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GROUP EXTENSION REPRESENTATIONS AND
THE STRUCTURE SPACE

ROBERT J. BLATTNER

Let K be a locally compact group. K* will denote the
Jacobson structure space of C*(K), the group C*-algebra of K.
For any unitary representation 7 of K on a Hilbert space,
let £ denote the projection valued measure on the Borel sets
of K* defined by Glimm (Pacific J. Math. 12 (1962), 885-911;
Theorem 1.9). A (not necessarily Borel) subset S of K* is
called E,-thick if E,(S,) =0 for every Borel S; < K*~ S,
For any two representations V, and V., Z#Z(V,, V,) will denote
the space of operators intertwining V: and V..

Suppose K is a closed normal subgroup of the locally com-
pact group G. If V is a representation of K andxc G, V*is
defined by V! = V-1, ke K. If z€ K*, zz = Ker (V*), where
V is any irreducible repesentation such that z = Ker (V). (By
Ker we mean the kernel in the group C*-algebra.) This com-
position turns (K*, &) into a topological transformation group
(Glimm, op. cit.,, Lemma 1.3). The present paper first shows
that the stability subgroups of G at points z€ K* are closed.
Then the following two theerems are proved:

THEOREM 1, Let z€ K* and let H be the stability sub-
group of G at 2z, Let L be a representation of H such that
{#} is Eyx-thick, Then <2 (UZ%, U%) is isomorphic to Z# (L, L)
and {2}G is EyI x-thick.

TareorEM 2. Let M be a representation of G such that
{2}G is Eyx-thick for some zc K*, Let H be the stability
subgroup of G at z. Suppose G/H is s-compact., Then there
is a representation L of H such that {z} is E x-thick and such
that M ~ UZ,

In the above, U’ denotes the representation of G induced
by L.

It is shown further that if C*(K )|z contains an ideal iso-
morphic to the algebra of all compact operators on some
Hilbert space, then the representation L|K of these theorems
is a multiple of the (essentially unique) irreducible representa-
tion L° of K such that Ker (L°) =z, Finally, it is shown that
if M is primary and if K*/G is almost Hausdorff (i.e., every
nonvoid closed subset contains a nonvoeid relatively open
Hausdorff subset), then }M satisfies the hypothesis of Theorem 2.

These results generalize Mackey’s Theorem 8.1 [13], in the case
of the trivial multiplier. In [13], Mackey attacks the problem of
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reducing the representation theory of a locally compact group G with
closed normal subgroup K to the representation theories of K and
G/K. His main theorem, Theorem 8.1, supposes the following restric-
tions on G and K: G satisfies the second axiom of countability and K
i1s type I (in the case of the trivial multiplier). The present paper
explores what happens when these restrictions are lifted.

It turns out that a great deal of Mackey’s theorem remains true
in modified form. The chief modifications are these:

(a) We replace the dual space K of K by the structure space
K* of its group C*-algebra. This is done because K* is fairly well
behaved, being a T, topological space, while K can be very messy
when K is not type I. The first example of § 6 shows how a theory
based on K cannot get off the ground.

{(b) We replace the projection valued measure based on K which
is canonically associated with the direct integral decomposition of a
given representation of K (when K is type I) with the measure based
on K* introduced by Glimm in [10].

These modifications and the lack of separability force us to replace
Mackey’s highly measure theoretic arguments with arguments more in
the spirit of the present author’s previous work [1-3] and that of
Glimm’s paper [10].

After the preliminaries of §2, we prove our analogue of Mackey’s
theorem in §§ 3 and 4. Section 5 is concerned with what additional
hypotheses are needed to make the analogue exact. The paper closes
with some examples in §6.

The problem dealt with in the last example was the starting point
for this investigation. We wish to thank James Glimm for several
stimulating conversations on this problem.

