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ON THE DETERMINATION OF CONFORMAL IMBEDDING

TlLLA KLOTZ

Two imbedding fundamental forms determine (up to motions)
the smooth imbedding of an oriented surface in Es. The situation
is, however, substantially different for the sufficiently smooth
conformal imbedding of a Riemann surface R in Ez. Con-
ventionally such an imbedding is achieved by a conformal
correspondence between R and the Riemann surface ϋ?i de-
termined on a smoothly imbedded oriented surface S in Ez

by its first fundamental from I. We show that except where
H K = 0 on S, such an Rx conformal imbedding of R in Ez

is determined (up to motions) by the second fundamental form
IT on S, expressed as a form on R. In particular, / is de-
termined by II on Rίf where H-K Φ 0 on S9

Similar remarks are valid for two less standard methods of
conformal imbedding. If an oriented surface S is smoothly
imbedded in Ez so that H > 0 and K > 0, then II defines a
Riemann surface R2 on S. And, if S is imbedded so that
K < 0, then II' given by

HΊIf = KI-

with

H' = -)/H*- K

defines a Riemann surface R% on S. Thus a conformal corre-
spondence between R and R2 (or R'2) is called an R2 (or Rζ)
conformal imbedding of R in E3. We show that I on S,
expressed as a form on R, determines the R2 or (wherever
H Φ 0 and sign H is know) the Rί imbedding of R in E* (up
to motions). In particular, I determines II on R2, and (where
HΦO, and sign H is known) on R'2 as well. Finally, we give
restatements of the fundamental theorem of surface theory in
forms appropriate to Rlf R2 and Ri conformal imbeddings in Es.

The two fundamental forms which determine (up to motions) the

smooth imbedding of an oriented surface in E3 are, of course, related

by various equations. But neither form determines the other, except

in very special cases. Thus, for instance, isometric imbeddings of a

surface in Es may differ essentially unless (to cite a famous example)

the surface is compact, and the common metric imposed by imbedding

has positive Gaussian curvature.

2* Consider an oriented surface S which is C3 imbedded in E\
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We may introduce C3 isothermal coordinates x, y locally on S, so that

I = X(dx2 + dy2) ,

with x + iy a conformal parameter on Ru and λ > 0 a C2 function of
x and y. The Codazzi-Mainardi equations involving λ and the C1 coef-
ficients L, M and N of I I become

L, - Mx = -£*- (L + iSΓ) ,

( 1 ) λ

The theorem egregium formula for

TΓ LN - M2

5?
may be written in the form

( 2 ) LN - M2 = -=^ j ( ^ ) + f ^ 1
7 2 l u λ \λλJ

Moreover, since λ > 0 while

2λ

the equations (1) may be solved for Xx/X and λy/λ, provided that H Φ Q.
Substitution in (2) of the expressions so obtained yields

(LN -
L + N '» \ L + N

If we add the assumption that K Φ 0, making LN — M2 Φ 0, then

LiV- M2

( 3 ) λ —

\\ L N )* \ L + N

Thus, we have established our original claim that II on Rx determines
I wherever H'KΦ 0β It will be convenient to refer to the expression
on the right side of (3) as λ(L, ikf, N). Of course, when Lyy, Nxx and
M"x2/ exist,

λ = λ(L, Af, iV) =

In any case, substitution of λ = λ(L, M", iV) in (1) yields conditions
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2\(L,M,N) K }

Nx-My= ^ L > M, N)}. {L N)

2λ(L, M, N) K }

on L, M and iV wherever H Kφ 0, or, equivalently, wherever

(L + N)(LN - M2) Φ 0 .

Suppose now that a C1 quadratic form

Ω = Lcte2 + 2Mdxdy +

is given on a Riemann surface i2. (Here x + iy is a conformal pa-
rameter on jβ.) Suppose also that (L + N)(LN - M2) Φ 0. Then the
previous discussion establishes

λ(L, M, N)(dx2 + # 2 )

as the only possible / for a C3 i^ conformal imbedding of R in ΐ/3

with Ω — II. Thus, if such an imbedding exists, λ(L, M, N) must
be positive and C2, while (4) must be valid. On the other hand, if
λ(L, M, N) is a positive C2 function, and if (4) does hold, then both
(1) and (2) are valid with λ = λ(L, M, N). Thus the fundamental
theorem of surface theory (see p, 124 of [3]) immediately implies the
following result.

THEOREM 1. If Ω — Ldx2 + 2Mdxdy + Ndy2 is a C1 quadratic
form on R with (L + N)(LN — M2) Φ 0, then necessary and suf-
ficient conditions for the existence (locally) and uniqueness (up to
motions) of a C 3 ^ conformal imbedding of R in E3 with Ω — II are
that λ(L, M, N) be positive and C2, and that (4) be valid,

3* Consider an oriented surface S which is C4 imbedded in E3 so
that H > 0 and K > 0. We may introduce C3 bisothermal coordinates
x, y locally on S, so that

II = μ(dx2 + dy2)

with x + iy a conformal parameter on R2, and μ > 0 a C1 function
of x and y. Here the Codazzi-Mainardi equations involving μ, and the
Christoίfel symbols for the coefficients E, F and G of I become

And the theorem egregium yields a complicated expression for
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as a function of E, F, G and their first and second partial derivatives,
which we refer to for convenience as K(E, F, G). Thus

( 6 ) μ = VK(E, F, G)(EG - F2) ,

and we have established our original claim that / on R2 determines IL
We will refer to the expression on the right side of (6) as μ(E, F, G).
Here, substitution of μ = μ(E, F, G) in (5) yields conditions

( ' {μ(E, F, G)}y = μ(E, F, G)(Γ\2 - /*) ,

on E, F and G.
Suppose now that a C2 quadratic form

Ω = Edx2 + 2Fdxdy + Gdy*

is given on a Riemann surface R. Suppose also that K(E, F,G) > 0.
Then the previous discussion establishes

μ(E, F, G)(dx2 + df)

as the only possible II for a C3 R2 conformal imbedding of R in E3 with
Ω — I. Thus, if such an imbedding exists, μ{E, F, G) must be positive
and C\ while (7) must be valid. On the other hand, if μ(E, F, G) is
a positive C1 function, and if (7) does hold, then both (5) and K —
K(E, F, G) are valid, with μ = μ(E, F, G). Thus the fundamental
theorem of surface theory immediately implies the following result.

