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FAMILIES OF PARALLELS ASSOCIATED WITH SETS

E. E. ROBKIN and F. A. VALENTINE

There exist sets S in Euclidean space En which have an
interesting association with a family & of parallel lines.
For instance S and & may be so related that each point of
S lies on a member of & which intersects S in either a line
segment or a point. There exist compact sets S c E2 such
that every finite collection of points in S is contained in some
collection of parallel lines each of which intersects S in a
single point, and yet no infinite family & of parallel lines
exists having the same property and covering S. This paper
contains a theorem which enables one to determine the ex-
istence of a family of parallel lines each of which intersects
S in a line segment or point and which as a family covers S.

Secondly we show that the points, the closed line segments,
the closed convex triangular regions, and the closed convex
sets bounded by parallelograms are the only compact convex
sets B in E2 which have the following property. If A is a closed
connected set disjoint from B and if every 3 or fewer points
of A lie on parallel lines intersecting J5, then A is covered
by a family of parallel lines each of which intersects B.

Finally, we obtain a theorem of Krasnoselskii type. Intui-
tively, this may be stated as follows. Suppose S is a compact
set in En and suppose there exists a plane H such that every
n points of S can see H via S along parallel lines. Then all
the points of S can see H via S along parallel lines.

The above results appear in Theorems 3, 2, 1 in that order. The

appendix at the end contains the theorems of Helly, KrasnoseΓskii

and other results used. Furthermore, the reader is recommended to

consult the compendium "Helly's theorem and its relatives" by Danzer,

Klee and Grϋnbaum [1]. In order to proceed logically we adopt the

following notations.

NOTATION. If S is a set in ^-dimensional Euclidean space En,

then closure of S = cl S, interior of S = int S, boundary of S — bd S,

convex hull of S — conv S. If x e En, y e EnJ xΦ y, then L{x, y) = line

containing x and y, xy — closed segment joining x and y, intv xy =

relative interior of the segment xy, R(x, y) = ray having x as endpoint

and containing y. The empty set is indicated by 0 and the origin of

En by 0 . Set union, intersection and difference are denoted by U, ΓΊ

and ~ respectively.
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Parallels.

THEOREM 1. Let S he a closed set in n-dίmensional Euclidean
space En.

(a) Suppose there exists a hyperplane H such that S Π H is
compact.

( b ) Suppose for each integer s such that 1 ^ s ^ n and for
each set of distinct points xlf x2, , xs in S ~ H there exist points
Vi> y%i " y Vs in H such that x^i c S (i = l, ,s) and such that
#il/i> %2VΪ> **9yχsVs aτ& parallel. (The y19 * 9ys need not be distinct.)

Then there exists a family & of parallel lines such that for
each point xeS~ H there exists a point yeH such that xycS and
such that the line L(x, y) belongs to &m

Proof. To each xe S ~ H, let C(x) denote the union of all lines
L(x, y) where yeH such that xy c S. Choose a point 0 as origin in
En with 0 ί H, and let D{x) be that translate of C(x) so that x goes
to 0 . Define M(x) as follows, when xe S ~ H,

M(x) = conv (H n D(x)) .

Since HΠ D(x) Φ 0, we must have M(x) Φ 0 for each xeS ~ H. Hy-
pothesis (b) implies that every n or fewer members of the collection
{M(x), xe S ~ H) have a point in common. Since the dimension of H
is n — 1, and since the members of {M(x)9 xe S ~ H} are compact
convex sets in H, Helly's theorem [2] (see Appendix) for (n — 1)-
dimensional space implies

( 1 ) Γl M(x)Φ0.

Since 0 £ H, condition (1) implies there exists a line L through 0
such that L Π M(x) Φ 0 for each xe S ~ H. We let & denote the
family of all lines parallel to L and intersecting S. We will prove
that & has the desired property stated in the theorem. To do this
choose a point xe S ~ H, and let L(x) be the line through x parallel
to L. Let L(x) Π H = y and suppose xy φ S. Since S is closed then
there exists a point u e intv xy and a closed solid sphere U(u, r) with
center u and radius r such that S Π U(u, r) = 0. Let U(v, t) be a
closed solid sphere with center vexu and radius t with t < r. Define
K{v) as follows,

K(v) = conv [U(u, r) U U(v, t)],vexu .