2. Preliminaries. Let G be a locally compact group and let
Cy(@) be the space of continuous complex valued functions on G with
compact support. If f,ge Cy(G) set (fog)(x) :S fgxy)dy and

—_—— G

(@) = fH(@™)ds(x)™!, where dy denotes right invariant Haar measure
and where d, is its modular funetion. o, *, the usual addition of funec-
tions, and the usual inductive limit topology on Cy(G) turn it into a
topological *-algebra. Let L be a unitary representation of G. Then
setting L; = SG f(x)L;* dx (strong operator topology integral) gives us
a continuous *-representation of CyG). Moreover {L;: fe C(G)} has
no simultaneous null vectors (we say that L is a mondegenerate re-
presentation of Cy(G)). Conversely, if @ is a nondegenerate continuous
*-representation of C(G), there is a unique unitary representation L
of G such that L; = @, for fe CyG).

If L is unitary representation of G, then || L;|| < || f||, for fe C(G).
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Therefore ||f|| = LUB{|| L;|| : L unitary representation of G} exists.
[|-]] is8 a norm on C,(G) and the completion of C,(G) with respect to
[|-]] is a C*-algebra, called the C*-group algebra of G and denoted by
C*(G). Clearly there is a one-to-one correspondence between non-
degenerate *-representations of C*(G) and nondegenerate continuous
*-representations of C,(G). Thus the representation theory of C*(G)
is “the same” as that of G.

In what follows, G* will denote the Jacobson structure space of
C*(@); i.e. the space of kernels of irreducible nondegenerate *-re-
presentations of C*(G) equipped with the hull-kernel topology. G* is
a Tj-space.

Let oA be a C*-algebra, Z its structure space, and @ a nonde-
generate *-representation of 2 on a Hilbert space . Glimm [10] has
shown that there is unique projection valued measure E on the Borel
field generated by the topology of Z with the following property: if
S is a closed subset of Z, then E(S) is the projection on the manifold
of ve © such that @(a)v = 0 for all ee NS. K takes its values in the
center of the von Neumann algebra generated by @(2). In our case,
if L is a unitary representation of G, E, will denote the Glimm
measure on G* associated with the representation of C*(G) determined
by L.

For the formulation of induced representations used in this paper
the reader is referred to [1]. If L is a representation of the closed
subgroup H of G, we define a regular Borel projection valued measure
E* on G/H as follows: if S is a Borel subset of G/H, then EXS)f =
(Xsom)-f, where ¥y is the characteristic function of S, 7 is the canonical
projection of G onto G/H, and fe H(U?%. This E* determines, and is
determined by, the *-representation of C/(G/H) defined by

B = h)dEw)

he Cy(G/H) (cf. [3]).

Finally, if E is any projection valued measure on the measurable
space (Z, <#), any subset S & Z (not necessarily in <#) will be called
E-thick if E(T)= 0 whenever TN S = @& (cf. [11], p. 74).

Let G be a locally compact group and let K be a closed normal
subgroup. For fe Cy(K) and x € G, we define xf € C,(K) by the formula
@f)(é) = f(x~*x)d(x) for ée K, where 4(x) is the (constant) Radon-
Nikodym derivative [d(z~'éx)]/dé. If L is a unitary representation of
K and if L* is defined by Lf= L,,—, €K, then L% = L,;. From
this it follows readily that f— 2f is an automorphism of C,(K) which
is isometric in the C*-norm ||-]|. Therefore this map extends to an
automorphism of C*(K). We define an action of G on K* by setting
ze ={feC*(K):xfecz}for ze K*, xeG. Glimm [10] and Fell [7] have
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shown that the map of K*X G — K* given by (¢, £) — 2z« is continuous,
giving us a topological transformation group.

LEMMA 1. Let (S,G) be a topological tramsformation group.
Suppose S is a Tyspace. Then the stability subgroups of G are
closed.

