is an arbitrarily small positive number and P(0,0) Φ 0. Ifτ =
p/q, a reduced fraction, then there exists a polynomial P(z, zllτ, zq log z}
such that as z—*0,0^ argz g πτf

G(z) = zP(z, z1/τ, zq log z) + o(zN~ε)

where ε is an arbitrarily small positive number and P(0, 0, 0) Φ 0.
Furthermore expansions for derivatives of order 5g N may be ob-
tained by differentiating formally.

1 This means there exists a constant K such that for 0 ̂  s < t S 1 and 0 ̂  n ^ iSΓ

— _ Ĵ L
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From Theorems 1 and 2 one can obtain an asymptotic expansion
for the inverse function F~ι{z) which maps D onto the upper half
plane. The method is an iterative one, starting with F(z) = o(zτ~ε)
and increasing the exponent of the error term; see, for instance,
Wasow [11], pp. 49-50.

THEOREM 3. If τ is irrational then there exists a polynomial
P(z, zίlτ) such that as z —> 0, ze D (J Λ U Γ2,

F~\z) = zllτP(z, zllτ) + o(zN~1+llτ~ε)

where ε is an arbitrarily small positive number and P(0,0) Φ 0. If τ —
p/q, a reduced fraction, then there exists a polynomial P(z, zιίτ, zq log z)
such that as z—> 0, ze D U ΛU Γ2,

F~\z) = zllτP(z, zll% zq log z) + o(zN-1+llτ-ε)

where ε is an arbitrarily small positive number and P(0, 0, 0) Φ 0.
Furthermore expansions for derivatives of order g N may be ob-
tained by differentiating formally,

Since G~\z) = (F(z))τ, we have, by the binomial theorem.

THEOREM 4. If τ is irrational there exists a polynomial P(z? zllτ)
such that as z—>0,zeD{jΓilJ Γ2i

G-\z) - zP(z, z1/Γ) + o(zN~ε)

where ε is an arbitrarily small positive number and P(0,0) Φ 0. If τ ~
p/q, a reduced fraction, then there exists a polynomial P(z, zljτ, zq log z)
such that as z—>Q,zeD\jΓ1\jΓ2,

G~\z) = zP(z, zllT, zq log z) + o(zN~ε)

where ε is an arbitrarily small positive number and P(0, 0, 0) Φ 0.
Furthermore expansions for derivatives of order ^ N may be ob-
tained by differentiating formally.

3* Applications to partial differential equations* The expan-
sions of Theorems 2 and 4 have immediate applications to a previous
paper of the author [12]. In particular §4 and 5 of [12] need only
be modified suitably to obtain the following theorems.

Let U(x, y) be a solution in D of the partial differential equation

dx2 dy2

where K and F are (N — l)-times continuously differentiate in
J5 U Λ U Λ U {0}, U is twice continuously diff erentiable in D, and Ux
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and Uy are α-Holder continuous in every compact subset of
We also assume that for i — 1,2,U satisfies on F{ a boundary condition

1 dn

where δ4 = 0 or 1, d/dn represents the outgoing normal derivative, and
Ai and B{ are (N — l)-times continuously differentiable as functions of
arc length, defined on Γ4 (J {0}, and A^O) Φ 0, if δ4 = 0. Finally, we
assume that as 2 - » 0 , z e f l u Λ U F2,

U(z) = o(zr)

where μ > max ( — 1, —1/τ) if S2 = δ2 and μ > max ( — 1 , — l/2r) if δt Φ δ2.

Then

THEOREM 5. If δλ = δ2 = 0 then as z -* 0, z e D u Λ u Λ,

Z7(s) = log zP, + log zP 2 + P 3 + o(zN~1~ε)

where Plf P2 and P3 are polynomials in z, z, zllτ and zllτ if τ is ir-
rational and in z, z, zllτ, z1/τ, zq log z and zq log z if τ — p/q; and ε is
an arbitrarily small positive number. If S1(0)^42(0) = S2(0)A1(0), P1

and P2 vanish identically. Furthermore expansions for derivatives
of U(z) of order S N — 2 may be obtained by differentiating formally.

THEOREM 6. If δx — 0 and δ2 = 1 (or δλ = 1 and d2 = 0) then as
z —> 0, z e D U Λ U Γ2,

U(z) - P + o ( 2 — )

where P is a polynomial in z, z, zll2τ and ? / 2 r if τ is irrational; P
is a polynomial in z, z, zll2τ, zll2τ, zq log z and zq log z if τ — p/q and
q is odd; P is a polynomial in z,z,zll2τ,zll2τ,zql2\ogz and zq'2\ogz if
a — p/q and q is even; and ε is an arbitrarily small positive number.
Furthermore expansions for derivatives of U(z) of order ^ N — 2 may
be obtained by differentiating formally.

