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GROUP EXTENSION REPRESENTATIONS AND
THE STRUCTURE SPACE

ROBERT J. BLATTNER

Let K be a locally compact group. K* will denote the
Jacobson structure space of C*(K), the group C*-algebra of K.
For any unitary representation V of K on a Hubert space,
let Ev denote the projection valued measure on the Borel sets
of J£* defined by Glimm (Pacific J. Math. 12 (1962), 885-911;
Theorem 1.9). A (not necessarily Borel) subset S of iΓ* is
called £V-thick if £7F(S0 = 0 for every Borel Si g K* ~ S.
For any two representations VΊ and V2, &(VU V2) will denote
the space of operators intertwining VΊ and V2.

Suppose K is a closed normal subgroup of the locally com-
pact group Gβ If V is a representation of K and xeG, Vx is
defined by F^ = F^-i, A; e iΓ. If z e K*9 zx = Ker (F*), where
F is any irreducible repesentation such that 2 = Ker (F). (By
Ker we mean the kernel in the group C*-algebra.) This com-
position turns (K*,G) into a topological transformation group
(Glimm, op. cit., Lemma 1.3). The present paper first shows
that the stability subgroups of G at points zeK* are closed.
Then the following two theorems are proved:

THEOREM 1. Let zeK* and let H be the stability sub-
group of G at 2. Let L be a representation of H such that
{z} is EW-thick. Then &(UL, UL) is isomorphic to &(L,L)
and {z}G is ϋ^^-thick.

THEOREM 2. Let M be a representation of G such that
{z}G is ϋ̂ f i irthick for some zeK*. Let H be the stability
subgroup of G at z. Suppose G/H is σ-compact. Then there
is a representation L of H such that {z} is EL{κ-thick and such
that M~UL.

In the above, £7Z denotes the representation of G induced
by L.

It is shown further that if C*(K)\z contains an ideal iso-
morphic to the algebra of all compact operators on some
Hubert space, then the representation L\K of these theorems
is a multiple of the (essentially unique) irreducible representa-
tion L° of K such that Ker (L°) = z. Finally, it is shown that
if M is primary and if K*/G is almost Hausdorff (i.e., every
nonvoid closed subset contains a nonvoid relatively open
Hausdorff subset), then M satisfies the hypothesis of Theorem 2.

These results generalize Mackey's Theorem 8.1 [13], in the case
of the trivial multiplier. In [13], Mackey attacks the problem of
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reducing the representation theory of a locally compact group G with
closed normal subgroup K to the representation theories of K and
GjK. His main theorem, Theorem 8.1, supposes the following restric-
tions on G and K: G satisfies the second axiom of countability and K
is type / (in the case of the trivial multiplier). The present paper
explores what happens when these restrictions are lifted.

It turns out that a great deal of Mackey's theorem remains true
in modified form. The chief modifications are these:

(a) We replace the dual space K of K by the structure space
K* of its group C*-algebra. This is done because K* is fairly well
behaved, being a To topological space, while K can be very messy
when K is not type I. The first example of § 6 shows how a theory
based on K cannot get off the ground.

(b) We replace the projection valued measure based on K which
is canonically associated with the direct integral decomposition of a
given representation of K (when K is type /) with the measure based
on K* introduced by Glimm in [10]o

These modifications and the lack of separability force us to replace
Mackey's highly measure theoretic arguments with arguments more in
the spirit of the present author's previous work [1-3] and that of
Glimm's paper [10].

After the preliminaries of § 2, we prove our analogue of Mackey's
theorem in §§ 3 and 4. Section 5 is concerned with what additional
hypotheses are needed to make the analogue exact. The paper closes
with some examples in § 6.

The problem dealt with in the last example was the starting point
for this investigation. We wish to thank James Glimm for several
stimulating conversations on this problem.