Proof. Let H be the stability subgroup of G at pe€S. Then
{p}H = {p}, so that {p}"H~ S {p}~. If x€ H-, we have {pa}- = {p} 2 &
{p}~. Since x'e H-, we have {p}~2~ < {p}~ and hence {p}~ S {p}x =
{px}~; i.e., {px}- = {p}~. But S is T,. Therefore pxr = p and xe H.

We may now state our main theorems.

THEOREM 1. Let G be a locally compact group and let K be a
closed normal subgroup of G. Let ze K* and let H be the (closed)
stability subgroup of G at z. Let L be a representation of H such
that {2} ts Ejx-thick. Then Z(U*, U s isomorphic to (L, L)
and {2}G Eyr-thick.

THEOREM 2. Let G be a locally compact group and let K be a
closed mormal subgroup of G. Let M be a representation of G.
Assume that {2}G is Ey g-thick for some zc€ K*. Let H be the (closed)
stability subgroup of G at z. Suppose G/H is o-compact. Then there

18 a representation L of H such that {z} is E;x-thick and such that
M= U=~

3. Proof of Theorem 1. We begin our proofs with the fol-
lowing lemma.

LEMMA 2. Let H and K be closed subgroups of the locally com-
pact group G, K normal, and K S H S G. Let L be a representation
of H. Then for every fc C*(K) and g€ S(U*) we have [(U*| K),g](x) =
(L| K)ig(x) for locally almost all zc G.

Proof. Suppose first that fe C(K) and g is continuous with com-
pact support modulo H. Set

u@) = (LI Kyig@) = | F@OLamg@ds = | _F@g@sds .

Clearly u is continuous with compact support modulo H and belongs
to (U*H. Let ve H(U*) be continuous with compact support modulo

H, and choose & e Cy(G) such that S h(nz)dp =1 for x in the support
H
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of v. Then
(w,0) = | h@)u(@), v@)ds = | | m@ @@, ve)dsde
= | _1@Ug, 0)dz = (U K)yg,0) -

Since the set of all such v is dense in D(U¥%), our result holds in this
case.

Next suppose f € C(K) and g€ H(U%). Choose a sequence g, € H(U*),
continuous with compact support modulo H, such that || g, — g < 27"
Then [|(U*| K)sg9, — (U*| K)sg || < || f]127". As in the proof of Pro-
position 1 of [1], g,—¢ and (U?|K);g9,— (U*| K);¢9 locally almost
everywhere.

Finally, if feC*(K) and ge $(U¥*, we may choose a sequence
fan€ C(K) such that || f, — fI| <27, Then ||[(L|K); — (L|K)7|| <27
uniformly for all » € G, so that (L | K); g(x) — (L | K)7g(x) uniformly on
G. Moreover || (U*| K); g — (U*| K);g | < 27| g ||, from which it follows
that (U*| K); g — (U*| K);g locally almost everywhere. Our lemma is
thereby proved.

We now assume all the hypotheses of Theorem 1. If 7 is the
natural projection of G into G/H, we define a: G/H — K* by a(z(x)) =
zx for xe G. « is continuous and one-to-one.

LEMMA 3. Eyx(S) = EXa(S)) for every Borel set S < K*.

Proof. In the first place, we note that (L|K); =0 for fexz.
In fact, {#} N C{z}- = @ implies that F,x(C{z}") = 0 from which we
get E; «({z}7) = I. But this says that (L | K)» = 0 for all ve $(L) and
all fe N{z}~ = 2, as desired.

Let S be a closed subset of K*. Then w(z)ec a(S) if and only
if zx € S, that is, if and only if zxa2NS. Therefore fe NS implies
2fez and hence (L|K)% = 0. Let ge 9(U*. Let fe NS. By Lemma
2, we have [(U?| K);g](x) = 0 for locally almost all 2 € x="(a~'(S)). If,
moreover, g€ Range (EXa(S))) then g¢g(x) = 0 for locally almost
all zen (@ *(S)), so by Lemma 2, [(U*| K),gl(x) =0 for locally
almost all z¢ 7z a ' (S)). We conclude that Range (E*a™(S))) <
Range (Eyzx(S)).

