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THE DISTRIBUTION OF CUBIC AND QUINTIC
NON-RESIDUES

JAMES H. JORDAN

For a prime p = 1 (mod 3), the reduced residue system S;,
modulo p, has a proper multiplicative subgroup, C°, called the
cubic residues modulo p. The other two cosets formed with
respect to C°, say C! and C?, are called classes of cubic non-
residues, Similarly for a prime p =1 (mod5) the reduced
residue system S;, modulo p, has a proper multiplicative sub-
group, Q°, called the quintic residues modulo p. The other
four cosets formed with respect to Q° say Q', Q% @Q° and Q*
are called classes of quintic non-residues., Two functions, f3(p)
and fi(p), are sought so that (i) if p = 1 (mod 3) then there
are positive integers a;€C?, 1 = 1,2, such that a; < fi3(p), and
@) if p =1 (mod5) then there are positive integers a; < Q’,
1=1,2,3,4 such that a; < f5(p). The results established in
this paper are that for p sufficiently large, (i) fi(p) = p**s,
where o is approximately .191, and (ii) fi(p) = pf*?, where
27 < B < 2725,

Davenport and Erdos [3] raised the general question about the
size of the smallest element in any given class of kth power non-
residues. The special cases £k =3 and k£ =5 are of primary concern

in this paper. They proved a quite general theorem of which two
special cases are:

THEOREM A. For suffictently large primes »p =1 (mod3) and

€ > 0 each class of cubic non-residues possess a positive integer smaller
than p55/112+£.

THEOREM B. For sufficiently large primes p =1 (mod5) and

€ >0 each class of quintic non-residues possess a positive integer
smaller than p=7¥e+,

In the same paper Davenport and Erdos used a result of de Bruijn
[2] to improve the constant of Theorem A to approximately .383.

Recently D. A. Burgess [1] succeeded in improving Polya’s in-
equality concerning character sums. Burgess’ result is

THEOREM C. If p is a prime and if ¥ 18 a nonprincipal charac-
ter, modulo p, and +f H and r are arbitrary positive integers then
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n+H

I: X(m) K H1—1/7+1p1/4r In P,
+1

m=n

for any integer n, where A £ B is Vinogradov’s notation for | A| < ¢B
for some constant ¢, and in this Theorem c 1s absolute.

The application of Theorem C to the arguments of Davenport and
Erdos cuts each of the exponents of p in half.

The achievement of this paper is to obtain the same result about
cubic non-residues by an argument which is independent of the de
Bruijn result, reduce the exponent on the result for quintic non-
residues by a similar argument, and indicate a method of obtaining
results for any primeth power non-residues.

2. Cubic Non-Residues.
A well known result about sums of inverses of primes is:

II: 331/g =lnilnx + K+ O1/ln x) ,

9=z

where K is a positive constant.!

LEMMA 1. If 0 < v < 1/2 then
Sye=|_ tway+owina),
where the error term s independent of wv.
The proof of Lemma 1 follows directly from II.

LeMMA 2. If 0 < v < 1/2 then

—

Voo oalag 1/2 1—
S Stge={" |7 warday + o@ing

z(1-v)/2 ¢y (1—v)/2 Jy

where q, and q, run only over primes and the error term 1is in-
dependent of v.

Proof.

vz  zla Vo
S lgq.= 5 1/a,(ninelg) — nlng. + O1/ln =)

2(1—=v)/2 qq ¢ (1=

= 3 Vg (nin(afg) — Inlng) + O1/Inw) .

2 (1—v)/2
Now by a well known summation Theorem,?

1 See for example LeVeque, Topics in Number Theory, Vol. 1, Th, 6-20, p. 108,
2 See for example LeVeque, Ibid, Th. 6-15, p. 103, with 2, the nth prime, ¢, =
1/, and f(y) = nln(x/y) — Inlny + OQ/lnx).
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& Ya (" (Imlnt + K +01/In2)lnadt
2y o M= qu_m (tIntin (3/t))
— (1 —v)/2) + Inlne + K
4+ O(/ln2))(In (1 + v)/(1 — v)) + O(1/ln ) .