2* Preliminaries* Let G be a locally compact group and let
C0(G) be the space of continuous complex valued functions on G with
compact support. If f,geC0(G) set (fog)(x)=\ f(y)g(xy~1)dy and
f*(x) = f(x~i)δG(x)-\ where dy denotes right invariant Haar measure
and where δG is its modular function, o, *, the usual addition of func-
tions, and the usual inductive limit topology on C0(G) turn it into a
topological *-algebra. Let L be a unitary representation of G. Then
setting Lf — \ /(x)L"1 dx (strong operator topology integral) gives us

J G

a continuous *-representation of C0(G)β Moreover {Lf: feCQ(G)} has
no simultaneous null vectors (we say that L is a nondegenerate re-
presentation of C0(G)). Conversely, if Φ is a nondegenerate continuous
•* -representation of CQ(G), there is a unique unitary representation L
of G such that Lf = φf for fe C0(G).

If L is unitary representation of G, then \\Lf\\ ^ \\f\lfovfe C0(G).
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Therefore | | / | | = LUB{\\Lf\\ : L unitary representation of G} exists.
|| || is a norm on C0(G) and the completion of C0(G) with respect to
|| || is a C*-algebra, called the C*-group algebra of G and denoted by
C*(G). Clearly there is a one-to-one correspondence between non-
degenerate *-representations of C*(G) and nondegenerate continuous
*-representations of C0(G). Thus the representation theory of C*(G)
is "the same" as that of G.

In what follows, G* will denote the Jacobson structure space of
C*(G); i.e. the space of kernels of irreducible nondegenerate ^re-
presentations of C*(G) equipped with the hull-kernel topology. G* is
a T0-space.

Let 21 be a C*-algebra, Z its structure space, and Φ a nonde-
generate *-representation of SI on a Hubert space φ. Glimm [10] has
shown that there is unique projection valued measure E on the Borel
field generated by the topology of Z with the following property: if
S is a closed subset of Z, then E(S) is the projection on the manifold
of veξ) such that Φ(a)v — 0 for all a e Π Sβ E takes its values in the
center of the von Neumann algebra generated by Φ(%). In our case,
if L is a unitary representation of G, EL will denote the Glimm
measure on G* associated with the representation of C*(G) determined
by L.

For the formulation of induced representations used in this paper
the reader is referred to [1]. If L is a representation of the closed
subgroup H of G, we define a regular Borel projection valued measure
EL on G/H as follows: if S is a Borel subset of G/H, then EL(S)f =
(Xs°π) β/> where χs is the characteristic function of S9 π is the canonical
projection of G onto G/H, and fe&(UL). This EL determines, and is
determined by, the *-representation of C0(G/H) defined by

h(p)dEL(p) ,
GIΠ

heC0(G/H) (cf. [3]).
Finally, if E is any projection valued measure on the measurable

space (Z, &), any subset S gΞ Z (not necessarily in &) will be called
E-thick if E(T) = 0 whenever T f] S = 0 (cf. [11], p. 74).

Let G be a locally compact group and let if be a closed normal
subgroup. For fe C0(K) and x e G9 we define xfe C0(K) by the formula
(xf)(ζ) = f{x~1ξx)A(x) for ζe K, where A(x) is the (constant) Radon-
Nikodym derivative [d(x~1ζx)]/dξβ If L is a unitary representation of
K and if Lx is defined by L\ = Lxξx-i, ξ e K, then L} = Lxf. From
this it follows readily that f—>xf is an automorphism of CQ(K) which
is isometric in the C*-norm || | |. Therefore this map extends to an
automorphism of C*(K). We define an action of G on K* by setting
zx = {fe C*(K) :xfez} for zeK*, xeG. Glimm [10] and Fell [7] have
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shown that the map of K* x G —> K* given by (z, x) —> 2# is continuous,
giving us a topological transformation group.

LEMMA 1. Let (S, G) be a topological transformation group.
Suppose S is a T0-space. Then the stability subgroups of G are
closed.

Proof. Let H be the stability subgroup of G at p e S . Then
{p}H = {p}, so that {p}~H~ g {p}~. If x e H~, we have {px}~ = {p}~x S
{p}~~. Since or1 e H~, we have {pj'αr1 £Ξ {p}~ and hence {p}~ £ {p}-£ =
{pa;}~; i.e., {px}~ — {p}~. But S is To. Therefore px = p and xeH.

We may now state our main theorems.