Suppose now that g ¢ Range (E*«*(S))). Then g does not vanish
for locally almost all ¢ 7 (a~%(S)). Since g is Bourbaki measurable
([4], p. 180), there exists a compact set C & Cr~'(a~(S)) of positive
Haar measure upon which ¢ is continuous and does not vanish. Let
xeC. Then z¢Sxr™ so that FE;(Sx™') =0. Hence there exists
fen{Sx~} such that (L|K);g(x) # 0. Setting f,, = «7'f, we have
S €S and (L] K)%,g(x) # 0. By continuity we have (L| K)%, g(y) + 0
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for y in some neighborhood N, of z in C. Since C is compact and of
positive measure, N, has positive measure for some x e C. It follows
from Lemma 2 that for that =, (U*|K);,g # 0. Therefore
g ¢ Range (Eyzx(S)).

We have proved Lemma 3 for closed S. The general case then
follows from the fact that a projection valued Borel measure on a
topological space is uniquely determined by its values on closed sets.

LEMMA 4. Let H be a closed subgroup of the locally compact
group G and let E be a regular Borel projection valued measure on
G/H. Let .7 be a T, topology on G/H weaker than the matural
topology such that (G/H)., G) is a topological transformation group.
Then E takes its values wn the von Neumann algebra generated by
{E(S): Se 7}.

Proof. Let B be a Borel set in G/H and let T be a self-adjoint
bounded operator commuting with all E(S), Se. 7. We must show
that E(CB)TE(B) = 0. Since E is regular, it will suffice to show that
E(C)TE(C;,) =0 for every disjoint compact pair C,, C,= G/H. A
standard compactness argument reduces the problem to the following:
if p,, p.€ G/H, p, # p,, find disjoint neighborhoods N, of p, and N, of
p, such that E(N,)TE(N,) = 0. To do this we find a .7 -closed S which
separates p, and p,; say, ». €S, p,€S. Since S is closed in the natural
topology of G/H, we can find a compact neighborhood N of ¢ in G
such that p,NN—'NS = 2. Set N, =pN, N,=p,N. Clearly N, =
CSN and N, < SN. Since S is .7 -closed and N is compact, SN is
7 -closed. By hypothesis E(CSN)TE(SN) = 0, and our result follows.

Proof of Theorem 1. Let .7~ = a™* (topology of K*). 7 and
E* satisfy the hypotheses of Lemma 4. According to Lemma 3
{E*S): Se 77} < {values of Eyx}. This, in turn, is contained in the
center & of the von Neumann algebra generated by U*| K. By Lemma
4, {values of E*} < %°. Therefore #Z(U%, U*) = Z((E* U, (E* U" =
(L, L) by [2]. Finally, {2}G is Eyz -thick by Lemma 3.

4. Proof of Theorem 2. For the proof of Theorem 2 we need
the following lemmas;

LEMMA 5. Let H be a closed subgroup of the locally compact
group G such that G/H is g-compact. Let 7 be a T, topology on
G/H weaker than the matural topology such that (G/H)s,G) is a
topological transformation group. Let <& be the Borel field generated
by 7. Let fe C(G/H). Then f s ZZ-measurable.
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Proof. As is well known, it is enough to show that C ¢ <7, where
C =N, 0,, C is compact and the O, are open in G/H. (See [11], p. 220.
Such a set is called a compact G;5.) Since CO, is closed, it is o-compact,
whence CC is o-compact. Therefore CC has the Lindelof property.
Let peC, gqecC. As in the proof of Lemma 4, there exist open
neighborhoods N,, of » and M,, of ¢ and a set S,, & G/H such that
either S,, or ¢S,,e .97, N,, € S,,, M,, & CS,,. Since C is compact,
we find p,, -+, p, such that C <& Ui N,, and set S, =U:rS,, and
M,=N'M,,. Then S,ezz, C= S, M,<CS,, and M, is an open
neighborhood of ¢. Since ¢C is Lindelofian, we find ¢, ¢,, -+- such
that cC = U M,, and set S = (7 S,;,. Then Se z. C< S, ¢C < CS;
that is, Ce 7.