Since S is closed, and since K(u) ΓlS = 0, K(x) Π S Φ 0, there exists a
point w e xu nearest to u such that Sf)bd K(w) Φ 0, Sf] int K(w) — 0.
Choose a point z such that
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z e S Π bd K(w) φ 0 .

Clearly D(z) contains no line L(z, y^ parallel to the line L(x) with
y1eM{z). This contradicts the statement following (1). Hence xyaS,
and Theorem 1 has been proved.

In order to express the next theorem easily the following concepts
are used.

DEFINITION 1. A set A has the parallel property P(m) relative to
a set B if every m or fewer points of A all lie on a family of parallel
lines each of which intersects B.

A set A has the parallel property P(A) relative to B if all the
points of A lie on a family & of parallel lines each of which inter-
sects B.

THEOREM 2. Let B be a compact convex set in the Euclidean
plane E2. Suppose that each closed connected set A in E2 which is
disjoint from B and which has property P(3) relative to B also has
the property P(A) relative to B.

Then B is either a point, a closed line segment, a closed set
bounded by a triangle or a closed set bounded by a parallelogram.

Proof. Since this theorem characterizes the sets B, the proof
consists of two parts.

Let sf = {A} denote the collection of all those closed connected sets
A which are disjoint from B and which have property P(3) relative to
B. First, suppose B is either a point, a closed line segment, a closed
triangular region or a closed region bounded by a parallelogram.

Case 1. Suppose bdB is a parallelogram with consecutive vertices
alf a2, a3, α4. The four lines determined by the four edges of B divide
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the plane E2 into nine parts. Let V(ai) (i = 1, 2, 3, 4) denote the un-
bounded open V-shaped region abutting B at α* (i = 1, 2, 3, 4), and let
V(a19 a2) be the closed unbounded region abutting B along axa29 etc.
Since A e s^f is connected and disjoint from B9 if A Π V{a,i) Φ 0,
A Π V(ai+1) Φ 0, (i = 1, 2, 3, 4; αδ = αx), the set A would not have the
property P(2) relative to B. Hence, it would not have property P(3)
relative to B. Therefore, we may relabel the vertices of B so that

(2 ) A c V(a19 a2) U V(a2) U V(a29 α3) .

For xe A9 let C(#) denote the union of all rays emanating from x
which intersect B, and let D(x) be that translate of C(x) which sends
x to the origin 0 of E2. Since B is compact and convex, and since
x 0 B9 the set C(x), and hence D(x)9 is a closed convex cone which is
not all of E2. Let C be the unit circle with center at 0 so that
C=[x:\\x\\ = ί\.

Define M(x) as follows,

C Π D(x) = M(x), x e A .

Consider the collection of sets

^t ΞΞ {M(x)f x e A} .

Property P(3) implies that there exists a semicircular arc CΊ of C
such that every two members of ^ have a non-empty connected
intersection with Cx. To see this observe that if in (2) we have
A Π V(a2) Φ 0, then for each point xe AΠ V(a2) we have a connected
intersection

M(x) Π Mix,) Π M{x2) Φ 0

for every pair of points x19 x2 in A. If A Π V(a2) — 0 then either
A c V(a19 a2) or A c V(a2, α3), and the above italicized statement is also
still true. (It is instructive to observe that condition P(2) does not
suffice to imply the above italicized sentence.) We may now apply
Helly's theorem [2] (see Appendix) to the set ^/ί to yield the existence
of a paint ue M(x) for all Me ^£. Let L be the line determined by
0 and u. For each xe A, let L(x) denote the line through x parallel
to L. The above facts imply that L(x) Π B Φ 0, x e A9 by virtue of
the definition of C(x). Hence A has property P(A) relative to B.

Case 2. Suppose B is a closed set bounded by a triangle with
vertices a19 a29 α3. As argued in case 1, we may relabel the vertices
so that
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if A e sf, where V{a^) is the open V-shaped region abutting B BX aly

and where V(alf a2) similarly abuts B along α ^ . The rest of the
proof is exactly the same as Case 1.