THEOREM 1. Let G be a locally compact group and let K be a
closed normal subgroup of G. Let z&K* and let H be the (closed)
stability subgroup of G at z. Let L be a representation of H such
that {z} is ELlK-thick. Then &{UL, UL) is isomorphic to &(L, L)
and {z}G EuL\κ-thick.

THEOREM 2. Let G be a locally compact group and let K be a
closed normal subgroup of G. Let M be a representation of G.
Assume that {z}G is EM]K-thick for some ze K*. Let H be the (closed)
stability subgroup of G at z. Suppose G/H is σ-compact. Then there
is a representation L of H such that {z} is ELlκ-thick and such that
M~ UL.

3* Proof of Theorem 1* We begin our proofs with the fol-
lowing lemma.

LEMMA 2. Let H and K be closed subgroups of the locally com-
pact group G, K normal, and K £ H S G. Let L be a representation
of H. Then for every fe C*(K) and g e &(UL) we have [(UL \ K)fg](x) =
(LI K)}g(x) for locally almost all zeG.

Proof. Suppose first that fe C0(K) and g is continuous with com-
pact support modulo H. Set

u(x) = (L I K)}g(x) = [ f(ξ)Lxξ-ιx-ig(x)dξ = \ f(ξ)g(xξ^)dξ .

Clearly u is continuous with compact support modulo H and belongs

to $Q(UL). Let ve&(UL) be continuous with compact support modulo

H, and choose h e C0(G) such that I h(ηx)dη = 1 f or x in the support
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of v. Then

(u, v) = \ h(x)(u(x), v(x))dx = I \ h(x)f(ξ)(g(xξ"1)9 v(x))dξdx

^g, v)dξ = ((U*\ K),g, v) .

Since the set of all such v is dense in &{UL), our result holds in this
case.

Next suppose / e C0(K) and g e tQ(UL). Choose a sequence gn e ΪQ(UL),

continuous with compact support modulo H, such that || gn — g \\ < 2~n.
Then \\{UL\K)fgn- (UL\K)fg\\ < \\f\\2~\ As in the proof of Pro-
position 1 of [1], gn—>g and (UL\K)fgn~-^{UL\K)fg locally almost
everywhere.

Finally, if feC*(K) and g&&(UL)9 we may choose a sequence
fn e C0(K) such t h a t \\fn-f\\< 2~\ Then || (L | K)} ~ (L \ K)} \\ < 2 -

uniformly for all x e G, so that (L \ K)}ng(x) —• (L \ K)}g(x) uniformly on
G. Moreover || (UL \ K)f%g ~(UL\ K)fg \\ < 2~n\\ g\\, from which it follows

that (UL I K)fng —+ (!7Z | i ί)/^ locally almost everywhere. Our lemma is
thereby proved.

We now assume all the hypotheses of Theorem 1. If π is the
natural projection of G into G/H9 we define a : G/H—> K* by a(π{x)) =
CT for xe G. a is continuous and one-to-one.

LEMMA 3. EuL]κ(S) = JS/z(α-1(S)) /or e^erτ/ Borel set S g # * .

Proof. In the first place, we note that (L | K)f — 0 for / e ^
In fact, {z} Π C{^}- = 0 implies that ^^(C^}") = 0 from which we
get EL]K({z}~) = 7. But this says that (L | JBΓ)^ = 0 for all v e §(L) and
all fe f){z}~ = «, as desired.

Let S be a closed subset of K*. Then π(x)ea~1(S) if and only
if zxeS, that is, if and only if zx^Γ\S. Therefore fe ΠS implies
xfez and hence (L | K)} = 0. Let g e &(UL). Let fe Π S. By Lemma
2, we have [{UL \ K)fg](x) = 0 for locally almost all x e π^a-'iS)). If,
moreover, g e Range (E^a-^S))) then g(x) = 0 for locally almost
all xίπ~\a~\S)), so by Lemma 2, [(ί/z | ΛΓ)/̂ ](a?) = 0 for locally
almost all x£π~\or\S)). We conclude that Range (EL(or\S))) S
Range (^z | J C(S)).