THEOREM 7. // δ, = δ2 = 1 then as z -> 0, z e D u Λ U F2f

U(z) - log zP, + log 2P2 + P3 + o(2^"ε)

where Ply P2 and P3 are polynomials in z, z, zιlτ and z1/τ if τ is ir-
rational and in z, z, 21/r, 21/τ, zq\ogz and zq\ogz if τ — p/q; and ε is
an arbitrarily small positive number. If U(z) is bounded at the
origin then Pλ and P2 vanish identically. Furthermore derivatives
of U(z) of order <£ N — 1 may be obtained by differentiating formally.
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4* Some Lemmas* Later we shall need some properties of func-
tions which are Holder continuous in a set, but whose Holder constants
diverge in a certain way near a boundary point of the set. Let S be
a subset of the plane which does not contain the origin, but of which
the origin is a cluster point. Let μ and β be real numbers, 0 :g β < 1,
and let M be a nonnegative integer. Let f(x, y) be a real or complex
valued function such that f(x, y) e CM+β for (x9 y) e S9 and suppose that
f or 0 ^ n S M

as z—> 0, ze S9 where Dn ranges over all nth order partial derivatives,
and

(ii) there exists a constant K such that

S U p \DlM-D*f{Q[ , , , n + β _ μ < v

where the supremum is taken over all derivatives -Dw, and over all
points z, ζ e S such that 0 < | 2 — ζ| < S | £ |, <5 | ζ |; S is assumed to be
some positive number < 1. The totality of such functions we designate
by W%+β(S). If S is the sector δx ^ arg£ ^ δ29 0 < \z\ < |^0 |, we write
Wr

i?
+β([δ1, S2]). We omit the dependence on z0 because we are only con-

cerned with properties (i) and (ii) in some neighborhood of the origin.
If S is a segment 0 < x < A we write W^+β; properties (i) and (ii)
should then be modified properly for a function of one variable. We
observe that if β = 0 property (ii) follows from property (i) and the
c o n d i t i o n \z — ζ\ < o \ z \ 9 δ \ ζ \ o

We now list some properties of the l^F-spaces. We state them for
the complex case, though with suitable modifications the properties
hold for the real case0 Thus we assume 0 < \z — ζ\ < δ\z\, δ\ζ\, and
z,ζeS.

1. 1 - 3 < I z/ζ \<l + δ.
2 . Let μ ^ - 1 . If (d/θx)f(z), (d dy)f(z) e W£(S) then f(z) differs

by a constant from a function in Wμ+ί(S). The proof is contained in
Bourbaki [2].

3. If (d/dx)f(z), ψ/dy)f(z) G WH(S) then / differs by a constant from
a function in Wg+1(S), 0 ^ β < 1. The proof follows from property 2
above and the mean value theorem for functions of two variables.

4. There exists a constant K depending only on μ9 β and δ such
that

Here we assume that S is so chosen that zμ]~β and zβ are single valued
functions.

5. Let f(z) = zμ, and assume zμ is single valued for zeS. Then
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for all integers M^O and any β such that O g / S ^ l,/(s) 6 W%+β(S).
6. Let M and N be integers ^ 0, let a and β satisfy 0 < a, β < 1,

and let μ and v be real numbers. Let/(s) e W*+a(S) and #(2) G W?+β(S).
Let α' = min (a, β), M' = min (ikΓ, JV) and μ' = min (μ, v). Then

and

g(z) e

f(z)g(z) e

Proof. The first statement follows from the fact that W$'+a'(S) 2
Wΐ+a(S) IΊ Wξ+β(S), and because the W-spaces are linear. For the
second statement we observe first that f(z)g(z) e CM'+a'(S). Then

f{z)g(z) = O(zr)O(z>) =

and

\f(z)g(z) - f{Qg{Q \S\f{z)\\ g(z) - g(ζ) \ + | g(ζ) \ \f(z) - /(ζ) |

I z - ζ | β + K2

-α /1 z - ζ Γ

ζ | α

since

and

\β~a' \ z - ζ\«'

- ζ 1 z \a~a' 12 - ζ Γ .

The proof then follows easily from induction.
We now state three lemmas. The analogous theorems for the real

case follow without difficulty.

LEMMA 1. Let μ > 0 and let f(z) e W/?+a(S). Suppose also that
\f(z) I Ξ> Si I z |μ, ze S, for some d± > 0. Let S' be the range of S and
suppose g(z) e W?+β(S). Then

h(z) = g(f(z)) G Wfϊ;+aβ(S)

where Mf = min (Af, N).

Proof. It is clear that h(z) =

\h(z) - h(ζ)\ = \g(f(z)) - g(f(ζ))\

£ K, max (\f(z)

Next, f or \z - ζ | < δ \ z |, δ \ ζ |

^ K2 max

\z-ζ\aβ

\ z - ζ \aβ
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provided \f(z) — /(ζ) | ^ δ \f(z) |, δ |/(ζ) |. In the contrary case, however,
suppose \f{z) I ̂  |/(ζ) | and \f(z) - /(ζ) \>δ\f(z)\. Then

I 9(f(z)) - g(f{Q) g(f(z)) -

g if5 max (\f(z) \\

! z | - /(ζ) |

g KQ max
^ KΊ

and thus h{z) e W
Writing / = φ + iφ, φ, ψ real, we have

}-Hz) = gφ(f(z))φx(z)
Θx

Now by definition gφ e WZr^S'), and thus gφ(f(z)) e Wf^iaβ(S) as
well as φx, ψx e W%lι+a(S), and thus, by Proposition 6,

fh(z) e ̂  r^^(S) .
dx

The lemma follows by similar arguments.