Case 3. Suppose B is a closed segment α ^ . If A e Sf, then A
either lies on L(a19 α2) or in one of the open half-spaces bounded by
L(au α2). The proof is either trivial or exactly the same as Case 1,
or, for that matter, as Theorem 1.

Case 4. If £ is a point, then A must lie on a line through B,
and the conclusion is trivial.

This completes the first part of the proof.
(I) Secondly, to complete the characterization, suppose B is a

compact convex set which is neither a point, a line segment, a tri-
angular region or a set bounded by a parallelogram.

We will prove that for such a set B there exists a closed connected
set A, disjoint from B, which has property P(3) relative to B, and which
does not have property P(A) relative to B. In order to construct A we
use the familiar concept of "exposed point."

DEFINITION 2. A point x in the boundary of a convex set S c E2

is an exposed point of S if there exists a line L of support to S at x
such that S Π L = x.

To construct A, let xxx2 be a diameter of the set B described in
the italicized statement (I). The points x19 x2 are exposed points of B
since the line L { through xt (i = 1, 2) and perpendicular to xγx2 is such
that Li Π B = Xi (i = 1, 2). Let H be one of the open half-planes
bounded by L(xlf x2) such that H Π B Φ 0, since B (£ L(x19 x2). It is a
well-known elementary fact that B contains at least one exposed point
in H. If B contains one and only one exposed point in each of the open
half-planes H and E2 — cl H, then B is a quadrilateral. (We have
excluded the case of a parallelogram, here.) On the other hand, if B
contains only one exposed point in H and none in E2 ~ cl H then B is
bounded by a triangle, which is also excluded here. For the moment,
suppose A contains at least two exposed points xB and x± in H. With-
out loss of generality, suppose xu x2, x4, x3 occur on bd B in that order
as illustrated in Figure 2. (In Fig. 2, the dotted lines and curves,
except for the points x19 x2, x3, x± miss B.)
Let L(Xi) (i = 3, 4) be two lines such that BΓ\L(Xi) = xt. Observe that

conv (Xi U cc8 U Xi U x2) c B .

There exist points xtj (i, j = 1, 2, 3, 4, i < j) such that
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Xι

Fig. 2.

xd = L(xt) Π L(xs) (i < j , i, j = 1, 2, 3, 4, (i, j) Φ (1, 2)) .

To construct the set A, illustrated in Figure 2, extend the segment
xuxί3 to x34y13 and xMx2i to #34?/24 so that

, Vu) ΓΊ L(x19 xs)Γ\Hφ

L(x2, Xt)Γ\Hφ

Recall that xΆ e £Γ, x4 e £Γ. Furthermore, replace a segment α6 of
with midpoint x3 by a semicircular are C3 with endpoints a and 6 and
with C3 Π J5 — 0. Introduce a corresponding arc C4 at cc4 (see Fig. 2).
The set A defined as follows

A = {ylza) U C3 U φxu) U (x3ic) u C4 U (dy2i)

is illustrated in Figure 2. We may choose the arcs C3 and C4 suf-
ficiently small so that A clearly has property P(3). To see this observe
first that A ~ C4 has property P(2). Hence, to see that A has property
P(3) one merely has to demonstrate that if xeC±,ye A, ze A, the triple
{x, y, z) has property P(3) relative to B. However, clearly the set A
does not have property P(A) relative to B. This completes the proof
when B in statement (I) has two exposed points in H. The only case
remaining in this part of the proof is that in which B is a quadri-
lateral which is not a parallelogram. So to complete the proof suppose
B is such a quadrilateral. In this case there must exist some two
vertices of B, say x± and x2, such that the other two vertices x3 and
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x4 of B are interior to a strip bounded by two parallel line L(xλ) and
L(x2) at xx and x2 respectively such that xs and x± lie on the same
side of L(x19 x2). Hence, we have a situation which is essentially the
same as in Figure 2 (perpendicularity was not essential), and the same
construction can be carried out to yield a set A having property P(3)
relative to B but not P(A). This completes the proof.