Suppose now that ^ g Range (EL(a~1(S))). Then ^ does not vanish
for locally almost all x & π~\a~\S)). Since g is Bourbaki measurable
([4], p. 180), there exists a compact set C g Cπ"1(α~1(S)) of positive
Haar measure upon which g is continuous and does not vanish. Let
x e C. Then z £ Sx~x so that EL\K{Sx~λ) — 0. Hence there exists
fe ΐ\{Sx~1} such that (L\K)fg(x) Φ 0. Setting f{x) = χ-'f, we have
f{x) e S and (L | K)}{x)g(x) Φ 0. By continuity we have (L | K)y

f(x)g(y) Φ 0
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for y in some neighborhood Nx of x in C. Since C is compact and of
positive measure, Nx has positive measure for some xeC. It follows
from Lemma 2 that for that x, (UL \ K)f{x)g φ 0. Therefore
gί Range (EuLικ(S)).

We have proved Lemma 3 for closed S. The general case then
follows from the fact that a projection valued Borel measure on a
topological space is uniquely determined by its values on closed sets.

LEMMA 4. Let H be a closed subgroup of the locally compact
group G and let E be a regular Borel projection valued measure on
G/H. Let J7~ be a To topology on G/H weaker than the natural
topology such that ((G/H)y, G) is a topological transformation group.
Then E takes its values in the von Neumann algebra generated by
{E(S):SejT}.

Proof. Let B be a Borel set in GjH and let T be a self-adjoint
bounded operator commuting with all E(S), S e i 7 " . We must show
that E(CB)TE(B) = 0. Since E is regular, it will suffice to show that
EiCJTEiC,) = 0 for every disjoint compact pair Clf C2QG/H. A
standard compactness argument reduces the problem to the following:
if ply p2£ GjH, pλ Φ p2, find disjoint neighborhoods Nλ of pλ and N2 of
p2 such that EiNJTEiN,) = 0. To do this we find a ^"-closed S which
separates p1 and p2; say, p1 £ S, p2e S. Since S is closed in the natural
topology of G/H, we can find a compact neighborhood N of e in G
such that p.NN-1 Π S = 0. Set Nλ = pλN, N2 = p2N. Clearly N, S
CSN and N2 S SN. Since S is ^"-closed and N is compact, SN is
^'-closed. By hypothesis E(cSN)TE(SN) = 0, and our result follows.

Proof of Theorem 1. Let _̂ ~ = or1 (topology of K*). ^~ and
EL satisfy the hypotheses of Lemma 4. According to Lemma 3
{EL(S) : S e ^~} e {values of EuL\K}. This, in turn, is contained in the
center c^ of the von Neumann algebra generated by UL \ K. By Lemma
4, {values of EL} s ^ . Therefore ^ ( C / z , C7Z) = ^((£? z , ί7z), (JS?Z, ?7Z) =

, L) by [2]. Finally, {z}G is ^z.^-thick by Lemma 3.

4* Proof of Theorem 2* For the proof of Theorem 2 we need
the following lemmas;

LEMMA 5. Let H be a closed subgroup of the locally compact
group G such that G/H is σ-compact. Let ^ be a To topology on
G/H weaker than the natural topology such that {{G/H)^, G) is a
topological transformation group. Let & be the Borel field generated
by ^~. Let fe C0(G/H). Then f is ^-measurable.
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Proof. As is well known, it is enough to show that C G ^ , where

C — ΠΓ, Oi9 C is compact and the 0* are open in G/H. (See [11], p. 220.

Such a set is called a compact Gδβ) Since Cθ^ is closed, it is σ-compact,

whence cC is cr-compact. Therefore CC has the Lindelof property.

Let p e C, g e CC. As in the proof of Lemma 4, there exist open

neighborhoods Npq of p and Mpq of g and a set Sp g <Ξ G/iϊ such that

either Spq or cSpq G J^~, JVM £ $ M , ilfpg S C$pg Since C is compact,

we find p19 --,pn such that C s U * ^ a n ( ^ s e t Sq ~ \Jΐ Sp.q and

Mq = ΠΓ Λf̂ g. Then Sqe&, C g Sff, Mff g cSq, and ikf/is an open

neighborhood of q. Since CC is Lindelδfian, we find ql9 q29 such

that CC g UΓ Afff. and set S = f |Γ Sff.. Then S e ^ . C g S , c C g cS;

that is, C e ^ .

