ON THE DETERMINATION OF CONFORMAL IMBEDDING

TILLA KLOTZ

Two imbedding fundamental forms determine (up to motions) the smooth imbedding of an oriented surface in E^3 . The situation is, however, substantially different for the sufficiently smooth conformal imbedding of a Riemann surface R in E^3 . Conventionally such an imbedding is achieved by a conformal correspondence between R and the Riemann surface R_1 determined on a smoothly imbedded oriented surface S in E^3 by its first fundamental from I. We show that except where $H \cdot K = 0$ on S, such an R_1 conformal imbedding of R in E^3 is determined (up to motions) by the second fundamental form II on S, expressed as a form on R. In particular, I is determined by II on R_1 , where $H \cdot K \neq 0$ on S.

Similar remarks are valid for two less standard methods of conformal imbedding. If an oriented surface S is smoothly imbedded in E^3 so that H>0 and K>0, then II defines a Riemann surface R_2 on S. And, if S is imbedded so that K<0, then II' given by

$$H'II' = KI - HII$$

with

$$H' = -V \overline{H^2 - K}$$

defines a Riemann surface R_2' on S. Thus a conformal correspondence between R and R_2 (or R_2') is called an R_2 (or R_2') conformal imbedding of R in E^3 . We show that I on S, expressed as a form on R, determines the R_2 or (wherever $H \neq 0$ and sign H is know) the R_2' imbedding of R in E^3 (up to motions). In particular, I determines II on R_2 , and (where $H \neq 0$, and sign H is known) on R_2' as well. Finally, we give restatements of the fundamental theorem of surface theory in forms appropriate to R_1 , R_2 and R_2' conformal imbeddings in E^3 .

The two fundamental forms which determine (up to motions) the smooth imbedding of an oriented surface in E^3 are, of course, related by various equations. But neither form determines the other, except in very special cases. Thus, for instance, isometric imbeddings of a surface in E^3 may differ essentially unless (to cite a famous example) the surface is compact, and the common metric imposed by imbedding has positive Gaussian curvature.

2. Consider an oriented surface S which is C^3 imbedded in E^3 .

Received January 10, 1964. This research was supported under NSF grant GP-1184.

We may introduce C^3 isothermal coordinates x, y locally on S, so that

$$I = \lambda (dx^2 + dy^2)$$
,

with x+iy a conformal parameter on R_1 , and $\lambda>0$ a C^2 function of x and y. The Codazzi-Mainardi equations involving λ and the C^1 coefficients L, M and N of II become

$$L_y-M_x=rac{\lambda_y}{2\lambda}\left(L+N
ight)$$
 , $N_x-M_y=rac{\lambda_x}{2\lambda}\left(L+N
ight)$.

The theorem egregium formula for

$$K = \frac{LN - M^2}{\lambda^2}$$

may be written in the form

$$(2) \hspace{1cm} LN-M^{\scriptscriptstyle 2}=rac{-\lambda}{2}\left\{\left(rac{\lambda_x}{\lambda}
ight)_x+\left(rac{\lambda_y}{\lambda}
ight)_y
ight\}$$
 .

Moreover, since $\lambda > 0$ while

$$H=rac{L+N}{2\lambda}$$
 ,

the equations (1) may be solved for λ_x/λ and λ_y/λ , provided that $H \neq 0$. Substitution in (2) of the expressions so obtained yields

$$(LN-M^z) = \lambda \Big\{ \Big(rac{M_y-N_x}{L+N}\Big)_x + \Big(rac{M_x-L_y}{L+N}\Big)_y \Big\}$$
 .

If we add the assumption that $K \neq 0$, making $LN - M^2 \neq 0$, then

$$\lambda = rac{LN-M^2}{\left\{\left(rac{M_y-N_x}{L+N}
ight)_x + \left(rac{M_x-L_y}{L+N}
ight)_y
ight\}}$$
 .