THEOREM 2. If Ω = Edx* + 2Fdxdy + Gdy2 is a C2 quadratic
form on R, then necessary and sufficient conditions for the existence
{locally) and uniqueness (up to motions) of a C3 R2 conf ormal imbed-
ding of R in E* with Ω = I are that K(E, F, G) be positive, that
μ(E, F, G) be positive and C1, and that (7) be valid.

A* Finally, consider an oriented surface S which is C4 imbedded
in I£3 so that K < 0. We may introduce C3 disothermal coordinates
x, y locally on S, so that

IΓ = μ'(dx2 + dy2)

with x + iy a conf ormal parameter on R2', and μr > 0 a C1 function
of x and y. Since HΊΓ = KI - HII,
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HL + H'μ' = KE ,

( 8) HN + H'μ' = KG ,

HM = KF.

But we show in [2]&that on iϋ2',

( 9 ) L=-N.

Thus

κ = -{U + M>)
EG-F*

must be given by the theorem egregium expression K(E, F, G). Using
(8), we obtain

HL = K(E - G) ,
(10)

HM = KF,

so that

H\U + ikP) = KX(E - GY + F2y .

Division of this last equation by (L2 + M2) = - K(E, F, G) (EG - Fz) Φ 0
yields

(11) H=

Thus H vanishes if and only if (E — G) + iF = 0. Of course, where
H Φ 0, the orientation of S determines the sign of H. On the other
hand, where H Φ 0, we may set

ME FG)- FJ-K(E,F,G)(EG-F>)

and

N(E,F,G)= -L(E,F,G) .

Using (10), we conclude that so long as H Φ 0,

L = ±L{E, F, G) ,

(12) M= ±M(E, F, G) ,

N= ±N(E,F,G) ,

with plus or minus signs consistently chosen in accordance with the
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sign of H. Thus we have established our original claim that /
on R[ determines // (if H Φ 0, and sign H is known).

Note, however, that the Codazzi-Mainardi equations on Ri which
read

Ly - M. = L{Γ{2 + Π) + M(Γ\2 - I\)
( } Lx + My = L(Γ\2 + Γ{2) + M(Γ\2 - Γ\2)

are not affected by the sign of H. (In particular, if L, M and N
solve (13), so will —L,—M and —N.) Thus, whichever the choice
of signs in (12), the Codazzi-Mainardi equations yield the following
conditions

{L(E, F, G)}y - {M{E, F, G)}x

= L(E, F, G){Γ\2 + I\) + M(E, F, G)(I\ - I\) ,
( } {L(E, F, G)}x - {M(E, F, G)}y

- L{E, F, G){Γ\2 + Γ\2) + M{E, F, G)(Γ2

22 - Γ\2) ,

on E, F and G, wherever (E - G) + iF Φ 0.
Suppose now that a C2 quadratic form

Ω - Edx2 + 2Fdxdy + Gdy2

is given on a Riemann surface R. Suppose also that K(E, F, G) < 0
while (E — G) + iF Φ 0. Then the previous discussion establishes

(15) L(E, F, G)(dx2 - dy2) + 2M(E, F, G)dxdy

and

(16) -L(E, F, G)(dx2 - dy2) - 2M(E, F, G)dxdy

as the only possible forms which could serve as II for a C3 R[ con-
formal imbedding of R in 2?3 with Ω — I. Thus, if such an imbedding
exists, L(E, F, G) and M(E, F, G) must be C1 functions, while (14)
must be valid. Finally, should such an imbedding exist with one choice
(15) or (16) for II, composition with a reflection of S in a plane will
leave I invariant while yielding the remaining choice for II. On the
other hand, if L(E, F, G) and M(E, F, G) are C1 functions, and if (14)
does hold, then, given either choice (15) or (16) for II, both (13) and
K = K{E, F9 G) are valid. Thus the fundamental theorem of surface
theory immediately implies the following result.

Theorem 3. If Ω = Edx2 + 2Fdxdy + Gdy2 is a C2 quadratic
form on R with (E — G) + iF Φ 0, then necessary and sufficient
conditions for the existence (locally) and uniqueness (up to motions
and reflections in planes) of a C3 R2 conformal imbedding of R in
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Es with Ω — I are that K(E, F, G) be negative, that L(E, F, G) and
M(E,F,G) be C1 functions, and that (14) be valid.

5* We close by noting a pair of statements of the type one gets
by slight rewording of the results described above. Isometric oriented
surfaces imbedded C4 in EB so that H > 0 and K > 0 are congruent
if and only if the isometry between them is conformal between their
R2 structures. Similarly, such surfaces on which H Φ 0 and K < 0
are congruent if and only if the isometry between them is conformal
between their Rr

2 structures and preserves the sign of H.
The weakness of these results amply illustrates the sense in which

//, while inessential on R2 or i?2', is of fundamental importance in
determining the imbedding of a surface, as distinct from the R2 or
R[ conformal imbedding of a Riemann surface. None-the-less, more
significant applications of Theorems 1, 2 and 3 should be possible.
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