If the change of variable ¢ = 2° ¢s made then
81’2 Inlnx+ K+ O1/ln x)) ds
(a-o/2 s(1—s)

Yz o %lay B 1/2 l’l’l/ S
xu—zv'wz % la.q. = g(l—v)/z s(1 —g)
—(n(l—2v)2) +nlns+ K
+ O(U/ln 2))(In (1 + v)/(1 — v)) + O(L/in x)
e Ins _ _ .
_ gu_m mds In (1 — )/2) In (1 4 0)/(1 — »))
+ O/l x)
=" s o 8 ds + O(1/in )

(1—v)/2

- gm SH’ (y2)-dedy + O(L/ln @) .

-v)2 Jy

For any positive integer » and primes p = 1(mod3) let = =
3[p+ni(Inip) 3], Let Ci(a) = C' N {m[0 < m <}, j=0,1,2, and

let N(C’(x)) be the cardinality of C’(x).
The following is a special case of a general theorem of Vinogradov

(4], [5]-
LeEMMA 3. N(C'(x)) = @/3 + O(/ln =), j =0,1,2.

Proof. Formula I with H =z, and n = 0 reads as

Ex}l A(m) L = i p
é (p(1+1/r)/4(ln2p)r+1)r/r+1p1/4r In P
= p (itpy -l p
= pt I (Inp) v p

In other notation
mzi‘,lx(m) = O(z/ln x) .

Let %, be the cubic residue character for primes p = 1 (mod 3).
By the above there is an absolute constant, K, such that

11 : [}; xs,,,(m)l < Kaflnz .
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Set N(Ci(x)) =«/8+ T, 7 =0,1,2. Notice that Ty = — T, — T..
Let w = cos 27/3 + isin 27/3.
It now follows that

S Yas(m) = z @3 + Tyw’

m=

-

= Zi, T,-w’
= —(T,+ T)3/2 + (T, — TV 3/2.

Now by III: |T,+ T,| < 2K 2/8lna and | T, — T,| < 2Kx/V' 3 In .
These inequalities imply that | T, | and | T, | are less than 2K,/ 3 In .
Hence | T,| < 4K.2/V'3 In ¢ completing the proof of the lemma.

THEOREM 1. Let d be the solution of

1/2

ys={ wway+ | " woauay.

(1—v) /2
For all sufficiently large primes p = 1 (mod 3) there is in each class
of cubic mon-residues modulo p, a positive integer smaller than
pt=Pre, (d satisfies the inequality .234 < d < .285).

Proof. Given € > 0 let » =[1/e] + 1. Define x in terms of p as
above and notice that as long as ¢ < d then

pldte — [p(1+1/r)/4(ln2 p)r+1/3]1—d+831—d+5
< p(l——d+e)/4+(1—d+e)/4r_(l,nz p)(1—d+s)(r+1)

< p(1—a+s)/4+1/4r.(l,n2 p)r+1
< pl=@itre for sufficiently large primes p.

It therefore suffices to prove that for sufficiently large primes,
each class of cubic non-residues contains a positive integer smaller
than -9+,

Assume that Theorem 1 is false. Then, for some fixed ¢ > 0,
there are infinitely many primes p = 1 (mod 3) such that one of their
classes of non-residues fails to contain a positive integer less than
x-%°, Let p, be one such prime. Notice that z, C°, C' and C* are
defined in terms of p, and will therefore be fixed in this argument.

Without loss of generality C* can represent that class of non-
residues modulo p, that has no positive integers less than x'—*+:, Since
C* has this property it follows that C' has no positive integer less than
2492 hecause ¢ in C' implies a* in C2

Since C° is closed under multiplication, modulo p,, an integer w
in C*(x) must have prime factors not in C°. If w has exactly one
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prime factor, ¢, not in C° then ¢ must be in C:. If w has exactly
two prime factors, ¢, and ¢, not in C° then both ¢, and ¢, must be
in C°. Further w cannot have more than two prime factors not in C°
sinece the product of any three or more prime factors not in C° exceeds x.

A consequence of the above conditions on positive integers in C*(x)
is the following upper bound for N(C*(x)):

z/qq

IV : 1}2.” [x/a,] + Z. Z [2/g.q.]