LEMMA 6. Let G he a locally compact group, K a closed normal
subgroup, and U a representation of G. Let G act on K* as above.
Then, for any Borel set S in K* and xeG, Emκ{Sx) = U^ιEu{κ{S)Ux.

Proof. By the uniqueness of Glimm measure, it suffices to prove
this for S closed in K*. We note that (Ϊ7| ISΓ)*"1 = U~\U\K)UX.
Therefore v e Range Euικ(Sx) if and only if (U | K)fv = 0 for all / e f]Sx,
if and only if (U\Kyf'

1v = 0 for all fef)S, if and only if
JJ-1{U\K)fUxv = 0 for all fe ΠS. But this is true if and only if
Uxv e Range Eulκ(S), if and only if v e Range U~lEmK{S)Ux.

LEMMA 7. Let U be a representation of the locally compact group
K. Let 6^ be a collection of closed subsets of K*. Then Range
Eu{ n &*) = Π {Range Eσ(S) S e Sf}.

Proof. Let So = Π Sf. Then Π S 0 - t h e closed ideal of C*{K)
generated by U{ΠS : Se S^} — the closed linear span in C*(K) of
U {Π S : S 6 6^}. Now let v e Π {Range Eσ(S) : S e ^ } β Then, for every
Se S^ and every fe ΠS, we have Ufv = 0; that is, Ufv — 0 for
every fe U{ΠS :SeS^}. By linearity and continuity, Ufv — 0 for
every fef)S. Therefore ve Range Eσ(S0). The opposite inclusion is
clear, since Eσ is monotonic.

Proof of Theorem 2. Let a be as above, let J7~ = a"1 (topology

of if*), and let & be the Borel field generated by ^~. Then

& = a-1 (Borel field of if*). As in [11], p. 75, Eoicr^S)) =

EM\κ(S) for all Borel S in if* defines a projection valued measure Eo

on ^ . According to Lemma 5, every function in C0(G/H) is ̂ im-

measurable. Define E(f) = 1 fdEQ. Clearly E is a *-representation

of CQ(G/H) in the sense of [3]. We assert that (E, M) is a represen-
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tation of the locally compact transformation group (G/H, G) as defined
in [3].

( 1 ) E(C0(G/H))$(M) is dense in £>(M). In fact, since G/H is
tf-compact, there exists a sequence of functions fn e C0(G/H) such that
0 ^ fn } 1. By the monotone convergence theorem, E(fn) —• I weakly,
and (1) is established.

( 2) MMΩM-1 = E(RJ) for all fe C0(G/H) and all xeG. Here
(Rχf)ip) = /(paO F o r this, it suffices to show that MxEQ{B)M~ι = E^Bx-1)
for all Be ^ and a; e G. But this follows immediately from Lemma 6
and the definition of Eo.

According to the Corollary of Theorem 2 in [3], (E9 M) is unitarily
equivalent to an induced representation of (G/H, G); that is, there is
a representation L of H such that (E, M) is unitarily equivalent to
(EL, UL). We shall henceforth assume E = EL and M = UL. In par-
ticular, we have EQoa~l — EuL{κ and also E0(C) = EL(C) for every
compact Gδ C in G/H.

We must now show that {z} is U^*-thick.
Let S be K* closed. First suppose z e S. We assert that ELlκ(S) = I.

By Lemma 7, it suffices to show that ELΪK(SN) = I for every compact
neighborhood JV of e in G. Let geC0(G), ve&(L). As in [1], we
define ε(g,v)e$(UL) by

, v)(x) -
π

e(g, v) is continuous and has compact support modulo H. Let C be a
compact G8 neighborhood of π(e) S ττ(iV). Suppose Support (βf) S
NΠπ-'iC). Then

6(βf, v) G Range EL(C) = Range £Ό(C) S Range E0(a"\SN))

= Range EuLικ(SN) .