LEMMA 2. Lei f(z) map S onto a set S' in such a way that f(z)
is conformal on the interior of S, and suppose f(z) e Wft+a(S), μ > 0.
Assume also that \f'{z) \ ̂  δλ \ z \μ~\ ze S, for some δλ > 0. Let g(ζ) be
the function inverse to f(z) which maps the interior of S' into S,
and assume that g(ζ) e CM+a(S') (this is the case if S and Sf have
sufficiently smooth boundaries).

Then

flf(C) e W?,i"(S') .

Proof. Let z0 be fixed. Then for | z \ sufficiently small we have

\f{z)\S\f(zo)\. Thus

l/(zo) I - 1/(2) I = I/(so) I - 1/(2) 11 ^ I/W - f(z) I

= f'(w)dw

S20

w
lμ-1 dw \^ -\z

where the path of integration is taken to be a union of paths arg w -
const, and | w \ = const. Thus

\f(z)\ ̂ K3 + K2\z\^K2\

Since \f(z) \ ̂  K, \ z |μ we have
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\g'(ζ)\ = \f'(z)\-1£δτ1\z\1-μ£

By Propositions 2 and 3 we have g(Q e W}

Next,

\g'(Q-g'(Q\ _ I/'fe) -/'(*i) I

where z lies between zλ and z2. Since 1 — δ ̂  | zjz2 | ^ 1 + δ we have

1 g (Cl) g (Q2) 1 <. Jζ_ \χ |l-μ-α-(μ-l)α < j^" Γ |(l/μ)-l-α

I ζ t - ζ2 I" = 8 1

Thus flf(2) e PFί/ΐα(S') The proof follows by induction.

LEMMA 3. Let f(z) e Wr^+a(S) αwd let P(z) be a polynomial of
degree < μ with P(0) = 1. Let y be a positive real number. Then
there exists a function f±(z) e W*+a(S) and a polynomial Px{z) of
degree < μ such that

(P(z)

Proof. The proof follows easily from the binomial theorem.

In obtaining the asymptotic expansions we shall come across certain
integrals which were studied in [8], [5], and [12]. To estimate these
integrals we use the following lemmas. The first was proved in [8]
and [5]. The second is a generalization of a theorem in [8], [5], and
[12] and will be proved in § 9. The integrals are Lebesgue integrals
extended over positive values of t. The variable z lies on the logari-
thmic Riemann surface with branch point at the origin. The kernel
of the integrands is the function log (ί — z) which we define in the
following way. For fixed t we make cuts along the Riemann surface
from te2πik to ^e2πik, k = 0, ± 1 , ±2, . . The logarithm is uniquely
defined, except for z lying on these cuts, as the analytic continuation
of the logarithm which is real for 0 < | z | < ί, arg z — 0.

LEMMA 4. Let A be a positive number, μ a real number > —1,
and n a nonnegative integer. For 0 < arg z < 2π, let

f(z) = t V(log t)n log (t - z)dt .
Jo

Then there exists a polynomial P(log z) and a power series p{z) which
converges for \ z \ < A, such that
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f(z) = z^Pilog z) + p(z) .

If μ is an integer the polynomial P is of degree n + 1; otherwise
it is of degree n.

LEMMA 5. Let μ be a real number > — 1 which is not an integer,
and let β(t) e Wf[~1+a for 0 < t g A. For 0 < arg z < π, let

g(z) = \Aβ{t)\og(t-z)dt .
Jo

Then there exists a polynomial q(z) of degree < μ + 1 such that

φ(z) Ξ g(z) - q(z) e W»tf((0, π)) .

A similar result obtains for — π < arg z < 0, with the same poly-
nomial q(z).

5. Preliminary results. It follows from Warschawski [10] that
F~\z), which maps D onto the upper half plane, satisfies the relation

(5.1) F~\z) = zιlτφ(z)

where φ(z) is continuous in D u Λ u Λ U {0} and φ(0) Φ 0. We shall
show in this section that F~\z) e W^a(D UΛU Γ2).

It follows easily from the Cauchy integral theorem that

F-\z) 6 ^r

+*(Lλ, πτ - λ])

where λ is a small positive number: one simply examines the integral

FHz) f
dzn 2πiJ(ζ- z)n+1

taken over a circle about z of radius δ\z\, bearing in mind that
F~\z) = 0(zllτ) as 2 - > 0 , 2 e D u Λ U Λ . Thus it will suffice to show
that F~\z) e W?,ta(Df) and F~\z) e W^D") where D' = DΠ{z:argz^
πτ — 2λ} and D" — D Π {z: arg z g 2λ}β Because of the symmetry be-
tween Λ and Γ2 we need only show that F~\z) e W?ιΐa(D').

Next, if we have V(z) = ImF-\z) e W^a(Df), then, by Wars-
chawski's result above and the Cauchy-Riemann equations, we have
ReF'\z) e W$ΐa(D'), and thus F~\z) e W^a(D'). Thus we shall show
V(z) e W?,ΐa(D').