LEMMA 6. Let G be a locally compact group, K a closed normal
subgroup, and U a representaiion of G. Let G act on K* as above.
Then, for any Borel set S in K* and v € G, Ky (Sx) = U, Ey x(S)U,.

Proof. By the uniqueness of Glimm meagure, it suffices to prove
this for S closed in K*. We note that (U|K)*" = U, (U|K)U,.
Therefore v € Range Ey(Sx) if and only if (U| K)» =0 for all fe NSz,
if and only if (U|K);) 7w =0 for all fenS, if and only if
UU|K);Uw =0 for all fe NS. But this is true if and only if
U,v € Range Ey (S), if and only if ve Range U;" Ey x(S)U,.

LeMMmA 7. Let U be a representation of the locally compact group
K. Let & be a collection of closed subsets of K*. Then Range
Ey(N.Y") = N{Range Ey(S); Se .&}.

Proof. Let S;= N.S. Then NS, = the closed ideal of C*(K)
generated by U{NS:Se .9} = the closed linear span in C*(K) of
U{nsS:Se.«}. Now let ve N{Range E,(S):Se .&}. Then, for every
Se.&” and every fe NS, we have U = 0; that is, U =0 for
every fe U{NS:Se.9’}. By linearity and continuity, U = 0 for
every fe NS. Therefore ve Range E,(S,). The opposite inclusion is
clear, since FE, is monotonic.

Proof of Theorem 2. Let «a be as above, let .7~ = a~ (topology
of K*), and let < be the Borel field generated by .. Then
& = a (Borel field of K*). As in [11], p. 75, Ey(a"(S)) =
Ey «(S) for all Borel S in K* defines a projection valued measure E,
on &. According to Lemma 5, every function in Cy(G/H) is <#-
measurable. Define E(f) = om fdE,. Clearly E is a *-representation

of C(G/H) in the sense of [3]. We assert that (&, M) is a represen-
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tation of the locally compact transformation group (G/H, G) as defined
in [3].

(1) E(C(G/H))S(M) is dense in D(M). In fact, since G/H is
o-compact, there exists a sequence of functions f, € C(G/H) such that
0 = f.11. By the monotone convergence theorem, E(f,) — I weakly,
and (1) is established.

(2) ME(f)M;*= E(R,f) for all fe C(G/H) and all xe G. Here
(R,f)(p) = f(px). For this, it suffices to show that M, E(B)M;* = E,(Bx™)
for all Be <& and xc(G. But this follows immediately from Lemma 6
and the definition of E,.

According to the Corollary of Theorem 2 in [3], (&, M) is unitarily
equivalent to an induced representation of (G/H, G); that is, there is
a representation L of H such that (E, M) is unitarily equivalent to
(Et, U*). We shall henceforth assume E = E* and M = U*. In par-
ticular, we have Eoa™ = Ep,, and also E(C) = EXC) for every
compact G C in G/H.

We must now show that {z} is K, x-thick.

Let S be K* closed. First suppose z€ S. We assert that E;(S)= L.
By Lemma 7, it suffices to show that Ex(SN) = I for every compact
neighborhood N of ¢ in G. Let ge Cy(@), ve H(L). As in [1], we
define &(g, v) € D(U*) by

o0, o)) = | 9(e0)0,(&)"0(E) L0

&(g, v) is continuous and has compact support modulo H. Let C be a
compact Gy neighborhood of 7(e) & w(N). Suppose Support (g) &
NNz C). Then

(g, v) € Range E*(C) = Range E,(C) < Range E,(a~(SN))
= Range E,z,x(SN) .