3 zl dte N1
where the ¢, and ¢, are taken only over primes. But

IV <ac< z g, + E % 1/q1qz)

gl=d+ Vol—d+e 91

<o —ln (@~ d + &)1 — d)) + Si_d 1/ydy

+ Sw SH (v~ dady + Ki/in o)

(1—d)/2 Jy

=a(—In @1+ ¢/l —d) + 1/3) + Ka/lna ,

where K, is a constant independent of x. But this inequality can
hold only for finitely many primes to be compatible with Lemma 3.

3. Quintic Non-Residues. It is helpful to adopt the following
notations: Let

I |

1/ydy

(1—v)

S— (y?)'dzdy
(1—v)/2

Y

(1—v)/2

II

(yz)~'dzdy

(1—v) /4

L=,

L=,

L A

L=l e dudady
I

B,

1—v—y

] |

(1—-v)/8 ((1—y)/2

Sl_y_z (yzw)'dudzdy
(1—v—p)2

(1—y)/2 Sl—y—z

(1—) /4

Il

(yzu)~'dudzdy

(1—v)/3

(1—9)/8 ((1—y—2)/2 (l—y—2—0
L= S (1—v)/ S S S (yzut)~'dtdudzdy .
1—v) /4 u

Y z

In the following summation the ¢; run only over primes.

S, = é 1/q,

vz 50/411

S, = > > g,

z(1-v)/2 ¢
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2(1=v)/2  z/qq

S; = Z Z 1/q.q,

2 (1=2) /4 xl—vlql

2(1=9)3 Vg{I=v)[q,  ®/010y

S, = > Z > 1/g1929s

x(1—v)[4 3 zl—'u/qlqz

2(1=2)/3 “/ﬁ 2/q192

S5: Z Zl Z 1/Q1q2q3

=0/t Ve =oyg, %2

Y7 VETa elays

Se= > > > 1/0..9,
z(1=0)[3 ¢y 9
4,— 8, —
L o Vx/qlqz 2/919993

S; = > 1/419:940, -

z(1=v)/4 gy ay as

We can now restate
LEMMA 1. If 0 <v < 1/2 then S, = I, + O(1/ln x), and
LEMMA 2. If 0 <o < 1/2 then S, = I, + O(1/ln ), and similarly

LEMMA j+ 1. If 0<v<1/2 then S;=1I;+ O1/lnx) for j=
3,4,5,6,7.

The proofs of Lemmas 4, 5, 6, 7, and 8 are straight forward
generalizations of Lemmas 1 and 2 and are much too lengthy to be
exhibited here.

For any positive integer » and primes p =1 (mod5) let x =
5[pt it (Intp) /5], Let Q(») = @ N{m|0<m =a}, 1=0,1,2,3,4,
and let N(Q’(x)) be the cardinality of Q’(x).

The following is another special case of the general Theorem of
Vinogradov [4], [5]:

LEMMA 9. N(Q/(x)) = z/5 + O(x/lnx),  =0,1,2,3,4.

Proof. Let %,, be the quintic residue character for primes
p =1 (mod5). By the argument in the proof of Lemma 3 there is an
absolute constant K, such that

Vi | Ssm)| < Kaftno
Set N(Q(x)) = #/5 + Ts, j =0,1,2,3,4. Notice that T, = — S,

Let o = cos 27/5 + % sin 27/5.
It now follows that
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3 aslm) = 3(af5 + T)p!
= j_% T;07
= i Ti(cos 27j/5 — 1) + @Z T; sin 277/5 .

Now from V it follows that

(i): | (T, + T)(cos2n/5 — 1) + (T, + Ts)(cos 47/5 — 1) | < Kyx/ln x
and

(i) : |[(T, — T)sin2xn/5 + (T, — Ts) sin 4n/5| < Kyx/ln x.

Notice that i, is also a character and by the argument in the
proof of Lemma 3 of §2 there is an absolute constant K, such that

VI: lgl)(?,p(m)l < Kallnx .
But on the other hand
glxé, o(m) = ;:30 (z/5 + T;)o
S
— g T, (cos 4mj/5 — 1) + 1 ; T, sin 4755 .

Now by VI it follows that

(iii) : | (T, + T)(cos 4z/5 — 1) + (T, + Ty)(eos 2x/5 — 1)| < Kx/ln

@iv): | (T, + T,)sindr/5 + (T, — T,) sin 27/5| < Kx/ln x.