Now we make a transformation which has the effect of straighten-
ing out JΓ2. Let y = β(x) be a parametrization of Γ2 (if τ = 1/2 or
3/2 this is impossible; but a small rotation about the origin would
take care of this difficulty). Then it can be shown that β(x) e CN+a

for 0 g x S A, where A is a small positive number; furthermore, by
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the hypotheses of § 2, for 0 fg n S N, 0 ^ x19 x2 ^ x0

sup

We make the transformation ζ = x, η = y — β(x)9 and set v(ξfrj) —
V(x9 y). Then v is defined (at least) for 0 < ζ2 + rf < Aί9 -ζ tan δ ^
57 < 0, provided Ax and δ are chosen small enough. The points (ζ, rj)
are images of a subset of the points (x, y) such that (πτ — δjα? ^ y S
β(x), where δλ is a small positive number. Since β{x) — 0{x), we find
that δ2 ^ y/a? ^ l/δ2 for some δ2 > 0, and thus, since

for some δz > 0. Since V(x, y) — O(zllτ), we have v(ξ, η) — O(ζ1/Γ), where
ζ = £ + iη.

We now state a lemma which is a special case of a theorem of
Agmon, Douglis and Nirenberg ([1], pp. 657-660). Let 0 < R < 1 and
let S be the semicircle ξ2 + rf < R, rj <* 0. For ζ e S let cί̂  denote the
distance from ζ to the circular part of the boundary of S.

LEMMA 6. Let u(ξ,rf) be a solution of a uniformly elliptic partial
differential equation

Lu = auζξ + 2buξv + cuvn + duξ + euv + fu = 0 ,

whose coefficients are CN~2+a in S with uniform a-Holder constants.
Let u(ξ,0) = 0 for -R<ξ<R. If ueC2+a(S) then ueCN+«(S), and
there exists a constant K, independent of u and R, such that

where

\u\N+a ^ p
ζes

- sun dy
— sup aζ

*\ζ-ζ\<dξdζ

k=o ζes

the suprema are taken over all kth and Nth order derivatives of u.

Since V(x, y) is harmonic, we have

Lv = vξξ + (1 + β\ξY)vηv - 2β\ξ)vξη - β"(ξ)vv - 0

for 0 < ξ2 + η2 < Au ~f tan δ ^ η g 0. Also
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V(ξ, 0) = V(X, β(x)) = 0 .

We now apply the lemma to v and the semicircles

where 0 < ξ0 < (1/2)AX; these semicircles are tangent to the rays η — 0,
and η = — ξ tanδ. In each semicircle we have, for some 1^ > 0,

sup I v{Q I ̂  ULΊ I ζ | 1 / Γ .

In the semicircle (ζ — f 0)
2 + yf g ((l/2)£0 sin §)2, ̂ 0 , we have dζ Ξ>

(l/2)fo sin δ. Thus for (f - ί0)
2 + rf ^ ((l/2)f0 sin δ)2, ^ ^ 0, we have

ζ* I ΰ^(O I ̂  (fo(l + Y sin S))* I ΰ

sinδ

for 0 g k g iV. Thus v(ζ) e W^([~diy 0]) where δ4 is small. By the mean
value theorem v(ζ) e W?,71+«([-δ4, 0]). To estimate | D ^ ( Q - DNv{ζ,) \
we use the lemma again; the details are similar to those above. Thus
we can conclude that v(ζ) e W^a([-δ4f 0]). Since

3 " ί2 + ^ "" S3 '

it follows, by easy calculations, that for some small positive λ,

V(z) e Wξ^dπτ - λ, πτ}) .

Thus we conclude that F~\z) e W?,?a(D U Λ U Λ) .

6* A preliminary transformation* From now on for the sake
of definiteness we will assume that Γλ is tangent to the positive x-
axis at the origin and that Γ2 is tangent to the ray arg z — πτ at
the origin.

We set H(z) = (F(z))llτ. Then H(z) maps the upper half plane
conformally onto a domain D' which is the image of D under the
transformation z—>zllτ. Dr is partially bounded by curves Γ[ and Γ'2
which have horizontal tangents at the origin. From the binomial
theorem it is clear that theorem 1 is equivalent to an asymptotic ex-
pansion

H(z) = zP(z9 zτ) + o(z{N-1)τ-*) (a irrational)

H(z) = zP(z9 z\ zp log z) + o(z{N-1)τ~ε) (a = p/q)

as z —> 0, 0 ^ arg z ^ π9 where ε > 0 can be chosen arbitrarily small
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and the polynomial P has a nonvanishing constant term; furthermore
we must show that we can differentiate (6.1) N times. Since Theo-
rems 2, 3 and 4 follow directly from Theorem 1, we need only prove
(6.1).

By Lemma 1, and since F~\z) e W^a{D (J Λ U Γ2), we have

H-\z) = F~\zτ) e Wf+a\D' (J Γ[ U Γ'2) .

By Lemma 2, H(z) e T7^+α2([0, π]).

7. An integral representation* We will now construct an in-
tegral representation for H(z) based on the equations for Γ1 and Γ2.
Let F(z) — ξ + vη. Then we have

V = Σ 1 cjn + φi(ξ)
n=l

where φ1 e Wjr+a; this is merely the Taylor series for Γ19 and is valid
for 0 ^ ξ ^ ξ0.