According to Lemma 2, fe N SN implies (L | K)%(g, v)(x) = 0 for locally
almost all xe G, hence for all xe G by continuity. In particular,
(L] K)se(g, v)(e) = 0. Letting g07/%0y*| H approach the Dirac 0 function
on H, we get (L|K);» = 0. Since v is arbitrary, E,(SN) = I.

Now suppose z ¢ S. We assert that F;(S)=0. Let v € Range E; £(S).
Choose a compact neighborhood N of ¢ in G such that Z(NN-)Na~(S) =
@. Then a*(SN)Nn(N)= @. Let fe NSN. Let xze€G. Then
zfe NSNx2~'. Hence if £e Ne=*NH, we have zfe NS& so that
&xfe NS. Let C be a compact G; neighborhood of x(e) in w(N).
Suppose Support (¢9) & NN 7~(C). Then

(L | K)7e(g, v)(@) = S , 9(€2)02(8)70s(8) "L (L | K)eopvde = 0

—1
N, n
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(compare the proof of Lemma 6). From Lemma 2,
e(g, v) € Range Fy1,x(SN) = Range E(a'(SN)) .

On the other hand ¢&(g,v) € Range FE*C) = Range E(C). Since
a(SNYNC = &, (g, v) = 0. Therefore e(g, v)(¢) = 0 because &(g, v)
is continuous. Again letting goz'/%Y? | H approach the Dirac ¢ function
on H, we get v = 0. Therefore F, (S) = 0.

Finally let & be the class of all Borel sets S in K* such that
either 2z€ S and E,x(S) =1 or 2¢ S and E; (S) =0. Clearly & is
a o-field, and by the foregoing & contains all the closed sets. There-
fore & consists of all the Borel sets of K*; that is, {#} is E} -thick.

5. Connections with Mackey’s work. In the original forms of
Theorems 1 and 2 due to Mackey ([13], Theorem 8.1), it is assumed
that G satisfies the second axiom of countability and that K is a type
I group. K* is replaced there by K', the set of all unitary equivalence
classes of irreducible representations of K, equipped with the Mackey
Borel structure. According to Glimm ([8], Theorem 1) the natural
mapping of K onto K*, which sends every irreducible representation
into its kernel in C*(K), is one-to-one if K is of type [ and second
countable. Moreover, Fell has shown [6] that in this case the Mackey
Borel structure is just the o-field generated by the topology of K(= K*).
Our result then specializes to give Mackey’s result, except for the
following: Mackey shows that L | K must be a multiple of the (unique
up to unitary equivalence) representation (whose kernel is) z. To get
this, in our general setting, seems to require a type restriction on K
(or at least on 2). The form of our restriction is suggested by Glimm’s
theorem ([8], Theorem 1) that a separable C* algebra is of type [ if
and only if its image under every irreducible representation contains
the compact operators. We are led to make the following definition:

DEFINITION. Let 2 be a C*-algebra and let L be an irreducible
representation of A. L is called semi-compact if Ly contains the com-
pact operators on $(L). Ker L will also be called semi-compact.

We know (see Glimm [1], p. 583) that if L is semi-compact and
if M is irreducible with Ker I, = Ker M, then L and M are unitarily
equivalent.

LEMMA 8. Let U be a representation of the C*-algebra A with
structure space Z. Let z be semi-compact in Z. Suppose {2} is E,-
thick. Then U is a multiple of the (essentially unique) irreductble
representation L° of K such that Ker L' = z.