Thus, we have established our original claim that II on R_1 determines I wherever $H \cdot K \neq 0$. It will be convenient to refer to the expression on the right side of (3) as $\lambda(L, M, N)$. Of course, when L_{yy} , N_{xx} and M_{xy} exist,

$$\lambda = \lambda(L,\,M,\,N) = \ rac{(LN - M^2)(L + N)^2}{(L + N)(2M_{xy} - L_{yy} - N_{xx}) + (L_y + N_y)(L_y - M_x) + (L_x + N_x)(N_x - M_y)} \; .$$

In any case, substitution of $\lambda = \lambda(L, M, N)$ in (1) yields conditions

$$(4) egin{aligned} L_y - M_x &= rac{\{\lambda(L,M,N)\}_y}{2\lambda(L,M,N)} \, (L+N) \ N_x - M_y &= rac{\{\lambda(L,M,N)\}_x}{2\lambda(L,M,N)} \, (L+N) \end{aligned}$$

on L, M and N wherever $H \cdot K \neq 0$, or, equivalently, wherever

$$(L+N)(LN-M^2) \neq 0$$
.

Suppose now that a C^1 quadratic form

$$\Omega = Ldx^2 + 2Mdxdy + Ndy^2$$

is given on a Riemann surface R. (Here x+iy is a conformal parameter on R.) Suppose also that $(L+N)(LN-M^2)\neq 0$. Then the previous discussion establishes

$$\lambda(L, M, N)(dx^2 + dy^2)$$

as the only possible I for a C^3 R_1 conformal imbedding of R in E^3 with $\Omega=II$. Thus, if such an imbedding exists, $\lambda(L,M,N)$ must be positive and C^2 , while (4) must be valid. On the other hand, if $\lambda(L,M,N)$ is a positive C^2 function, and if (4) does hold, then both (1) and (2) are valid with $\lambda=\lambda(L,M,N)$. Thus the fundamental theorem of surface theory (see p. 124 of [3]) immediately implies the following result.

THEOREM 1. If $\Omega = Ldx^2 + 2Mdxdy + Ndy^2$ is a C^1 quadratic form on R with $(L+N)(LN-M^2) \neq 0$, then necessary and sufficient conditions for the existence (locally) and uniqueness (up to motions) of a C^3R_1 conformal imbedding of R in E^3 with $\Omega = II$ are that $\lambda(L,M,N)$ be positive and C^2 , and that (4) be valid.

3. Consider an oriented surface S which is C^4 imbedded in E^3 so that H>0 and K>0. We may introduce C^3 bisothermal coordinates x,y locally on S, so that

$$II = \mu(dx^2 + dy^2)$$

with x+iy a conformal parameter on R_2 , and $\mu>0$ a C^1 function of x and y. Here the Codazzi-Mainardi equations involving μ , and the Christoffel symbols for the coefficients E, F and G of I become

$$egin{align} \mu_x &= \mu(arGamma_{12}^2 - arGamma_{22}^1) \;, \ \mu_y &= \mu(arGamma_{12}^1 - arGamma_{21}^1) \;. \end{matrix}$$

And the theorem egregium yields a complicated expression for

$$K = \frac{\mu^2}{EG - F^2} > 0$$

as a function of E, F, G and their first and second partial derivatives, which we refer to for convenience as K(E, F, G). Thus

$$\mu = \sqrt{K(E, F, G)(EG - F^2)},$$

and we have established our original claim that I on R_2 determines II. We will refer to the expression on the right side of (6) as $\mu(E, F, G)$. Here, substitution of $\mu = \mu(E, F, G)$ in (5) yields conditions

(7)
$$\{\mu(E, F, G)\}_{x} = \mu(E, F, G)(\Gamma_{12}^{2} - \Gamma_{22}^{1}),$$

$$\{\mu(E, F, G)\}_{y} = \mu(E, F, G)(\Gamma_{12}^{1} - \Gamma_{21}^{1}).$$

on E, F and G.