There exist further results related to property P{m) and these will
be presented in a subsequent paper. It should be mentioned that if in
the hypothesis of Theorem 2 we replace P(3) by P(2) then B must he
either a point or a line segment. Also it is easy to prove that if B is
a compact strictly convex body in E2 and if m is a prescribed integer,
there exists a compact connected set A which is disjoint from B, which
has property P(m) relative to B but which does not have property P(A)
relative to B.

THEOREM 3. Let S be a closed connected set in the Euclidean
plane E2. Suppose there exist two points a and b in S such that
the following holds. If x1 and x2 are points in S then there exist
some two parallel lines, denoted by Lγ and L2, such that L* ΓΊ S = â
and such that Z^Π ab Φ 0 (i = 1, 2).

Then there exists a family &> of parallel lines in E2 such that
each point of S is contained in a member of £P which intersects S
in either a line segment or a point.

Proof. If x e S, by hypothesis there exists a line L(x) through
x such that

( 4 ) Sf] L(x) = x,abf) L{x) Φ 0 .

For x e S, let C(x) denote the union of all possible lines L(x) satis-
fying (4). We will prove first that C(x) is a two-napped cone, each
nappe of which is convex, although it need not be closed. To prove
this, we consider two cases.

First, suppose xgab. Suppose L^x), L2(x) are two lines in C(x)
through X. Choose an arbitrary line L(x) through x such that L(x)
intersects ab between ab Π Lx{x) and ab Π L2(x). We will show that
L(x) Π S = x, so that L(x) c C(x). The proof is indirect. Suppose a
point y exists such that y e S PΪ L(X), y Φ X. By hypothesis, there
exists a line L(y) through y such that S Π L(y) — y, ab Π L(y) Φ 0.
(See Fig. 3. In this figure, the dotted lines, except for the points x
and y, miss the set S.) Since L(y) (Ί intv ab Φ 0, L(x) Π intv ab Φ 0,
it is a simple matter to verify that the deletion from E2~ S of an
appropriate ray of L(y) together with an appropriate ray from Lt{x)
or L2{x) separates the plane into two disjoint open parts, one of which
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>„

xeab
Fig. 3.

contains a and the other of which contains 6. However, this violates
the fact that S is connected. Hence, we have a contradiction so that
bf]L(x) = χ. Hence, when x$ab, the set C(x) is a two-napped cone
each nappe of which is convex.

Secondly, suppose xe S n ab. The proof follows the same pattern
as in the case x$ab, (see Fig. 3). The obvious details are made self-
evident there.

To complete the proof, choose an origin 0 in E2 so that 0 e L(a b)
Let D(x) be that translate of C(x) so that * goes to 0 . Consider the
collection ^f, defined as follows

^ T = {M(x) = L(a, b) n cl D(x), x e S}.

We have shown that every two members of ^ have at least one
point m common. Furthermore, if x$L(a,b), then M{x) is a compact
interval. If xeab the set M(x) may be unbounded (although closed
and convex), however, this will cause no difficulty because if Saab
then n.e*M(x)Φ0 follows trivially, and if S £ ab Helly's theorem
L2J can be used to yield the existence of a point u such that

w e Π M(x) .
xes

Let L be the line determined by the two points u and 0 , since 0 ^ w

Let ^ denote the set of all lines in E2 which are parallel to L and
which mtersect S. We will prove that & is a family as described in
iheorem 3, and the proof is indirect. To do this, for xeS let L(x)
denote that line through x which belongs to & so that L(x) and L
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are parallel. Suppose a point xe S exists such that S Π L(x) is not
connected. Since S is closed if S Π L(x) is not connected there exist
points c and d in L(x) such that ce S, de S, c^d, S Γ) intv cd = 0.
The segment cd is usually called a cross-cut of the complement of S.
Since S is connected, there exists a component i£" of the complement
of S such that the removal of intv cd from K yields two disjoint parts
of K9 at least one of which is bounded (see Fig. 4) which we denote
by Kλ.

L{x)

There exist points yebdKx with y g L(c, d), sufficiently close to L(x) such
that the L(y) e & parallel to L(x) intersects Kx and also intersects
bdK in a nonconnected set. Since cl C(y) is the closure of a nonempty
two-napped cone, each nappe of which is convex, there exists a line
Lt{y) c C(y) through y9 sufficiently close to L(y) (in terms of angles),
such that Ljiy) ί l S ^ t / , a contradiction (see Fig. 4). Hence, we have
proved that & is a desired family, and the proof is complete.

