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REFLECTION AND APPROXIMATION BY
INTERPOLATION ALONG THE

BOUNDARY FOR ANALYTIC FUNCTIONS

JAMBS M. SLOSS

Let there be given a function f(z) analytic in an open
connected set, not necessarily simply connected, which is
bounded by simple closed analytic curves such that the
function is continuous on the closure of the region and such
that the real part of the function satisfies boundary conditions
that are analytic in a neighborhood of the boundary. We
want to interpolate f(z) along the boundaries and find con-
ditions that make the interpolants converge maximally to f(z)
throughout the closure of the region. The boundary condition
on the real part of f(z) permits the analytic continuation of
f(z) across the boundary curves and ensures that we are
interpolating at points interior to the region of analyticity.
In our error estimates (Theorem 1) maximal convergence
depends in an essential way on how far we can reflect fiz)
and this in turn depends on the boundary values of the real
part of f(z) as well as on the geometry of the given region
and its analytic boundaries. In Theorems 2 and 3, a simply
connected region is considered. Special points of interpolation
are given, these depend only on the parametric representation
of the boundary curves and not a conformal map. These
points are the image points of the Chebyshev polynomials.

Finally an example is given for a multiply connected region.
As is well known [2] Runge's beautiful theorem shows us that

there exist certain "equidistributed" points on the analytic curves such
that if we interpolate at these points the interpolants converge to the
function. However, the proof depends on knowing the conformal map
in order to know what the interpolation points are. Here we shall
give conditions that do not require knowledge of the conformal map
but for convergence depend on how far we can reflect. Along with
these, we shall give simple error estimates. Moreover, we shall show
that possible interpolation points are the images on the boundary of
roots of the Chebyshev polynomials.

The aspects of this paper which are novel are
( i ) the use of reflection
(ii) interpolation at boundary points which are gotten directly

from the parametric representation of the boundary and do not depend
on a conformal map
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(iii) the use of the images of the roots of the Chebyshev poly-
nomials as possible interpolation points.

Notation. Let R be a connected set whose boundary is Γ. Let
Γ — Γ1 U Γ2 U U Γ* where the Γ3 are bounded analytic contours in
the z = x + iy plane given by Fj(x, y) = 0 with (Fi)2 + (F3)2 Φ 0 along
Γj, j = 1, 2, , s, where the F° are real-valued analytic functions of
x and y. We assume further that the Γ3 are pairwise disjoint. Let
Γ1 contain in its interior Γ2,^, , Γ8 and contain in its exterior the
point at infinity. Let Γ3 contain in its interior a3 2 g i g s . As shown
in [3] there are "reflection" functions G3(z) defined on a neighborhood
D3 U Γ3 U D3 of Γ3. Assume G3(z) single-valved on D3 U Γ3 U D3 [3] shows.

( 1 ) z = G^i) is /* .
( 2 ) Gj(2) is analytic on D^ U Γ5 U J5J, where D3 is contained in

the connected R and JO'' is contained in the complement of Γ3 U D3 for
j = 1,2, • • - , § .

( 3) The transformation

( 4 ) If z is in D3 then

j = G(z) is an involution; i.e. z — z.

is in JD 7' and if z is in D3 then 2 is in

( 5 ) G[Dj] = .D '̂ and ]
that is not Γj, is a contour Cj and

We assume the boundary of .
ΓJ(Z) is continuous on D3 (J C3.

THEOREM 1. (H 1) Let f(z) be an analytic single valued function
on R whose boundary is Γ such that the real part of f(z) solves the
Dirichlet problem in R with real boundary values Bά{z) on Γ3 where
Bj(z) are single-valued and continuous in D3 (J Γ' U D3 U C3 and analytic
in D3 U Γ3 U D3\ Let f(z) be continuous and single-valued on R{J Γ.

(H. 2) Let z3

)U z3.2<t , z3.%5+u ns = 0,1, 2, , be points of
Γ3\ j = 1, 2, , s. Let p3

ni(z) be the polynomial in z of degree nx

that agrees with B^z) at z\u z1^, , zl1%i+1 and let p3

nj(z) ( 2 ^ i ^ s)
be the polynomial in 1/(2 — a3) that agrees with B3{z) for z — aά = z3

njl,
zip > zi5n5+i where a3 is a point inside c3.