Suppose now that a C^2 quadratic form

$$\Omega = Edx^2 + 2Fdxdy + Gdy^2$$

is given on a Riemann surface R. Suppose also that K(E, F, G) > 0. Then the previous discussion establishes

$$\mu(E, F, G)(dx^2 + dy^2)$$

as the only possible II for a C^sR_2 conformal imbedding of R in E^s with $\Omega=I$. Thus, if such an imbedding exists, $\mu(E,F,G)$ must be positive and C^s , while (7) must be valid. On the other hand, if $\mu(E,F,G)$ is a positive C^s function, and if (7) does hold, then both (5) and K=K(E,F,G) are valid, with $\mu=\mu(E,F,G)$. Thus the fundamental theorem of surface theory immediately implies the following result.

Theorem 2. If $\Omega = Edx^2 + 2Fdxdy + Gdy^2$ is a C^2 quadratic form on R, then necessary and sufficient conditions for the existence (locally) and uniqueness (up to motions) of a $C^3 R_2$ conformal imbedding of R in E^3 with $\Omega = I$ are that K(E, F, G) be positive, that $\mu(E, F, G)$ be positive and C^1 , and that (7) be valid.

4. Finally, consider an oriented surface S which is C^4 imbedded in E^3 so that K<0. We may introduce C^3 disothermal coordinates x,y locally on S, so that

$$II' = \mu'(dx^2 + dy^2)$$

with x+iy a conformal parameter on R_2' , and $\mu'>0$ a C^1 function of x and y. Since H'II'=KI-HII,

(8)
$$\begin{array}{c} HL \,+\, H'\mu' = KE \;, \\ HN + H'\mu' = KG \;, \\ HM = KF \;. \end{array}$$

But we show in $[2]_{\bullet}$ that on R_2 ,

$$(9) L = -N.$$

Thus

$$K = rac{-(L^2 + M^2)}{EG - F^{2}} < 0$$

must be given by the theorem egregium expression K(E, F, G). Using (8), we obtain

(10)
$$HL = K(E-G) \; ,$$

$$HM = KF \; ,$$

so that

$$H^{\scriptscriptstyle 2}(L^{\scriptscriptstyle 2}+M^{\scriptscriptstyle 2})=K^{\scriptscriptstyle 2}\!\langle(E-G)^{\scriptscriptstyle 2}+F^{\scriptscriptstyle 2}
angle$$
 .

Division of this last equation by $(L^2+M^2)=-K(E,F,G)(EG-F^2)\neq 0$ yields

(11)
$$H=\pm\sqrt{rac{-K(E,\,F,\,G)}{EG-F^2}\{E-G)^2+F^2\}}$$
 .

Thus H vanishes if and only if (E-G)+iF=0. Of course, where $H\neq 0$, the orientation of S determines the sign of H. On the other hand, where $H\neq 0$, we may set

$$L(E,\,F,\,G) = (G-E)\sqrt{rac{-K(E,\,F,\,G)(EG-F^2)}{\{(E-G)^2+F^2\}}} \;,
onumber \ M(E,\,F,\,G) = -F\sqrt{rac{-K(E,\,F,\,G)(EG-F^2)}{\{(E-G)^2+F^2\}}} \;,$$

and

$$N(E, F, G) = -L(E, F, G)$$
.

Using (10), we conclude that so long as $H \neq 0$,

(12)
$$L = \pm L(E,\,F,\,G) \; , \ M = \pm M(E,\,F,\,G) \; , \ N = \pm N(E,\,F,\,G) \; ,$$

with plus or minus signs consistently chosen in accordance with the

sign of H. Thus we have established our original claim that I on R'_2 determines II (if $H \neq 0$, and sign H is known).

