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ON THE STABILITY OF THE SET OF EXPONENTS
OF A CAUCHY EXPONENTIAL SERIES

S. VERBLUNSKY

If feL(— D, D) and Q(z) is a meromorphic function whose
poles, all simple, forms a sub-set of the set {3,} » =0, £ 1,
+ 2, ...), then the C.E.S. (Cauchy exponential series) of f with
respect to Q(z) is Jc.eM®, where

CyeM® = res Q(z)gp fBer==0dt ,
Ay —D

Suppose we are given a class A of functions f each of
which can be ‘represented’ in (— D, D) by its C.E.S. with
respect to Q(z). We define a set of neighbourhoods U of {1,}.
Then {4,} is stable if there is a U such that to each {r,})ecU
there corresponds a meromorphic function ¢(z) whose poles, all
simple, form a sub-set of {r,} and which is such that each
fe A can be represented in (— D, D) by its C.E.S. with respect
to q(2); and {4,} is unstable if there is no such neighbourhood.

The case in which 4, =4y, A is BV[— D, D], ‘representa-
tion of f in (— D, D)’ means ‘3|, za.Cve*® — 12 (flx +) + flx —))
boundedly within (D, D)’ is considered. It is shown, in particu-
lar, that with reasonable conditions on the set of neighbour-
hoods U, {1} is unstable if D > 1/2z, and stable if D =1/2,

TI.et D> 0 and fe L(— D, D). let Q(2) be a meromorphic function
whose poles, all simple, form a sub-set of the set {\}J(» =0, =1, ---).
Here, and in what follows, the use of the symbol {\,} implies that
N #E N, if v~V The C.E.S. (Cauchy exponential series) of f with
respect to @ is >c,e™® where

c.eM = res Q(z)SDDf(t)e“”““dt .
Suppose that the set {\,} is such that, for a class A of functions f,
the C.E.S. of f ‘represents’ f in (— D, D). Then we may consider
the question of the stability of the set {\,}.. We define, in some way,
a set of neighbourhoods U of {\,}. Then {\,} is stable if there is a
neighbourhood U such that to each {,} € U, there corresponds a mero-
morphic function ¢(z) whose poles, all simple, form a sub-set of {&,},
and which is such that each fe A can be represented in (— D, D) by
its C.E.S. with respect to ¢(z); and {\,} is unstable if there is no such
neighbourhood. The stability of {\,} depends on the value of D, the
class A, the, particular meaning we give to the ‘representation’ of f,
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176 S. VERBLUNSKY

and finally on the definition of the set of neighbourhoods U. In this
note, we confine our attention to the simplest case: A, = v, A is the
class of functions f which are BV[— D, D] and satisfy 2f(z) =
flx +) + f(® —) in (— D, D), ‘representation’ of f means ‘bounded
convergence to f(x) within (— D, D), i.e., for each 0 satisfying
0<d<D, X< c™ — f(x) boundedly in the segment || < D — d.
We recall that if D = 7, then each f e A can be represented by its
C.E.S. with respect to Q,(z) = 1/2 coth 72, since, in this case, the C.E.S.
is the Fourier series of f. Let us suppose that to each neighbourhood
U there corresponds an ¢ > 0 such that {g}e U if > |p, — N | <¢g
and to each ¢ > 0 there corresponds a neighbourhood U; such that if
{r.} € Us then sup |y, — N, | < 0. What we prove, implies that {iv} 4s
unstable tf D > /2, and stable of D = /2. We shall, however, prove
more than this, viz.

THEOREM 1. Let {l,} be a real set not containing every integer,
such that 1, is an integer for |v| = N. If D > x/2, then there is no
meromorphic function q(z) whose poles, all simple, form a sub-set
of {il,} and which is such that each fe A can be represented by its
C.E.S. with respect to q.

THEOREM 2. Letl, =v + «, + 18, where a,, B, are real numbers
which satisfy
mle,| <+, Tm|B|<co.
Iv|-e 8 (PR
If D = 7/2, there exists a meromorphic function q(z) whose poles, all
simple, form a sub-set of {il,} and which is such that each fe A can
be represented by its C.E.S. with respect to q.

THREOREM. 3. The concluston of Theorem 2 holds tf the condition
on «, is replaced by sup |a, | < 1/4.

The relation between Theorem 2 and the work of Korous [1] is
explained in §6. The relation between Theorem 3 and the work of
Levinson [2] is explained in §7.