(H. 3) Let

h\ = min Π | ί — z\k \
t on Oι A; = l

Wj + 1

μ\ = max Π | z - z\k \

and

min
t on CJ

i

= max Π

t

z

— (

t

— (

z

X; ~ zί,k

- a3

ΪJ - zijk

- a3

, 2 ^
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(H. 4) Let μijδίj — 0 as nά -* co, j = 1, 2, , s. Then for

, — ) and | ^ | = max
nj

, , , ) |̂ | { f , ,
nί n2 nj I nγ n2 ns

(C. 1) Rμ.(z) — Σi=i Pij(z) converges uniformly to f(z) in R{j Γ
as I μ I —-> 0 <m<2 £/ms ϋte i?μ(£) converges uniformly to u(%, y) in R
and uniformly to Bά{z) on Γj.

(C. 2) Moreover in R U Z1:

I f(z) - R,{z) \^±± ^ψ^ μίjiί,

where Lά = ϊβnfifίΛ o/ Cy, Mά = max | /(ί) | α-̂ cί δy = inf min 11 — z \ .
z on Γl t on

Proof. In order to avoid notation that only confuses, we shall
prove the theorem for the case s = 2.

We first analytically continue f(z) into R U Γ1 [j D1 [j Γ2 \j D\ Let
/*(*) = /[Gv(z)] for z in ΓJ' U &. ff{z) is defined and analytic for z
in ΓJ u Dj since z = Gj(z) is in J9-7" for z in J9J" and Gj(z) is analytic
for z in Γj U ^". But //(2?) = βz) for 2 on Γ\ thus on Γ^

Thus f(z) = 2^(2;) - //(z) analytically continues /(«) into Γ> U ^
since /(z) is continuous up to and on Γj. Moreover, f(z) is continuous on

Γ> U Dά U Cj since G,(z) and Bά{z) are. Thus //(«) s fs[G(z)] analytically
continues f*(z) into Γj (J ̂ J since /*(«) is continuous up to and on Γj.
Let an+ι(z) = (3 - zL)(z - ^ (2 - zL+i)

\z-a2 zltly\z-a2 z\J \z-a2 z2

mm+1/

Then for z on Γ:

a^{t) - an+ι(z) d tf dt
2πi J a t - z an+ί(t)

β ( * ) d t

2πi Jo* t — z βm+i(t)

where pnm(z) is a rational function of zy pnm(z) — pi(z) + p2

m+ί(z) in
which pι

n(z) is the polynomial in z of degree ^ w got by interpolating
f(z) along Γ 1 at z\u zn2i , znn+ι and pi+i(«) i s the polynomial of degree
m + 1 in l/(z — α2) got by interpolating f(z) along J"2 so that
pl+ifa + z2

mJ) = f(z2

mj). To see the latter let x = l/(z - α2) and 2/ =
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l/(t — α2) then βm+1(t) = bm+1(y) where bm+1(y) is a monic polynomial
in y of degree 5^m + 1, thus we have

βm+1(t) - βm+ι(z) = 6w+1(α?) - bm+1(y) = (a? - y) g «<(»)»*

where α^x) are polynomials in x of degree ^ m . But

x - y = — = (* —
z — a2 t — α 2

thus

t-Z βm+1(t)

is a polynomial of degree ^ m + 1 in 1/(2 — α2). The error for z on
Γ is given by:

Note that:

M 1 f
2πι )d

1
z - a2

1

f(t)
t-z

Ut) I

1

1

2; ft

_ z

t

L ( Z ) 7

for z

- α2

- α2

, 1
' 2ττ

on Γ 1

- 2li t

and

- α 2

- α 2

/(ί)
t-z

t on σ and:

ί — α2

and thus

^ r £ for 2 o n Γ and £ on C2.

From these it follows:

IΛ*) " *-(.) I ^ -f { ^ 4 + ψ" # } for * on Γ,

where Lά is the length of C\

Mj = max I/(£) | , and δy = inf min \t — z\
t on cJ z on Γ3 t on CJ

which is the result.
We next consider the case when Γ is a single analytic contour

and (Cj = C) we write Γ in parametric form as z(σ) = x(σ) + iy(σ)
where —1 ^ σ <i 1. Let | z(σ2) — z(cΓi) | g A | cr2 — σλ |, let Z1 contain
the origin and
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THEOREM 2 (H. 1) Let f(z) be an analytic single-valued function
on R whose boundary is Γ such that the real part of f(z) solves the
Dirichlet problem in R with real boundary values B(z) on Γ where
B(z) is a single-valued analytic function on D (j Γ (j D continuous
on Γ U D U C, Let f(z) be continuous and single-valued on R (J Γ.