The hypotheses of Theorem 3 do not imply that a family & neces-
sarily exists such that each x e S is contained in a member of & which
intersects S in just the point x. In fact the following is true.

There exists a compact set S(zE2 such that every finite collection
of points x19 a?2, , x% in S is contained in some collection of parallel
lines L19 L2, , Ln such that 1^ (Ί S = xi (i = 1, , n), and yet no
family gP of parallel lines exist such that each point of S is con-
tained in a member of ^ which intersects S in just one point.

We exhibit such a set S as follows.

EXAMPLE. Let (xi9 y^ denote rectangular coordinates of a point
Pi in E2. We define the sequence of points {pi9 i = 1, 2, •} in E2 as
follows,



156 E. E. ROBKIN and F. A. VALENTINE

( 5 )

so that (xlt yt) = (1, 0), (x2, y2) = (1,1), (x3, #,) = (1/3, 0), etc. Define S
as follows

S = cl U PiPi+i
i

so that S is the increasing limit of a sequence of zig-zag polygonal
paths. Beginning at (1, 0), the odd segments are vertical, and the even
segments have finite positive slope. Observe that

2n-l = ^
* - ~ X2n-2 — %2n-l %->°° 2

so that the even segments have slopes approaching oo. It is a simple
matter to verify this set S has the property described in the above
italicized statement because of (5) and because x2n — y2n (n = 1,2, •).

For the concluding result we need the following concepts used by
Horn and Valentine [4].

DEFINITION 3. The set B is a set of visibility for a set S in En

if for each point xe S there exists some point yeB such that xy c S.

DEFINITION 4. A set SaEn is said to be an L2 set if each pair
of points in S can be joined by a polygonal arc consisting of at most
two line segments.

Horn and Valentine [4] proved that a simply connected compact
L2 set in E2 is expressible as the union of convex sets every two of
which have a point in common. No simple characterization of non-
simply connected compact L2 sets has ever been given. The following
theorem is a step in that direction.

THEOREM 4. Let S be a compact L2 set in En (see Definition 3),
( a ) then each hyperplane in En has a translate which inter-

sects S in a set of visibility for S,
( b) also each (n — 2)-dimensional flat is contained in a hyper-

plane which intersects S in a set of visibility for S.

Proof. For each point xe S, let S(x) denote the set of all points
y such that xy c S. Also define C(x) to be

C(x) — conv S(x) .
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Since S is compact, the set C(x) is compact. Since every two members
of the collection {C(x), x e S} have a point in common, a theorem of
Klee [6] implies that each hyperplane H' has a translate H which
intersects every C(x), x e S. Since S(x) is the union of rays having x
in common, the fact H Π C(x) Φ 0 implies H Π S(x) Φ 0. Hence, for
each point xe S, there exists a point yeHΠS such that xy c S. This
establishes (a). In the same manner a theorem of Horn [3] implies
that each (n — 2)-dimensional flat is contained in a hyperplane which
intersects every C(x), xeS, and the remainder of the proof of (b) is
identical to that given for (a).

Appendix

THEOREM (Helly [2]). Let ^ he a family of compact convex sets
in En containing at least n + 1 members. If every n + 1 members of
^~ have a point in common, then all of the members of j ^ * have a
point in common.

THEOREM (KrasnosePskii [5]) Let S be a compact connected set
in En. Suppose that for every n + 1 points xi e S (i — 1, , n + 1)
there exists at least one point yeS such that x^a S (i = 1, , n).
Then there exists a point pe S such that xpa S for each point xe S.

THEOREM. Let j ^ ~ be a family of bounded closed convex sets in
a Euclidean space E. Suppose Jf contains at least n members.
Suppose every n members of J^~ have a point in common.

(Klee) Then every flat of deficiency n — 1 has a translate which
intersects every member of ^Z

(Horn) Every flat of deficiency n is contained in a flat of de-
ficiency n — 1 which intersects every member of ^ .
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