Proof. By hypothesis 9 contains an ideal .# 2 z such that _7/z
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is isomorphic to the algebra of all compact operators on H(L°). As in
the proof of Lemma 3, E,({z}”) = I implies that U, = 0 for all acz.
Dividing out by 2z, we may therefore assume z = {0}. Let S =
fweZ:w2_#}. S is closed. 7 # {0} implies {0}¢ S. Therfore
E;(S) =0. Since . = NS, this says that U|._# is a nondegenerate
representation of .. From the known representation theory of the
algebra of compact operators on a Hilbert space, we obtain an orthogo-
nal decomposition of H(U) into U|._# invariant subspaces £, the
restriction of U|_# to each of which is unitarily equivalent to the
irreducible representation L°|.”. Let ac, ve $*. Since U|_~ is
nondegenerate, we can choose a sequence b,€ . such that U, U,v—
Upw. But b,ae._# and hence U, ,ve 9. Therefore U,we $7; that is,
the $” are invariant under U. Let LY = U restricted to act on 9.
LY ig irreducible since L"|.# is. Now Range E,({Ker L}) 2 9 + {0}.
Since {0} is Ey-thick, {0} {Ker L*}~; that is, Ker L" = {0}. Since
Ker L' = Ker L°, LY = L°. Therefore U =~ a multiple of L°.

As regards Theorem 2, Mackey shows that if, in addition to the
hypotheses on G and K mentioned above, one assumes that K is
regularly embedded in G (see [13], p. 302 for the definition), then
Ey x is concentrated in an orbit if M is primary. Glimm (][9], Theo-
rem 1) has proved that, in Mackey’s case, the assumption of regular
embeddedness is equivalent to the topology of K/G being almost Hausdorff,
in the following sense:

DEFINITION. Let X be a topological space. X is said to be almost
Hausdorff if every nonvoid closed subset contains a nonvoid relatively
open Hausdorff subset.

We propose to turn Glimm’s theorem into a definition, even when
K is not of type I and second countable.

DEFINITION. Let K be a closed normal subgroup of the locally
compact group G. K is regularly embedded in G if K*/G is almost.
Hausdorft.

REMARK. It follows from [9], p. 133, that K regularly embedded
in G implies that every G-orbit in K* is a Borel set and in fact is
relatively open in its closure.

LEMMA 9. Let K be a regularly embedded closed normal subgroup
of the locally compact group G. Let M be a primary representation
of G. Then there is a G-orbit of K* which is E g-thick.

Proof. If S is a G-invariant Borel set in K*, then
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Ex(S)e # (M, M)

by Lemma 6, and hence E, x(S) belongs to the center of the von
Neumann algebra generated by M. Therefore Ey x(S) =0 or I. Let
& be the collection of all closed G-invariant S £ K* such that
Eyx(S)y=1. S;=NSe by Lemma 7. Let 6 be the natural
projection of K* onto K*/G. If R is any nonvoid relatively open
subset of 0(S,), then S, — 6~ (R) is a proper closed G-invariant subset
of S,. Hence E, (S, — 0(R)) =0 so that Ey(0*(R)) = 1. Now
6(S,) is a nonvoid closed subset of K*/G. There exists a nonvoid
relatively open Hausdorff subset R, of 6(S,). We assert that R, reduces
to a point. If not, then R, contains two nonvoid disjoint subsets R,
and R, which are open relative to R, and hence to 6(S,). Then
E, (07 (R)) = I for ©+ =1,2, an impossibility. So R, reduces to a
point, 6~%(R,) is a G-orbit in K*, and our lemma is proved.

REMARK. This is not the only reasonable definition of regular
embeddedness. Indeed, if G satisfies the second axiom of countability,
we could simply require that K*/G be T, or, more generally, be
countably separated. The conclusion of Lemma 9 would then follow
(cf. |9], p. 126). If K is not type I, the relations between these
properties and the almost Hausdorff property is obscure.

6. Three examples. Our first example shows that, despite
Lemma 1, the stability subgroup of G at a point in K may be very
bad. Let G be the group whose underlying topological space is
Tx ZX C, where T=1{eC:|&| =1} and Z is the discrete integers.
The group multiplication is given by

(&, m, a)(, n, b) = (8¢, m + n, ale™ + b) .