We will now adopt the convention of dropping subscripts on coef-
ficients whose value is unimportant; then we have

η = Σ cξ* + φi(ξ) .
n=l

With w = H{z) — u + iv, we have

and by Lemma 3, φ2 e W§ϊ?. It is readily seen that ReaΦ 0. Then
we have, by separating real and imaginary parts,

(7.1) u = α^ 1/Γ(1 + cξ + cξ2 + . + cf^-2 + φ.ά(ξ))

(7.2) i; = ξllτ(c + cf + cί2 + + cξN~2 + <p4(£))

with cp3, φ, e W$ϊ?. Next,

^^ = αϊf (1 + cf + cf2 + + cξN-2 + 9>β(f))

with φ5 G W#iα . As a[ Φ 0, we have, by the inverse function theorem,

(7.3) ξ = uΓ(c + cuτ + c^2r + + cu(ΛΓ-2)r + φβ(uτ))

where φ6, considered as a function of uτ, belongs to Wgίf. Thus by
Lemma 1, φΊ(v) = φβ(uτ) e W^t°f)τ. Substituting (7.3) in the right side
of (7.2), we obtain
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N-2 \ 1 / Γ
/N-2

V = U[ Σ CWτ + φΊ{u)
(7 4)

/JV-2 /JV-2

x Σ cwiΓ( Σ
0 \fc=0

We set

φa(u) = φ,{ξ) = £>4(

It is easily checked that ζ(u) e W*+α2 as a function of u, and thus
φ8(u) e W&tf)τ. Thus, expanding the right side of (7.4), it follows
that

v = u(c + cuτ + + cu{N-1)τ + φ9(u))

with <p9 6 W (lt^ τ. Finally, (dv/du) \u=0 = 0, and thus

(7.5) v = ^(<mT + cu2τ + + cιι{N-l)τ

This equation is valid for v and u defined on the segment y = 0,
0 ^ x ^ A, provided A is chosen small enough.

If 0 < τ < 1/2 or 3/2 < τ ^ 2 we can repeat the same argument
on Γ2: note that we never used the fact that Γλ has a horizontal
tangent, but only that Γ[ (and Γ[) has a horizontal tangent at the
origin. If 1/2 < τ < 3/2, we replace ζ by \ξ\; and for 0 < τ g 2, we
replace u by | u |.

Finally, if τ — 1/2 or 3/2 we begin with the equation

+ φlo(V)Σ
TO—1

and carry through with the roles of ζ and ^ reversed. Thus we have,
for -A ^ x ^ 0, i/ = 0,

(7.6) v = u(cuT + cu2τ + . . . + cu{N"l)τ + φn(u))

with φ n G T7 ( ltί r .
We now consider the Green's function for the upper half plane

(7.7) G(ί, z)=- τ?~ {log \t - z I + log I ί - I ]} ,
2τr

where t = xt + i2/t. It is easily seen that (θ/dyt)G(xt9 z) = 0. We apply
Green's theorem to the functions G(ί, «) and %(t) = i2e H{t) on the
semi-circle 0 < 11 \ < A, yt > 0, and obtain

u(z) = j A G(ί, z)—u(t)dt + [ {uGnt - Gunt)dst
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where st represents arc length and nt the outward normal. By (7.7)
we have

J^> o (uGnt - Gun)dst = p(z) + p(z)
\t\=A

where p(z) is a power series which converges for \z\ < A. Also, for

G(t, z) = - j - { l o g 11 - z I + log 11 - z |}

= lo

= - -^-{log (*-«) + log (t - 5)} .

Here we define log (t — ̂ ) as the analytic continuation of the logarithm
which is real for 0 < | z \ < t, arg z — 0. The congruence holds modulo
2πί; however, each of the logarithms on the right side has imaginary
part > — π and <π. Thus we may replace the congruence by equality.
With these observations in mind, we obtain

(7.8)

x {log (ί - s) + log (t - z)}dt + p(z) + p(«) .

Since u(z) — Re H(z) and p(z) has real coefficients, we replace (7.8) by
the equation of which it is the real part, namely

H{z) = - — \A —u(t) log (ί - js)dί + p(z) + const. ,
π j-άdyt

where the constant takes care of the nonuniqueness of the conjugate
harmonic function of u(z). We now drop this constant, changing p(z)
if necessary, and use (7.5) and (7.6), together with

d ,,v _ d

θyt ~ dxt

to obtain

(7.9)

Here

H(z) = — Γ ut(t, 0){ Σ,1 cujτ + φ{u)\ log (ί - z)dt

+ — ί^ t(ί, 0) j Σ,1 ̂ i τ + Ψ(u)\ log (t - z)dt
π Jo lj=i J
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φ(μ) = -—(uφn(u)) G W{V-i)f
du

and

ψ(u) = (uφ9(u)) G W^fJ^f .
dll

Furthermore, (7.9) is valid for 0 ^ arg z ^ π, 0 < | z \ < A.

8* Obtaining the asymptotic expansions. We have, for —A ^
t < 0, H(t) G W1

N+a2 and thus u(t) G Wf+a\ Hence

(oι(iWnτ a T/17'ΛΓ+α3

\(Λ/\ί/j) tr vv nτ

Ut G T ; F o Λ Γ " ' 1 + α 2

and thus

(8.1) utit, i

as a function of ί, —A S t < 0. Similarly

(8.2) utit, 0)1 Σ 1 c^Γ + ψ(^)l G TFf-
W=i J

for 0 < t S A. Thus by Lemma 5, if τ Φ 1, 2,

= α£ + bz2 + γi^;)

where %±(̂ ) e ^ + ^ ( ( 0 , π)). As ίf(^) has α-Hόlder continuous ΛΓth
derivatives for 0 ^ arg z ^ TΓ, we must have χ^s) e T7i+ίΛ3([0, TΓ]).