2. Let 0 <D =r, and let A have the meaning specified in §1.

LemmaA 1. If H,(t)e L(— 2D, 2D) for n = n,, then, in order that
for each fe A,

|" s — w)dt— fa)



ON THE STABILITY OF THE SET OF EXPONENTS 177
boundedly within (— D, D), it is mecessary and sufficient that
¢ 1
S H, (w)du — 0 sgnt
0

boundedly within (— 2D, 2D).

Proof. Let
sin (n 4 1>u
J(w) = L 2
an sin 1 U

Then for each fe A,
D
|7 ). — )it — fia)
boundedly within (— D, D), and
¢ 1
S J(w)du — 5 sgnt

boundedly within (— 2D, 2D). Let K,(u) = H,(u) — J,(u). It suffices
to prove: in order that for each fe A,

S: FOK,(t — ©)dt — 0
boundedly within (— D, D), it is necessary and sufficient that
ke, (t) = S: K, (w)du — 0
boundedly within (— 2D, 2D).
Sufficiency. We have
(1) | AR — )t = FD,D — @) — (= DYle(~ D — )
— "kt — wyar)
and the second member tends to zero boundedly within (— D, D).
Necessity. In the first place, it is necessary that for each
te(—2D,2D), k,(tr)—0 as n— . For let @, 8e (— D, D) and let v =«.

Let f(tf) =1 in the open interval, and let f(¢f) = 0 outside the closed
interval, whose end points are «, 8. Then
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k(8 — a) = SB K,(t — a)dt—0 .

Since «, B can be chosen so that 8 — a has any assigned value in
(— 2D, 2D), this proves our assertion.

By (1), for each xze(— D, D), the functions k,(t — x) of ¢, for
n = m,, form a sequence of elements of C[— D, D] such that

|7 Rt — a0

is convergent for each fe A. By the principle of uniform boundedness,
it follows that
sup |k, (& —2)] < .
te[—D, D]
Choose * = D — 4. Then k,(t) is uniformly bounded in [— 2D + 3, d].
Choose x = — D + 6. Then k,(¢) is uniformly bounded in [ -4, 2D — J].
Hence k,(t) is uniformly bounded within (— 2D, 2D) as required.

3. Proof of Theorem 1. We may suppose that D = rw. Let w
be chosen to satisfy 7 < @ < 2D. We choose the notation so that if
0e{l,} then 0 =1,. If a meromorphic function ¢(2), with the properties
mentioned in the enunciation, exists, let C, denote a contour which
contains in its interior precisely those 4l, for which |v| =< n, and which
does not pass through any of the 4l,. Let

(2) H,(u) = 2—7155 g(R)edz .

If > ¢ is the C.E.S. of f with respect to ¢(z), then

) 3 et = 3 res ala)” s
=" 8@ — .

We have

(4) S:Hn(u)du _ %S%q(z) 1__;;_ o

r .
— v 1 . p—ilye
2, ™)
where 7, is the residue of ¢(z) at 4/, and where, if I, = 0, we use the
convention

— p—il il
(5) 1 — eg—iot .1 — ettt

—lml—e g,
i, o4l
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By Lemma 1, it is necessary that

(6) S Lol — e ) — Lsgna
Wisn g1, 2

boundedly within (— 2D, 2D), and hence in [— w, ®]. Let ze(— o,
® — 2m). Then for |v| = N, the terms on the left are unaltered on
replacing « by « + 27. By subtraction, it follows that

(7) P Le"”"”(e”“ﬂ" —1=-1

i< 4l
for such 2, and hence for all . We note that if I, = 0, the term with
vy=0is — r2r. At this point, we distinguish to cases, (a) [, # 0,
(b) I, =0.

In case (a), we integrate (7) over (— X, X), divide by 2X, and
let X— . We obtain a contradiction. In case (b), we take mean
values as in case (a), and deduce that the term with v =0 is — 1.
Then (7) implies that

r,

e—ilvz(e—il,,?ﬁ _ 1) =0
o<ivi<w 3,

for all . If we multiply this by its conjugate, and take mean values,
we deduce that

|2

£

(8) 0<%‘_,<N—T sinzwl, =0.
By (6),
"1 — ey Lging @
0<%sn 1, (L—e ) 2 s 2

boundedly within (— 2D, 2D). Considering odd parts, its follows that

(9) Z, &Sinl,x——»—;—sgnx-— ........

o<ivli=n ¢,

boundedly within (— 2D, 2D). By hypothesis, there is an integer p
say, which is not one of the [,; and ¢ # 0 since [, =0. By (8), », =0
if 1, is not an integer. Hence, on multiplying both sides of (9) by
psin px and integrating over (— m, w), we obtain 0 = 1, 2 contradiction.