With a little manipulation of (i), (ii), (iii), and (iv) one can obtain
| T;| < Kxflnx, 7=0,1,2,3,4, where K, is an absolute constant
independent of x, proving Lemma 9.

THEOREM 2. Let d denote the solution of 1/5 = >\, I,. For all
suffictently large primes p=1 (mod5) there is in each class of
quintic non-residues, modulo p, a positive integer smaller than
ptalre (4 satisfies the inequality .08 < d < .09),

Proof. Given € > 0 let » =[1/¢] + 1. Define « in terms of p as
above and notice as long as ¢ < d then z'~%+ < p'~¥** for sufficiently
large values of p. It will suffice to prove that for sufficiently large
primes p=1 (mod 5) that each class of quintic non-residues modulo
p contains a positive integer less than ™%,

Assume that Theorem 2 is false. Then, for some fixed ¢ > 0,
there are infinitely many primes p = 1 (mod 5) such that one of their
classes of non-residues fails to contain a positive integer less than x'~%*,
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Let p, be one such prime. Notice that =z, Q% Q' Q% @° and Q' are
defined in terms of p, and will therefore be fixed in this argument.

Without loss of generality Q' can represent that class of non-
residues modulo p, that has no positive integers less than x'—%+, Since
@* has this property it follows that @', @* and @® have no positive
integers less than z"~%*9/* because a in Q' or @° implies ¢* in Q* and
a in @* implies a® in Q"

Since Q° is closed under multiplication, modulo p,, an integer w
in @*(x) must have prime factors not in Q°. One of the following
conditions holds depending on the exact number of primes, ¢;, not in
Q° that divide w.

(i) There exists a prime ¢, such that ¢,|w and 2% <q, < 2z,
since ¢, is in Q'(x).

(ii) There exist primes ¢, and ¢, such that gqq,|w and
x4 < g9, < , since ¢,g, is in Q%(x).

(iii) There exist primes g¢,, q¢. and ¢, such that g¢,q.q;|w and
@' < qu0.9; < @, since ,q:q; is in Q*(x).

(iv) There exists primes q,, q., ¢5s, and ¢, such that ¢,9.q.q,| w and
o < q,0:059, < @, since ¢.¢:qq, is in Q*(x).

It should be noticed that w cannot have more than four prime
divisors which are not in @° since the product of any five or more
primes not in @° would exceed x. The number of w’s that could
possibly satisfy (i) is less than or equal to

>, [#/a)] -

s1=d+e
The number of w’s that could possibly satisfy (ii) is less than 2(S, + S,).
The number of w’s that could possibly satisfy (iii) is less than

2(S, + S; + S;). The number of w’s that could possibly satisfy (iv)
is less than xS,. Combining the above we have

N@(@) < 3, [afg] + =35,

gl—d+e 7
= - lz_cd [%/q.] + xg{si

— —2ln (1 —d+ o))l —d)) + x(i I, + Kln x)
=a(—In@ + ¢/(1 — d)) + 1/5) + Kx/ln x ,
where K, is a constant independent of x. But this inequality can

hold only for finitely many primes to be compatible with Lemma 9.

4. Remarks. The techniques of the previous sections generalize
for Kth power non-residues when K is a prime. In these cases the
definition of d involves (K* — 3K + 4)/2 integrals ranging from multi-
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plicity 1 through K — 1. There are K — 1 possible divisibility conditions
imposed on the elements of AX~'(x). The upper bound for N(A*'(x))
involves (K* — 3K + 4)/2 summations ranging from multiplicity 1
through K — 1. The contradiction is reached in the same manner.
The details are lengthy but straightforward. For example for seventh
power residues the results of Davenport and Erdos imply an exponent
of » equal to 959/3840. While using methods exhibited in §3 one
obtains an exponent smaller than 25/104.

When K is composite the job is more difficult since the subgroup
of Kth power residues and the K — 1 cosets form a eyclic group of
composite order. These cyclic groups have proper subgroups. The
“without loss of generality” comment is no longer valid and some
arguments concerning the number of prime factors of K must be
called upon. The author intends to present these techniques at a
future date.
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