If τ = 1 or 2 Lemma 5 will not apply. However, if ε is any
small positive number we can replace the Wf~1+(χ3 of (8.1) and (8.2)
with Wfsc^

a\ and thus we can always write

(8.3) H(z) = az + hz2 + χx{z)

where Z l(s) e WZΐ'lQQ, π]).
We now prove Theorem 1 by induction. In the future we shall

use the symbol a to represent any number between 0 and 1, and ε to
represent an arbitrarily small positive number such that nτ — ε is not an
integer for 0 ^ n g N. In particular we write χ^z) e ΐ^ί+ΐf ε([0, π\).

First let a be irrational. Assume that for some m, with 0 < m <
N—l, that

H(z) = 2Pmfe 2Γ) + χm(2)

where Pm(z, zτ) is a polynomial in its arguments such that Pm(0, 0) ̂  0
and χm(2;) e Wf+i«^([09 π]). That this is the case for m = 1 follows
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from the fact that the constant a of (8.3) is not equal to zero; this
follows from (5.1) and the definition of H(z).

Then by the inductive hypothesis we have, for — A ^ t < 0,

w(t,0) = t( Σ Ckitk+lτ + φ*(t)
\k + lτ<mτ

with φ12(t) G Wm^-e and c00 Φ 0. A similar equation holds for 0 < t ^ A.
Then

with φΓ3 e WS+JH, and

w8(ί, 0) = Σ c(k + l + lτ)tk+lτ + ζp14(ί)
/c + ir<mτ

with φu e WξΓ-ϊ" Also, since φ(u) e W*N%τ as a function of %,
φ{u{t)) e TΓ^il* as a function of ί. Thus, cross-multiplying, collect-
ing terms, and using Lemmas Γ, 2 and 3, we obtain

Mt, 0)j Σ 1 cu*τ + φ{n)\ = Σ c^fc+ίr + Ψu(t) + ^ ( t )
U=l J k + lτ<mτ

with cp14(t) G W -̂'iT -̂e and φ15 e ΐ ^ ^ Ί i t ^ . By the inductive hypothesis
m + 1 fg JY — 1 and we may write φ16 = φu + φ i 5 6 W^l\^s. Clearly
a similar equation holds for 0 < t g A, and, applying Lemmas 4 and 5
we obtain

with χm+i(2) e VT(?i+i)r+i-e((0,7r)). As i ί has continuous ΛΓth derivatives,
χm+1 e W?mtΓ"1)τ+1^ε([0, π]). By Warschawski's results c10 ̂  0. Finally,
setting m = N - 2, and χ ^ s ) = o(^(ΛΓ-1)rH 1" 2 ε), we have, with 2ε re-
placed by ε,

H(z) = zP^iz, zT) + o(z<»-1)τ+1-')

as 2; —> 0, 0 ^ arg 2; ̂  π, and, for 0 ^ n S N

as 2 —• 0, 0 ^ arg 2 ̂  ττβ

Now let τ — p/q, a reduced fraction. For 0 < m < N — 1 we as-
sume that

ίf(s) = 2PW(2, z\ zp log 2) + χm(z)

with χm(2) G TΓίi?_.([O> TΓ]), and Pm(0, 0, 0) Φ 0. Then, for - A rg ί ^ 0,
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U(t, 0) = t "Σ Ctί+kτ(tp log t)1 + φί7(t)

ut(t, o) = Σ ctj+kτ(tp log ty + ^18(ί)

%»r = tnτ|^ι cJi + fcr^P 1 ( ) g QI + ^ φ }

where ^1 7, <p19 e W*+

mU and ^ 1 8 e W»T-±+°. Thus

w*(ί, 0)j Σ ' ^ i r + φ(u(t))\ = Σ cίi+*Γ(log ty + 9>20(t)

where i ^ 0,1 g ί; g g, 0 g ί g j/p, j + &τ < (m + l)τ and cp20 e ^ 7 ^ .
A similar equation obtains for 0 < t ^ Ao Applying Lemmas 4 and 5
we obtain

H{z) = Σ ^ ^ i + 1 + ' τ ( l o g ^ + χw+1(«)

with χm + i e T7 (^ ) r + 1_e([0, π]). Terms of the form tj+kτ(logt)\ with
k < q, contribute terms of the form zj+1+kτ(log z)1' with V ^ ί < i + 1.
With k ~ q, however, higher powers of the logarithm appear, and we
must then show j + 1 + kτ ^ V + 1, where V ^ ϊ + 1. But then

i + 1 + kτ = j + 1 + p

^ pi+ l + p^p(l + l)+ 1^1 + 2^ V + l .

Thus we can write

H(z) = zP^iz, z\ zp log z) + χn+ι(z) ,

and, for m = iV — 2 and 0 ^ n ^ N9

ψ ψ z% zP log «)) + o(s<™+1-*-β)

as £ —> 0, 0 ^ arg 2; ̂  τrβ

9* Proof of Lemma 5* Suppose that q(z) exists and φ(z) =
g(z) - q{z) e " ^ ( ( 0 , π]). Then it follows that <p(z) e Wfci1+a((0, π\).
Hence we need only show that there exists a polynomial q(z) such
that

φw{z) ^ g<»\z) - φN\z) e T7;^41((0, TΓ]) .