4. Proof of Theorem 2. TFor all sufficiently large =, the circle
I',:|z| =n + 1/2, contains in its interior the points 4l, for [v| = n,
and every point on I', is at a distance greater than 3/8 from all the
points ¢l,. Let ¢q(z) be a meromorphic function whose poles, all simple,
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form a sub-set of {il,), and define H,(u) by (2) with C, replaced by
I',. TUsing the notation of §§1, 2, we have

J(u) = % Sr Qu(z)e"dz ,

and therefore, as in § 2, it suffices to prove that we can choose ¢(2)
so that

| Kwdn =5 @@ - @) E=""dz—0
0 2my Jr,

boundedly within (—=, 7).
Write

P(z) = (z — il,) ﬁ (1 m)(l - zl_y>

In § 5, we shall prove

LEMMA 2. As |z|— o, P(z) =o(z|"e")., On I,, |PR)|™ =
O(,nljze—ni'rezl) as n— oo,

The meromorphic function Q,(2)P(z) is regular, except possibly at
the points 7y, which are at most simple poles of residue P(iv)/27r. By

Lemma 2, P(iv) = o(|v|"*). Hence we can define the meromorphiec
function

R(z) = N[P © 4 5 P(w)( + L)]

—t
which has the same principal parts as Q,(2)P(z). Thus
Qu(2)P(z) = R(z) + S(z)

where S(z) is an integral function. We can write ¢(z)P(z) = F(2),
where F(z) is an integral function. Then

(10) z) — Que) = F@) — IS)((:)) — Re)

In §5, we shall prove
ILeMmA 3. On I',, R(z) = o(n'®) as n— <o,

We choose F(z) so that the numerator in (10) will not be of a
greater order of magnitude than R(z). This means, since F' and S
are integral functions, that F'= S + ¢ where ¢ is a constant. Theorem
2 will follow if we show that



ON THE STABILITY OF THE SET OF EXPONENTS 181

_ c—R@z) 1—e¢*
Li@) = Sr,, P@) PR

tends to zero boundedly within (—z, 7). Write z = (n + 1/2)¢*®. By
Lemmas 2 and 3,

¢ — R(z)
P(z)

If then |2| <7 — 0, 0 >0, we have

— O(,ne—mr]cos OI) .

L(z) = o(nS:"e-mcosGlda> = o(1) .

5. In order to prove Lemmas 2 and 3, it will be convenient to
write

P(iz) = 1p(z),

so that
pe) =~ I (1= F)(1-£),
and
(1 R(iz) = 1(2)
= I )]

We need the following result, which is a special case (@ = 0) of [3]
Theorem 1 (with a change of notation).

LEMMA 4. Let L, M be positive numbers. Lets, =v 4 o, + 17,
where 0,, T, are real numbers which satisfy |o,| < L, |7,| < M for
all v. Suppose that there is a 6 > 0 such that |s,| =0 for all v.

Let
o= (- 26 D) 2).

0 —v

Then there is a positive constant C (depending only on L, M, 0) such
that,

(1) for all z, |v(2)| < C(L + |z|)Zerim! ;

() if |2 —s,| =0 for all v, then |y(z) |7 < C(1 + |z |)*Temime! |

Proof of Lemma 2. We can find a positive number L < 1/8 such
that |a,| < L for |v| > N say; and a positive number M such that
|B8,] < M for all v. In Lemma 4, choose s, =1, for |v| > N; = v for
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0<|v|=N; =3/8 for v=0. Then p(R)/¥(2) tends to a nonzero
constant as |z|— . By Lemma 4 (with ¢ = 3/8), there is a positive
constant D such that

(i) |p@®)| < D|z|*em if |z| is sufficiently large;

(ii) if z is on 1", and n is sufficiently large then | p(2) |™* < Dn*fe~lims!
(the condition |z —s,| = 3/8 for all v being satisfied). Since P(z) =
p(— 12), and 4L < 1/2, the lemma follows.

Proof of Lemma 3. By (i) above, p(v) = O(|v[*¥). By (11), it
will suffice to prove that if z is on I",, then

s 2P0 _ ey

y(z — V)

The left hand side is

4L 4L
0{ 5 —— + 3 > + S
0<v=n 1 n<ys2n 1 v>an
V(n"l“?“"))) V(U—”}’b——)

The first and second sums are O(n‘*log n). The third sum is O(n').
This proves the lemma.