(H. 2) Let zn

ά = z{σf) where

σnj = cos [(2i - 1) π/(2n + 2)] , j = 1, 2, , n + 1

(H. 3) δ = inf min | ί - z |
z on Γ t on O

(H. 4) 4 < 23.
Then

prime denotes differentiation, converges
uniformly to f(z) on R \J Γ as n —» oo

(C.2) i Λ β ) - , . ( , ) ,

where M is a constant depending on /, L is length of Γ.

Proof. As in the proof of Theorem 1 we have for z on Γ

I/O*) - Vniz) I ^ ^ i k f max I <yΛ+1(s) |/S*+2.

But

I ω . + 1 ( s ) I = I (« - «r)(« - « ? ) • • • ( « - « t n ) I
^ AΛ+11 (£T - σΐ)(σ - αj) (σ - σ:+1) |

where the α? are the roots of the Chebyshev polynomial

Tn+ι(σ) = cos [(n + 1) arc cos σ]

of degree n + 1. Thus since (σ — σ?)(σ — tf?) (σ — <τl+ι) is monic

Thus

max I ωn+1(z) \ ^ A«+ί/2« and | f(z) - pn(z) \ <ί M ^ ( 4 -
, u»r oπ \2o

Next let /": ^(s) = cc(s) + ί#(s) where s is arc length 0 ^ s ^ L.

THEOREM 3. (H. 1) Same as Theorem 2.
(H. 2) Same as Theorem 2 δwί 2? = z(s*) where
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βj = -JL COS [(2J - l)π/2(n + 1)] + A , j = 1, 2, . . . , n + 1

(H 3) δ = inf min 11 - z \ .
z on Γ t on 0

(H 4) L < 4δ.
(C 1) Same as Theorem 2.

where M is a constant depending on f.

Proof. As in the proof of theorem for z on Γ:

I f(z) - pn(z) I ̂  — Af max | ωw+1(z) \/δn+z .
2π

But since | z — zn

ά \ ̂  | s — sj | where ^ = «(β) and z* = β(sj) and since
I (β — β*)(8 — 8j) (β — 8j+1) I ̂  Ln+1/22n+1 see e.g. [1] we

w+l

EXAMPLE. We shall now apply the ideas of this paper to a par-
ticular geometrical configuration. Let

Γ1 be a circle of radius 15 centered at the origin
Γ2 be a circle of radius 1 centered at ( — 13, 0)
Γz be an ellipse

£ + -£ = !, α=1.075, 5 = 1.

Fig. 1.
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Let R be the interior of Γ1 less Γ2, Γ3 and the interiors of Γ2 and Γ\
Let f(z) be analytic on R and continuous on R U Γ1 (J Γ2 (J Z73. Moreover
let the real part of f(z) satisfy boundary conditions Bλ(z) on Γ\ B2(z)
on Z*2 and B3(z) on Γ3 where:

Bx{z) is analytic on
J52(z) is analytic on

= 15
z + 13 I = 1

and Bz(z) is analytic in and on /^-{-.Sθδ < a? < .395, y = 0} See
figure.

For example we might have ϋte /(«) = Pk(Xj 2/) on Γ1* (& = 1, 2, 3)
where Pk{x, y) is a polynomial.

Then since:

\CΛ JL) IJΓ$\Z) = — ^CM f

and 2 = 2 = Gfc(2) on Γk we have on Γk

which are meromorphic functions that fulfill the requirements of
B^z), B2(z) and Bz(z) (in the case of Bz(z) we make a cut between the
foci ± t / α 2 - δ2) .

Let

rk = 15 exp ( 2πz k) and an+1(z) = (« - rx)(« - r2) . (« - rn+1)

and

an+ι(rk)(z - n)

where the prime signifies differentiation. pn(z) is clearly the polynomial
of degree ^ n that interpolates /(z) at z = rk on Γ11, & = 1, , n + 1.
Next let

and

and
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k z + l2>

qm(z) is a polynomial of degree ^ m in l/(z + 13) such that qm(sk — 13) =
f(sk — 13) where sλ - 13 is on Γ2, k = 1, 2, , m + 1.

Finally let i be the length of the ellipse Γ3 and

σk = cos [(2fc - l)ττ/2(i + 1)], k = 1, 2, . . , j + 1 .

Then the ellipse Γ13 can be written

z(σ) = x(σ) + ίy{σ) = α cos (2πσ/l) + ib sin (2πσ/l)f -ί/2 ^ σ ^ Z/2

σ is are length parameter shifted. Let

tk = z(σkll2) and W . ) = ( i . - i ) ( i - 1 ) ... ( 1 - JL)

and

r^(z) is clearly the polynomial in 1/z of degree ^ j such that
f(tk) k = 1, 2, , j + 1 where ίλ is on Γ3.