Note, however, that the Codazzi-Mainardi equations on R_2' which read

(13)
$$L_{y} - M_{x} = L(\Gamma_{12}^{1} + \Gamma_{11}^{2}) + M(\Gamma_{12}^{2} - \Gamma_{11}^{1}) L_{x} + M_{y} = L(\Gamma_{22}^{1} + \Gamma_{12}^{2}) + M(\Gamma_{22}^{2} - \Gamma_{12}^{1})$$

are not affected by the sign of H. (In particular, if L, M and N solve (13), so will $\neg L$, -M and -N.) Thus, whichever the choice of signs in (12), the Codazzi-Mainardi equations yield the following conditions

$$\{L(E, F, G)\}_{y} - \{M(E, F, G)\}_{x}$$

$$= L(E, F, G)(\Gamma_{12}^{1} + \Gamma_{11}^{2}) + M(E, F, G)(\Gamma_{12}^{2} - \Gamma_{11}^{1}),$$

$$\{L(E, F, G)\}_{x} - \{M(E, F, G)\}_{y}$$

$$= L(E, F, G)(\Gamma_{22}^{1} + \Gamma_{12}^{2}) + M(E, F, G)(\Gamma_{22}^{2} - \Gamma_{12}^{1}),$$

on E, F and G, wherever $(E-G)+iF\neq 0$. Suppose now that a C^2 quadratic form

$$\Omega = Edx^2 + 2Fdxdy + Gdy^2$$

is given on a Riemann surface R. Suppose also that K(E, F, G) < 0 while $(E - G) + iF \neq 0$. Then the previous discussion establishes

(15)
$$L(E, F, G)(dx^2 - dy^2) + 2M(E, F, G)dxdy$$

and

(16)
$$-L(E, F, G)(dx^2 - dy^2) - 2M(E, F, G)dxdy$$

as the only possible forms which could serve as II for a C^3 R'_2 conformal imbedding of R in E^3 with $\Omega = I$. Thus, if such an imbedding exists, L(E, F, G) and M(E, F, G) must be C^1 functions, while (14) must be valid. Finally, should such an imbedding exist with one choice (15) or (16) for II, composition with a reflection of S in a plane will leave I invariant while yielding the remaining choice for II. On the other hand, if L(E, F, G) and M(E, F, G) are C^1 functions, and if (14) does hold, then, given either choice (15) or (16) for II, both (13) and K = K(E, F, G) are valid. Thus the fundamental theorem of surface theory immediately implies the following result.

Theorem 3. If $\Omega = Edx^2 + 2Fdxdy + Gdy^2$ is a C^2 quadratic form on R with $(E-G) + iF \neq 0$, then necessary and sufficient conditions for the existence (locally) and uniqueness (up to motions and reflections in planes) of a C^3 R'_2 conformal imbedding of R in

 E^3 with $\Omega = I$ are that K(E, F, G) be negative, that L(E, F, G) and M(E, F, G) be C^1 functions, and that (14) be valid.

5. We close by noting a pair of statements of the type one gets by slight rewording of the results described above. Isometric oriented surfaces imbedded C^4 in E^3 so that H>0 and K>0 are congruent if and only if the isometry between them is conformal between their R_2 structures. Similarly, such surfaces on which $H\neq 0$ and K<0 are congruent if and only if the isometry between them is conformal between their R_2 structures and preserves the sign of H.

The weakness of these results amply illustrates the sense in which II, while inessential on R_2 or R'_2 , is of fundamental importance in determining the imbedding of a surface, as distinct from the R_2 or R'_2 conformal imbedding of a Riemann surface. None-the-less, more significant applications of Theorems 1, 2 and 3 should be possible.

REFERENCES

- 1. Tilla Klotz, Some uses of the second conformal structure on strictly convex surfaces, Proc. of the Amer. Math. Soc. 14 (1963), 793-799.
- 2. ———, Another conformal structure on immersed surfaces of negative curvature, Pacific J. of Math. 13 (1963), 1281-1288.
- 3. Dirk J. Struik, Lectures on Classical Differential Geometry, Addison-Wesley, Cambridge, 1950.

University of California, Los Angeles