In Lemma 4, we could replace 4L by 2L, if the o, satisfy the
further condition

o
r _ =0(1).
S
2

lvisn

This follows from [3] Theorem 2. Hence, as the preceding proof shows,
we can replace 1/8 by 1/4 in Theorem 2 if we add the condition

Ivisn

(44
—”:0(1 .
L1 oW

2

6. The function ¢(z) of §4 is given by

1 ¢ — R(z)
q(z) = - coth 7z + Py ®
Let 9,(z) = 1q(iz)
1 ¢ — r(@)
= —2 cot w2 + ——p(z) .

If > c.e is the C.E.S. of f with respect to ¢(z), then, for all suf-
ficiently large n,
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(12) S 6 = _I_S q(z)dzgm Fes—vdt
23 Jr, —=f2

lvisn

= LS qo(z)dzgm ft)er=2dt .
2ne Jry, —xl2
Suppose now that 8, = 0 for all v, and that ¢ is real. Then qu2) is

real for real z, so that qy2) = qy(2). If
7, = res q(z) = res ¢z)

then 7, is real. Let f be real. Write

z/

2
a, — ib, = ¢, = ryg f@eit .
2

Equating real parts in (12), we get

13) 3 a,cosla + b, sin b,z = %S qo(z)dzgml F(t) cos 2(w — t)d
ry, —x[2

lvisn
We thus obtain the class of trigonometric series investigated by Korous

[1]. Theorem 2 shows, in this special case, not only that (13) converges
boundedly to f(x) within (— /2, 7/2), but also that

>y a,sinl,e — b, cos 2

Ivisn

converges boundedly to zero.

7. We now turn to the proof of Theorem 3. We again suppose
that the notation has been chosen so that if 0e€{l,}, then 0 =1,. It
will suffice to prove

LEMMA 5. Under the conditions of Theorem 3, there are complex
numbers w, such that

boundedly within (— w, ).

For then, by the classical theorem of Mittag-Leffler, there is a
meromorphic function ¢(z) whose poles form a sub-set of {¢l,}, the
principal part at ¢, being ¢l w,/(z — 4l,) if [, = 0. If [, =0, we allow
the origin to be a regular point. Defining H,(u) by (2), we have

San(u)du = LS q(z)}_ﬂdz
0 271 Jo, 2
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= 3 w(l — ).

lvI=n
By Lemma 5,
w,— 0, > w,eTthE — — 1 sgn x
visn Ivisn 2
boundedly within (— 7, 7). Thus, Theorem 3 will follow from Lemma 1.
One way of proving Lemma 5 is to generalize the following theorem

of Levinson [2, 48]: if the real numbers \, satisfy |», | < P < 1/4,
then there are numbers w, such that

5, [wene — (7 fiyevat]

Ivisn 2n =

converges uniformly to zero within (— =, ) if fe L*(— w, ©). The

generalization consists in showing that we can replace the real \, by

vy + «, + 18,, where |«@,| < P and lﬂn [B,] <. However, we only
V|-

need the result for the function f(t) = 1/2sgnt. It seems worthwhile
to prove this special case, for which the argument of Levinson can be
given a rather simple form. This is done in §9.

8. We need the following deduction from Lemma 4.

LEMMA 6. Let S, =y + o, + it,, where o,, T, are real numbers
which satisfy |o,| =P, |7,| = Q for all vy, where 0 < P < 1/4 and
Q> 0. Let

T() = (2 —so)f:[(1 _ ;)(1 "sz_)'

Then there ts a constant K (depending only on P and Q) such that
(14) |Z()| < K1 + |z|yFemm!,

and there is a constant K, (depending only on P, Q and &) such that
(15) [ 7(9) |7 < KL + |2 [|*Fe

if |2 —S,| = ¢ for all v.

Proof. In the following proof, and in §9, the symbols K, K, do
not necessarily denote the same constants at each occurrence. In

Lemma 4, choose s, = %P, s,=8, for y+#0. For |v|=1, we have
s, | >% . By Lemma 4 (with 6 = min (1/2P, 3/4)),

(16) @) < K1 + |z ])*Fem .
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Now

P/z— S
Tiz) = — (2"
an @ =5 (E=2)e
and |(z — Sp)/(z — s))| < K for |z —s,| = 1/4. For such z, (14) follows
from (16). Finally, |Z(2)| < K inside |z — s,| < 1/4 since this is true
on the boundary. This proves (14).
Let |z —S,|=¢ for all v. If |z —s,| = ¢ then

(18 | () |t < K1 + | 2])*Peim!

by Lemma 4, and |(z — s))/(z — Sy)| < K, so that (15) follows from
(17) and (18). If, however, |z —s,| <¢&, then for small ¢ the disc
4d:|z —s,| <e is outside each disc |z —S,|<e v==+1, =2,.--).
If it is outside the disec 4 :|z — S,| < ¢, then (¥(2))~* is regular in 4
and so |7 ()| = K, in 4 since this is true on the boundary. If 4
meets 4" we apply this argument to the portion of 4 which is outside 4'.