We break the proof into three parts, numbered I, II and III.

I. First we assume 0 < arg z ^ S. We have

N - 1)! -P
(t(t — Z)N

W e w r i t e , w i t h r = \z\,
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S A fs-r/2 fa + r/2 ΓA

= \ + + = £
0 JO Jίc-r/2 Jα+r/2Throughout the proof we shall use constants CΊ, C2, C3, , which are

independent of 2; to simplify notation we shall use one symbol C to
denote all such constants. Ix is bounded in absolute value by

where we have used | β(t) | ^
For I2 we expand β(t) in a Taylor series about the point x and

get

' ,
-r/2 (ί

where τ lies between a? and t.
The integral term Jk arising from the fcth term of (9.1) can be

written in the form

S r/2 fk

-ws( ί — %
-ws(ί — %y)

i, (t - iy)N

= Σ Cjβ^(x)(iyr-'[{^- - iy) - (--J -iy)

and thus, since | β{k){x) | g CV~\

fe ί

The last integral on the right side of (9.1) we write in the form

r/2 £){]ΪΓ-1)(~ i η,\fN-l

-rft (t - i

{t-iy)N (t + iy)N

where 0 < τu — τ2 < t. We write the term in brackets in two parts,
and get

0.2)
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^ ' f a + x) _ β'N-1](τ2 + χ)\
+ iy)N (ί + iy)

The first integral is equal to

(•r/2

Jo (ί - i

(ί2 + 2/2)y

We make the change of variables t = sy to obtain

2 i I

o (S

(s2 + 1 ) ^

where σ < r/2; this is bounded in absolute value by

C Σ — I r/2 ± α; |"- w + 1 tie g Cr>-N^ .
*=i Jo (s2 + 1)^

The second integral on the right side of (9.2) is bounded absolutely

by

2ί \a I x ± r/2 \«

To handle /3 we observe that

(ί^p^SV + k

Let m be the integer such that μ < m < μ + 1 and assume m ^ N.
We have

(9.3)

Jcc + r/2 7c=m-iV

We set

If m < JV we set q^z) = 0, and the last sum of (9.3) begins with
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k = 0. In any event, q(z) will be taken such that q{N)(z) = qx{z)\ its
exact form is given in [12].

Thus to prove that φ{N)(z) = g{N)(z) - qx{z) e W^N+1((0, δ)), we need
only estimate the last two terms on the right side of (9.3). We have

m—N

yJLJ.

k=0

(ft

VII

4

c

- N
U

m—N

fe=O

— :1) L Λ I 2 β(+\+-N-h J+
Jo

*a;4-r/2

0 ~

and

Jx+r/2 k=m~N+l

A:=m-iVΓ+l a +r/2

where we assume cos δ > 1/2. Thus φ{N)(z) e Wμ_ΛΓ+1((0, δ)).

II. For δ ^ arg z g TΓ, observe that <p(2) is analytic for | z \ > 0.
That ^ ) e TF"μ+1 follows from [12]. By Cauchy's theorem

where the integral is taken around a circle with z as center and radius
l, where δλ is a small positive number. Then

^ C(2π δ, I z |)(| 21 (1 ± δ,))^1

III. We will now show that

φ φ h + 1 ^ ~ α I Z - ζ |α ,

for |js — ζ | < * δ | 2 | , δ | ζ | . First, this inequality follows immediately
from (9.4) for δ ^ arg z, arg ζ ^ π. Thus we will restrict ourselves
to the range 0 < arg z, arg ζ ^ δ. We have

dt

A;!
-c,J ίc+r/2

vΛ/C/
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Σ
aj-f-r/2 k = m—N

I1 + P + P + P .

Then

5 z-r/2

Since | ζ — z \ g δ 121 and | ζ | ^ (1 + δ) | z |, we have

fc—1

- * μ-α Σ

Hence

Σ
i k = l

JO

x-r/2

Similarly, we can assume the sum in 73 begins with fc = 1, and
we obtain

m—N fa + r/2

— ς i 2-1 I ̂  I \ c

/ c - l J O

g C I z - ζ I"

kdt

Likewise

k>0

/ 1

(cosS + —
v 2

- J V - k

= C I z |c-*+i-« I z - ζ I" .

Finally we must evaluate I 2 . We write

β(t)=

where

and
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Then we have

P = - Σ 2

fc! J.-r/«l (t - 2)* (t -

N-2

k=0

With

k

i=o

we have, for k ^ N — 2,

X \ I p (ίί/)(ί — Z) \Z — X) — yθ (s/ l^ — C) \Q — X) 3\Cίu
Jx-rl2

k

x
j-N + l

- βw(ξ)(ζ - f)*-' ((» + 1 - ζ) - (x - 1 - ζ) )}

To the term in brackets we add and subtract

Then the jth bracketed term becomes

(z-x)>-'l<[x + τ-z) -{*-Ί-

Thus to evaluate Jk, k 5Ξ ΛΓ — 2, it suffices to evaluate each term of
(9.5).
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Since | ζ - £ | = | η \ S I ζ I S I z \ (1 + δ), and