According to Lemma 2 , / e Π SiV implies (L | K)x

fε(g, v)(x) — 0 for locally
almost all # e G, hence for all a? e G by continuity. In particular,
(L I K)fe(g, v)(e) = 0. Letting gδ^ΨJ2 \ H approach the Dirac δ function
on H, we get (L | K)fv — 0. Since v is arbitrary, ELlκ(SN) = I.

Now suppose 2 g S. We assert that ELlκ(S) = Q. Let ve RangeEL[K(S).
Choose a compact neighborhood N of e in G such that πiNN"1) Π or^S) =
0 . Then α-\SN) ΓΊ π(JSΓ) = 0 . Let fef]SN. Let X G G . Then
xfenSNx-1. Hence if f e JVar1 n iϊ, we have xfenSξ, so that
ίaj/e ΠS. Let C be a compact Gδ neighborhood of π(e) in τr(iV).
Suppose Support (g) S JV Π TΓ-^C). Then

(L I lOJefo, t;)(») - f χ g(ξx)δB(O-llMξ)ll2L71(L \ K)ζxfvdζ = 0
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(compare the proof of Lemma 6). Prom Lemma 2,

ε(g, v) e Range EσLικ(SN) = Range Eoiar^SN)) .

On the other hand e(g9 v) e Range EL(C) = Range EQ(C). Since
a-\SN)f]C = 0 , e(g, v) = 0. Therefore ε(g, v)(e) = 0 because ε(g, v)
is continuous. Again letting gS^δψ [ H approach the Dirac 8 function
on H, we get v = 0. Therefore ELlκ(S) = 0.

Finally let ^ be the class of all Borel sets S in if* such that
either zeS and EL]K(S) = I or z g S and EL]K(S) = 0. Clearly ^ is
a σ-field, and by the foregoing ^ contains all the closed sets. There-
fore ^ consists of all the Borel sets of if*; that is, {z} is EL!jE-thick.

5* Connections with Mackey's work* In the original forms of
Theorems 1 and 2 due to Mackey ([13], Theorem 8.1), it is assumed
that G satisfies the second axiom of countability and that if is a type
I group, if* is replaced there by K, the set of all unitary equivalence
classes of irreducible representations of K, equipped with the Mackey
Borel structure. According to Glimm ([8], Theorem 1) the natural
mapping of K onto if*, which sends every irreducible representation
into its kernel in C*(if), is one-to-one if if is of type / and second
countable. Moreover, Fell has shown [6] that in this case the Mackey
Borel structure is just the σ-field generated by the topology of i f(= if*).
Our result then specializes to give Mackey's result, except for the
following: Mackey shows that L \ K must be a multiple of the (unique
up to unitary equivalence) representation (whose kernel is) z. To get
this, in our general setting, seems to require a type restriction on if
(or at least on z). The form of our restriction is suggested by Glimm's
theorem ([8], Theorem 1) that a separable C* algebra is of type / if
and only if its image under every irreducible representation contains
the compact operators. We are led to make the following definition:

DEFINITION. Let 21 be a C*-algebra and let L be an irreducible
representation of 21. L is called semi-compact if Ls% contains the com-
pact operators on ξ>(Z/). Ker L will also be called semi-compact.

We know (see Glimm [1], p. 583) that if L is semi-compact and
if M is irreducible with Ker L — Ker M, then L and M are unitarily
equivalent.

LEMMA 8. Let U be a representation of the C*-algebra 21 with
structure space Z. Let z be semi-compact in Z. Suppose {z} is Eσ-
thick. Then U is a multiple of the (essentially unique) irreducible
representation L° of K such that Ker L° = z.