Let K={1} x Zx C and N={1} x {0} x C. N and K are normal
subgroups of G, and N is abelian. We identify N = N* with C as
follows: each )€ C corresponds to the character ¥,: (1, 0, @) — ¢t @d,
In terms of this identification, the action of K on N* is given by
Abma) — Ze=im By Theorems 1 and 2, *L = U*wn is irreducible if
N # 0; moreover *L ~ *L if and only if \ and g belong to the same
K-orbit in N*.

We next calculate *L%™®, To this end, we realize *L in the
Hilbert space of all square summable functions f on Z according to the
rule: (*Ly,,,,, f)(k) = exp (¢ Re (\be™*"*9)) f(n + k). Then (*L{75) f)(k) =
(L, n,0e—10-imy f)(E) = exp (4 Re Wb& e~ me=i M) f(n + k). It follows
that *L&me = 877", Therefore *L®™* ~ AL if and only if » and
AE™! are in the same K-orbit. Supposing N # 0, we see that the
stability subgroup of G at (*L)” in K is {(&,m, a): & = ¢ for some
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n e Z}, a proper dense subgroup of G.

As a consequence of Lemma 1, we see that *L and “L have the
same kernel in C*(K) if |N| =|g|. (That this sufficient condition is
also necessary may be seen by applying the structure theory of Glimm
[10].) We also see that Theorems 1 and 2 are useless in this case in
analyzing the irreducible representations M of G for which {Ker*L}G
is Ey xthick. This is precisely because the stability subgroup of G
at Ker*L in K* is G itself.

Our second example shows that in Theorem 2 some restriction on
G/H, such as o-compactness, is necessary. Let G, be the “ax + b group”;
that is, the group whose underlying topological space is R X R and
whose group multiplication is given by (a, b)(c, d) = (@ + ¢, be® + d).
Let G be the same group, except that the topology is modified by
making the first factor discrete. Let K, ={0} x RS G, and K =
{0} x R=G. Let @ be the (continuous) identity map of G onto G,.
Let ¥ be a nontrivial character of K;,. By Theorem 1, M, = GlU" is
an irreducible representation of G, and {Y}G, is Ey x -thick in K, = K*.
Let M = M,op, an irreducible representation of G. Because ¢|K is
an isomorphism of K onto K, which is equivariant with respect to G,
when G and G, are identified as abstract groups under ¢, {}o(p| K)}G
is Eyx-thick in K = K*. The stability subgroup of G at {xe(p| K)}
is K. But M is not induced from any representation of K, because
dim (M) = W, while dim $(;U*) = 2% for any representation L of K.
One may see that, in this case, the proof of Theorem 2 breaks down
right at the beginning: the representation E of C(G/K) defined there
is identically zero.

Finally, we show that the first part of Theorem 6.2 of [5] is an
easy consequence of our Theorem 1. In fact, we have the following
generalization: Let L be an irreducible representation of the closed
normal subgroup K of the locally compact group G and let H be the
stability subgroup of G at L in K. If ,U” is irreducible, then H = K;
if L is semi-compact, the converse holds. In fact, suppose H = K
and choose we H, ¢ K. Define T on D(U%F by setting (Tf)(y) =
Vf(xy), where V implements the equivalence of L° and L; i.e.,
Lt = V~LV, ée K. Then (Tf)(y) = Vf(2&y) = VL, V'V flzy) =
L{Tf)y) for fe H(UH, e K, yeG, and it follows easily that
TfeD(U" and that T is bounded. T clearly intertwines UZ but is
not a scalar multiple of I, so the first assertion is established. The
converse assertion follows from Theorem 1 together with the observation
that H is the stability subgroup of G at Ker L in K* by virtue of
the comment following the definition of semi-compactness.

There remains the question of whether the converse is true without
the semi-compactness condition. If L is not semi-compact, but if G/K
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is discrete, the converse is true ([12], Theorem 3’). However. the
general case is open.
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