Then the assertion is

converges uniformly to /(z) on R u Γ1 U Γ2 U Γ s as

m

For JΓ1, we use Runge's theorem. Since B^z) is analytic on Γ\
then f(z) can be continued across Γ\ i.e. /(«) is analytic for 15 <̂
I z I ̂  15 + ε where ε is some positive number. Thus in the notation
of the theorem

min
|ί|=iδ+ε

n+ϊ

fc = l

min 15W + 1

max
|z|=lδ

n+l

-n)

r * ) |

| = min *•+' - 15-

1 — 11 ^ 15*+ 1 min
|r|=l+ε/lδ

= 15*+ 1 max ζ Λ + 1 —

and
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(E 2) ul/δi ^ 2/{[l + ε/15]w+1 - 1} -> 0 as n -> oo.

For Γ 2 , since B2(z) is analytic on Γ 2 , t h e n f(z) can be continued

across Γ12, i.e. /(z) is analytic for 1 — ε ^ | z + 1 3 | ^ l where ε is

some positive number. Thus if C2 = {z: \ z + 13 | = 1 — ε} we have:

max I βm+1(z) I = max
zonΓ2 z on Γ2

Y + 1 - l <:
\ζ\~i \\ζ

^ m a x — i ) - 1

and

min I βn+1(t) I = min I ( _ i
tonO2 tonO2 | \ t ++ 13

- 1

K 1 \m+l / 1 \m+l

1 ) - 1 ^ (—i—) - 1 .
ζ/ \ 1 — 6/

From these we see that

max I βm+1(z) I 2

(E. 3) m^- < = > 0 as m
V } min | iβ . + 1 ( ί ) | " / 1 \m+ί ,

For Γ3 we note from the reflection function G(z) given by (E. 1) that
the interior of the ellipse Γ* minus the line — c S % ̂  c, c2 = a2 — δ2,
is reflected exterior to the given ellipse but interior to the ellipse e2

— + -£- = i
α2 δ2

where ά = (α2 + 62)/c, 6 = 2 ab/c.

In the case of our ellipse we have a = 1.075, 6 = 1 and c = .395,
a = 5.46, 6 = 5.44, thus e2 is contained in Γ1, and does not intersect
or contain points of Γ2 and thus f(z) can be extended to be analytic
in Γz —{z\ —.395 < x < .395, y = 0}.

The length of the ellipse Γ* is given by:

I = 4aΓ / 2 l/l -k2sin2θdθ
Jo

where

k = c/a < 1. In our case A; = .368 and thus

I = 4α (1.516)

using a table for elliptic integrals. Let c3 be the rectangular contour
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(-.395 - ε ^ x ^ .395 + ε, y = - ε ) , (x = .395 + ε, - ε ^ y ^ ε) ,

(-.395 - ε ^ x ^ .395 + ε, # = ε) , (x = - .395 - ε, - ε ^ y S e)

where ε > 0 is arbitrarily small. Then consider

1 f fit)
2πi JO3 t — z

But

'π '"-
k=l * C

Π ""'

\tk I
. , = arc length,

where - l ^ ί ^ l since

l*i+i(ί)l =

^ 1 for 2 on Γ\ Also for ί on C3

^ (o - c - ff
\tk\\t\

where 7] is some fixed constant. But since | ί | ^ c + e/2 for ί on c3

we see that

Combining the above results gives

where we have utilized the fact that the σk are the roots of the
Chebyshev polynomial Tj+1(θ) = cox [(j + 1) are cos θ]. Thus

a — c —
Y+V LY+'.

V 4 /

680 ~

But

J_ = 1.516 < -1 α ~ c - ff = - i
Aa a c + εV2 1.075 .395

where gr(ε) —• 0 as e —• 0. Thus for e sufficiently small

, = 1.60

(E. 4) 1/4 ^
α - c ~lε .

c+ εi/2

Utilizing (E. 2), (E. 3) and (E. 4) we have from Theorem 1 that

P«(s) + P«(s) + ^i(^) converges uniformly to /(z) in i2 U Γ1 U Γ 2 U Γ 3

as (1/n) + (1/m) + (1/j) — 0.
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We remark finally that there would be no new difficulties if Γ had
contained in addition ΓA\JΓ*\JΓ* where ΓA is the circle \z — 10 i\ — 4,
Γδ the circle | z + 10 i \ = 4 and Γ6 is the circle | z - 12 | = 2.
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