Proof. By hypothesis 21 contains an ideal ^ 2 z such that
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is isomorphic to the algebra of all compact operators on £>(L°). As in
the proof of Lemma 3, Eπ{{z}~) = I implies that Ua — 0 for all aez.
Dividing out by z, we may therefore assume z — {0}. Let S =
{weZ :w ^ ^}. S is closed. ^ Φ {0} implies {0}gS. Therfore
Eu(S) = 0. Since ^ = ΠS, this says that JJ\J^ is a nondegenerate
representation of ^ ^ . From the known representation theory of the
algebra of compact operators on a Hubert space, we obtain an orthogo-
nal decomposition of ξ>( U) into U \ ^ invariant subspaces ξ>γ, the
restriction of U\J^ to each of which is unitarily equivalent to the
irreducible representation L° \ ^ . Let a e 21, v e ξ>γ. Since U \ ^ is
nondegenerate, we can choose a sequence bn e ^ such that Uhn Uav —>
E7>. But δ . α e j ^ and hence UKave&. Therefore Uave&y; that is,
the ξ)γ are invariant under U. Let Ly — U restricted to act on ξ)y.
Ly is irreducible since Ly \ J? is. Now Range 2^({Ker L7}-) 2 Φγ ^ {0}.
Since {0} is ^- thick, {0} e {Ker Ly}~; that is, Ker L γ = {0}. Since
Ker 1/ = Ker L°, L γ - ZΛ Therefore ί/ - a multiple of L°.

As regards Theorem 2, Mackey shows that if, in addition to the
hypotheses on G and K mentioned above, one assumes that K is
regularly embedded in G (see [13], p. 302 for the definition), then
EMlκ is concentrated in an orbit if M is primary. Glimm ([9], Theo-
rem 1) has proved that, in Mackey's case, the assumption of regular
embeddedness is equivalent to the topology of K/G being almost Hausdorff,
in the following sense:

DEFINITION. Let X be a topological space. X is said to be almost
Hausdorff if every nonvoid closed subset contains a nonvoid relatively
open Hausdorff subset.

We propose to turn Glimm's theorem into a definition, even when
K is not of type / and second countable.

DEFINITION. Let K be a closed normal subgroup of the locally
compact group G. K is regularly embedded in G if K*/G is almost
Hausdorff.

REMARK. It follows from [9], p. 133, that K regularly embedded
in G implies that every G-orbit in K* is a Borel set and in fact is
relatively open in its closure.

LEMMA 9. Let K be a regularly embedded closed normal subgroup
of the locally compact group G. Let M be a primary representation
of G. Then there is a G-orbit of K* which is EMlκ-thick.

Proof. If S is a G-invariant Borel set in K *, then
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by Lemma 6, and hence EMlκ(S) belongs to the center of the von
Neumann algebra generated by M. Therefore EMlκ(S) = 0 or /. Let
S* be the collection of all closed G-in variant S S= K* such that
EM\κ(S) = I. So = n & e 6S by Lemma 7. Let θ be the natural
projection of K* onto K*/G. If R is any nonvoid relatively open
subset of Θ(SO), then So — Θ~\R) is a proper closed G-invariant subset
of So. Hence EMlκ(S0 - fl-'CR)) = 0 so that Emκ{θ-\R)) = I. Now
Θ(SO) is a nonvoid closed subset of K*/G. There exists a nonvoid
relatively open Hausdorff subset Ro of Θ(SO). We assert that Ro reduces
to a point. If not, then Ro contains two nonvoid disjoint subsets R1

and R2 which are open relative to Ro and hence to Θ(SO). Then
EM\K(Θ"\R^) — I for i — 1, 2, an impossibility. So JB0 reduces to a
point, Θ~1(RO) is a G-orbit in if*, and our lemma is proved.

REMARK. This is not the only reasonable definition of regular
embeddedness. Indeed, if G satisfies the second axiom of countability,
we could simply require that K*/G be To or, more generally, be
countably separated. The conclusion of Lemma 9 would then follow
(cf. [9], p. 126). If K is not type I, the relations between these
properties and the almost Hausdorff property is obscure.

6* Three examples. Our first example shows that, despite
Lemma 1, the stability subgroup of G at a point in K may be very
bad. Let G be the group whose underlying topological space is
T x Z x C, where T = {ζ e C: | ξ \ = 1} and Z is the discrete integers.
The group multiplication is given by

(ζ, m, α)(ζ, n, b) = (ξζ, m + n, aζein + b) .