9. Proof of Lemma 5. By the hypothesis (of Theorem 3), there
are positive numbers P, @ such that |«a,| = P<1/4, |B,]| = @, for all
v. Let C, denote the rectangular contour whose vertices are =+ (n +
1/2) &+ ni. Let

G@) = — 1) 1] (1 — li)(l — Z’) :

We define
w, = L[ _Gwew) g,
273 J-= G'(L,)(w — 1)
where
o(u) = 1 — cos mu )
u
Then

[a—y

S 1,60 = ZS” G(u)cp(u)dug e gr

Ivisn T J—eo On G(C)('M/ - C)

yPe ”cp(u)e du a7

S~

The last term is

n+1/2 . n+1/2 _
1 S P(u)e*du = _l_g 1 — cosu
—(n+1/2) 2r

; sin uaxdu
21

—(n+1/2) (A

1
——sgnw
) g
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boundedly within (— 7, 7). Hence it suffices to prove that I,(x)— 0
boundedly within (— 7, 7), where

eig‘m
o GE)(% — §)

Since G(z) is a function 7'(z), we have by (15), | G() |™* < Kn'Fe~™
on the horizontal sides of C,. Further,

|| < ene, |u— L[ < KL+ [ul)™, |p@)| < K1+ |ul)™.

Since |G(u)|< K(1 + |%|)*" by (14), the contribution to I, of a hori-
zontal side of C, does not exceed in absolute value

L(x) = SlG(u)gD(u)duS dz .

Kn P g—ntz—iz) Sw du
—e (L + Julyp—?’

and tends to zero uniformly within (— «, 7). It remains to consider
the contribution to I, of a vertical side of C,, say the right side.
This contribution is

in eix(n+1[2+§)

i G(fn + % + C)(u —n — %--— C) *

Ju@) = | Gup(udn|

—oco

o Sin' givt i .
e G(n + % + C)(u —0)

(19) = gzt S” G(u +n+ %) go(u +n+ ;)du

For all v, we define I, = —n + I,,,. Then
GR) _ (—1) il (z—=1)z—1_)
Gw) (w—10) 1T (w—1L)w—1.)

_z2—n—=1 ﬁ —n—10l_)e—n—1,_)
w—n—1l 7T (w—n—U_)w-—-—n-—-1,_)

where

(N T _ & _ %
6@ =G -0 (1-F)(1-)
and I, =v + ay + /L:B;’ =0y ipy By = Buine Then ia‘:‘ =P, ]B‘:l =Q.
Hence G,(2) is a function ¥'(z) (of Lemma 6) and satisfies the inequalities
(14), (15) with constants K, K, independent of n. In (19), we use the
equation
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G(u+n+%) G,,(u—k—;—)
G(C+n+%) - Gn<c+%>.

It follows that

| ()] < S; G.(u + %)| o(u+n+ %) || du
where
J- e
! GfC+ ) =0 *

and v denotes the path from — 4n to 4% modified by replacing the
segment (— /8, 4/8) by the right half or the left half of the circle
[£| = 1/8, according as u < 0 or w > 0. On v, re( + 1/2) is between
3/8 and 5/8, and therefore { + 1/2 is at a distance greater than 1/8 from
all the zeros of G,(z). By Lemma 6, |G.({ + 1/2) |7 <Ke ™(1 + |7]),
where » = tm {. Further |u — {|™* < K(1 + |»]|)™", and so

K

lJ|<T+_‘—’1;l—

S” e—lﬂl(z——lavl)(l + |77 l)d”

K
ST uh@ Tz

Since |G,(w + 1/2)| < K1 + |»|)*?, it remains to prove that H,—0
Where

H, =

S‘” du
(1 + |u|)d(1 + |u ot %l)

and d =1—4P > 0.
If m is a positive integer, then

mefo|
lulsm lul>m

and the first integral tends to zero as n — . Choose p so that pd > 1
and let ¢7' + p~* = 1. Then

bove = (L 1 +d;uu DM)I/’ (S " L )q) )

<1+lu+n+—2—

—o0

< Km'm=
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so that Iim H, = 0, as required.

Added in proof. A result similar to Theorem 2 was proved in a
Ph. D thesis by J. A. Anderson.
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