> r(cos<5 — δ — — )
~ V 2/
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2 V2

the second term of (9.5) is bounded absolutely by

To evaluate the first term of (9.5), consider the function

f(p, q) - (iq)k~j([x + y - p - iq
j-N + l

— [x — — — p — %q
Li

j-N+1

and its first partial derivatives, Λ(ί>,g) =fP(p,q), and f2(p,q) =fq(p9q).
Then we must evaluate

By the mean value theorem we have, for some λ with 0 < λ < 1,

- x), y + λ(37 - j/))

λ(f - a?), 3/

Then using previously mentioned inequalities for | ζ — ζ |, |aj ± r/2 — ζ | ,
etc., it follows easily that for k ^ N — 2

Thus to finish the proof we must evaluate

-r/2 (t-iy)N

a;_£_r/2 (£ — iΎ])N

We will assume x ^ ί were # < ς another similar argument would
prevail. Then

_*) — ^ ( ^ > ^ +
(N _ dt

(9.6) , g + 1 )
•I* (t — iη)N

(ίί
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By definition, for ί ^ 0,

(-σ)'dσ = c ί " - f f + 1 ^ ~ ι .

and thus the third integral on the right side of (9.6) is bounded abso-
lutely by

C I z |"-*+1 ("" t + Γ /V1dt ^ C I z |"- f f + 11 x + ξ I f—V 1

Jr/2 \ 2 /

^ C I z - ζ \" I z l"-™-" .

We handle the second integral of (9.6) in the same fashion.
Thus we have left to evaluate

r/2 fψ(ξ, ξ + t) _ ψ(x, x + t)\fa
-r/21 ( ί - igy)^ (ί - iy)^ /

(( 1)

I (t - iηf (ί + iη)"
, X + t) , -, w ψ{x, x - t)

s>
(N - 2)1 I (ί - ΐ ^

(< — iy)N (t +

where we have recalled the definition of ψ.
We write

P'-vtf + s) = P"~»(ξ) + Ktf, s)s°

βl*-V(ξ - s) = β"-»(ξ) + K2(ξ, S)S°

β^ix + s) = β"-»(x) + KJix, s)sa

&"-»{x - s) = β^ix) + Kix, s)sa

where | K^s) \£C\z l'-™-". Also

(9.8) sa I Ei(ί , s) - £ , ( * , β) I ̂  C I « l " - ^ 1 - " I z - ζ

and

s" I ̂ ( f , s) - K3(x, s)\£C\z |"-^+1-« s" .

Similar inequalities hold for s" | Kz — K4 \.
Next, (9.7) becomes
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V^ S ) I DIN—1)//= \ I -L -L
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dt\
3 JJo (N - 2)!

(9.9)

(t - vηY (t + vη)N

(t - iy)N iy)N ds

o Jo (N- 1)! l(ί - i^)^

_ Z~2(g, s)sa _ K,{x,s)sa , iΓ 4 (x,φ α

iη)N (t-iy)»
s)sc'\ds #

ivYi

Notice that

o jo (N - 2)! \(t - i^)^ (ί + i^)^
•/2 /JV-1

( iV- l ) ! \ ( t - iη)N

& /(JV—1)!

x

dt

- (ί + ^ ) - 1 - * ( - i )

Thus the first term of (9.9) is bounded absolutely by terms of the form

lVr/2 - i^/ Vr/2 + iη

r/2 - iy r/2 + iy+ iy) i

LVr/2 - iίy/ Vr/2 - iy) J

ΐ Im \( iy .
L\r/2 — ̂ 2

The second term is bounded by C \ z \^-N+1-a \ % - ζ |«. The first, using

the mean value theorem, is bounded by

(9.10) C I z \^N+ί \y-η Im
(r/2 - iσ)k

where σ lies between y and η. But then σ ^ Cr, \ r/2 — iσ | ^ r/2,
and hence (9.10) is g

C I z \^-N+1 \y z -

Thus we are left with the second term of (9.9). By symmetry
we need only consider
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(9.11) =

By (9.8), for any ε > 0 we have

x(ζ, s) - Ks(x, s) I ^ ClC{

l(ί - i-ηγ (t - %yγ

- sy-^iKM, s) - Kz(x, s))(t - irj)~

t 8)( .

Thus the first term on the right side of (9.11) is bounded in absolute
value by

CC\C\-ε \z-ζ |α ( 1"ε ) I z \^-^-a \rl2dt\ V - 2 s α ε \t-iη \~N ds
Jo Jo

z-ζ|α(1-ε) I z I " - * * 1 -

= CC\C\-ε \ z - ζ a{1~ε)

Now let e->0.
Finally, to evaluate the second term on the right side of (9.11),

we observe that

(t - iη)N (t - iy)»
N /\T

< V I 11τ hΊι\

w \

where we have assumed that y ^ 7]. Then

\Φdt[\t - sy~2saK3(x, s)((t - iη)~* - (t - iy)-^)
Jo Jo

( r / 2 - ζ \a y*~* \t-iη\~N\t-iy \~Ndt^ Σ (
fc=i Jo

c I z - ζ |α Σ (Γ/V- fc-1+βi/*"β 11 - iy \~N

k = L Jo

With the change of variables t — τy, the A th integral becomes

S r/2y foe

0 Jo

since l^k^ N. This completes the evaluation of J ^ " 1 and the theorem
is proved.
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