Let K = {1} x Z x C and N = {1} x {0} x C. N and K are normal
subgroups of G, and N is abelian. We identify N = iV* with C as
follows: each XeC corresponds to the character χ ( λ ) : (1, 0, α ) - ^ e i R e ( α λ ).
In terms of this identification, the action of K on AT* is given by

λd,«,α) = χe-imΛ B y Theorems 1 and 2, λ L = κU*w is irreducible if
λ ^ O ; moreover λL ~ μ L if and only if λ and μ belong to the same
iΓ-orbit in N*.

We next calculate λL ( l 'm > α ). To this end, we realize λL in the
Hubert space of all square summable functions f on Z according to the
rule: (λL(I,n,6)/)(fc) = exp (i Re (Xbe~^^))f(n + k). Then (λLίf£#/)(fc) -
(xL{lin,u-u-i^f){k) = exp (i Re (Xbξ-ιe-ime~i{n+k)))f{n + k). It follows
that λL(?>w'α) = ^-lQ~imL. Therefore λL{ζ>m'a) ~ λL if and only if λ and
λξ"1 are in the same if-orbit. Supposing λ Φ 0, we see that the
stability subgroup of G at ( λL)" in if is {(£, m, α) : ί = ei% for some
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n e Z}9 a proper dense subgroup of G.
As a consequence of Lemma 1, we see that λL and μL have the

same kernel in C*(K) if | λ | = \μ\. (That this sufficient condition is
also necessary may be seen by applying the structure theory of Glimm
[10].) We also see that Theorems 1 and 2 are useless in this case in
analyzing the irreducible representations M of G for which {Ker λL}G
is jE^r | irthick. This is precisely because the stability subgroup of G
at Ker λ L in if* is G itself.

Our second example shows that in Theorem 2 some restriction on
G/H, such as ^-compactness, is necessary. Let Gx be the "ax + h group";
that is, the group whose underlying topological space is R x R and
whose group multiplication is given by (α, δ)(c, d) = (a + c, bec + d).
Let G be the same group, except that the topology is modified by
making the first factor discrete. Let Kλ — {0} x R §Ξ G2 and K =
{0} x R £ G. Let ψ be the (continuous) identity map of G onto Glβ

Let χ be a nontrivial character of Kλ. By Theorem 1, M1 — OιU
% is

an irreducible representation of Gx and {χ}G1 is i ^ ^ - t h i c k in Kx = ifx*.
Let M — Mλoφf an irreducible representation of G. Because φ\K is
an isomorphism of if onto ifx which is equivariant with respect to G,
when G and Gx are identified as abstract groups under φ, {χo(φ\K)}G
is Emκ-thick in if = if*. The stability subgroup of G at {χo^ l i f ) }
is if. But Λί is not induced from any representation of if, because
dim φ(ΛΓ) = V̂ o while dim &(0U

L) ^ 2*° for any representation L of K.
One may see that, in this case, the proof of Theorem 2 breaks down
right at the beginning: the representation E of C0(G/K) defined there
is identically zero.

Finally, we show that the first part of Theorem 6.2 of [5] is an
easy consequence of our Theorem 1. In fact, we have the following
generalization: Let L be an irreducible representation of the closed
normal subgroup K of the locally compact group G and let H be the
stability subgroup of G at L in K. If GU

L is irreducible, then H — K;
if L is semi-compact, the converse holds. In fact, suppose H Φ K
and choose xe ί f , xϊK. Define T on &(UL) by setting (Tf)(y) =
Vf(xy), where V implements the equivalence of Lx and L; i.e.,
L? = F-L.F, ξeK. Then (Tf)(ξy) - Vf(xξy) = VLutm-ιV-1Vf(xy) =
Lξ(Tf)(y) for f e &(UL), ξeK, yeGf and it follows easily that
Tfe&(UL) and that T is bounded. T clearly intertwines UL but is
not a scalar multiple of I, so the first assertion is established. The
converse assertion follows from Theorem 1 together with the observation
that H is the stability subgroup of G at KerL in if* by virtue of
the comment following the definition of semi-compactness.

There remains the question of whether the converse is true without
the semi-compactness condition. If L is not semi-compact, but if G/K
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is discrete, the converse is true ([12], Theorem 3'). However, the
general case is open.
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