SUFFICIENT CONDITIONS FOR AN OPTIMAL CONTROL PROBLEM IN THE CALCULUS OF VARIATIONS

Edwin H. Mookini

An arc C is a collection of parameters $b^{\rho}(\rho=1, \cdots, r)$ on an open set B and sets of functions $y^{i}(x), a^{h(}(x)(i=1, \cdots, n$; $h=1, \cdots, m)$ defined on an interval $x^{1} \leqq x \leqq x^{2}$ with $y^{i}(x)$ continuous and $\dot{y}^{i}(x), a^{h}(x)$ piecewise continuous. The arc is admissible if it satisfies the differential equations

$$
\dot{y}^{i}=P^{i}(x, y, a)
$$

$$
(i=1, \cdots, n)
$$

on $x^{1} \leqq x \leqq x^{2}$ and the end conditions

$$
x^{s}=X^{s}(b), y^{i}\left(x^{s}\right)=Y^{i s}(b) \quad(s=1,2) .
$$

The dot denotes differentiation with respect to x. The problem at hand is to find in a class of admissible arcs C, an arc C_{0}, which minimizes the integral

$$
I(C)=g(b)+\int_{x^{1}}^{x^{2}} f(x, y, a) d x
$$

where $P(x, y, a)$ and $f(x, y, a)$ are assumed to be class $C^{\prime \prime}$ for (x, y, a) in an open set R while $g(b), X^{s}(b), Y^{i s}(b)$ are of class $C^{\prime \prime}$ on B. Under the added assumption that $P(x, y, a)$ is Lipschitzian in y and a, the indirect method of Hestenes is used to prove that the necessary conditions for relative minima of the problem above, strengthened in the usual manner, yield a set of sufficient conditions. This problem differs from that of Pontryagin in the choice of (x, y, a) to lie in an open set.

Definitions and Notation. The arc C will be denoted by

$$
C: b, y(x), a(x)
$$

and the minimizing arc will be called C_{0}. A set of parameters β^{ρ} and functions $\eta^{i}(x), \alpha^{h}(x)$ is called a variation γ and denoted by

$$
\gamma: \beta, \eta(x), \alpha(x)
$$

if $\eta^{i}(x)$ are continuous and $\dot{\eta}^{i}(x), \alpha^{h}(x)$ are in L_{2} on $x^{1} \leqq x \leqq x^{2}$. The variation γ is differentially admissible if

$$
\dot{\eta}=P_{y^{y}} \eta^{j}+P_{a^{h}} \alpha^{h}
$$

along C_{0} for almost all x on $x^{1} \leqq x \leqq x^{2}$. Repeated indices indicate summation. It is admissible if in addition to being differentially admissible
it also satisfies the variational end conditions

$$
\eta^{i}\left(x^{s}\right)=\left\{Y_{\rho}^{i s}-\dot{y}^{i}\left(x^{s}\right) X_{\rho}^{s}\right\} \beta^{\rho}=C_{\rho}^{i s} \beta^{\rho} \quad(s=1,2)
$$

where the subscript ρ denotes the derivative with respect to b^{p}.
2. Condition S. An admissible are

$$
C_{0}: b_{0}, y_{0}(x), a_{0}(x)
$$

will be said to satisfy condition S if the following are true.
(a) $a_{0}(x)$ is continuous on $X^{1}\left(b_{0}\right) \leqq x \leqq X^{2}\left(b_{0}\right)$.
(b) C_{0} satisfies the first necessary conditions, i.e., the Euler equations,

$$
\dot{z}^{i}(x)=-H_{y^{i}}, \dot{y}^{i}(x)=H_{z^{i}}, H_{a^{k}}=0
$$

and the transversality condition

$$
g_{\rho}-\left[H\left(x_{0}^{s}\right) X_{\rho}^{s}-z^{i}\left(x_{0}^{s}\right) Y_{\rho}^{i s}\right]_{s=1}^{s=2}=0
$$

with $z^{i}(x)$ being continuous and having continuous derivatives on a neighborhood of C_{0}. The symbol $\left[f\left(x^{s}\right)\right]_{s=1}^{s=2}$ means $f\left(x^{2}\right)-f\left(x^{1}\right)$.
(c) C_{0} is nonsingular, i.e., the determinant $\left|H_{a^{h} a^{k}}\right|$ is nonzero along C_{0} where

$$
H(x, y, \alpha, z)=z^{i}(x) P^{i}(x, y, \alpha)-f(x, y, \alpha)
$$

(d) C_{0} with $z^{i}(x)$ satisfies the strengthened condition $I I_{N}$ of Weierstrass, $E_{H}(x, y, p, q, z) \geqq 0$ whenever (x, y, p, z) is near those on C_{0} and $(x, y, p) \neq(x, y, q)$ in R. The E-function is given by

$$
\begin{aligned}
E_{H}(x, y, p, q, z)= & -H(x, y, q, z)+H(x, y, p, z) \\
& +\left(q^{h}-p^{h}\right) H_{p^{h}}(x, y, p, z)
\end{aligned}
$$

(e) For every nonnull admissible variation γ, the second variation $I_{2}(\gamma)$ along C_{0} is greater than zero where

$$
\begin{aligned}
& I_{2}(\gamma)=\left\{g_{\rho \sigma}-\left[H X_{\rho \sigma}^{s}-z^{i} Y_{\rho \sigma}^{i s}\right.\right. \\
&\left.\left.\quad+\left\{H_{x}-\dot{y}^{i} H_{y i}\right\} X_{\rho}^{s} X_{\sigma}^{s}+H_{y^{i}}\left(Y_{\rho}^{i s} X_{\sigma}^{s}+Y_{\sigma}^{i s} X_{\rho}^{s}\right)\right]_{s=1}^{s=2}\right\} \beta^{\rho} \beta^{\sigma} \\
&-\int_{x^{1}}^{x^{2}} 2 \omega(x, \eta, \alpha) d x \\
& 2 \omega(x, \eta, \alpha)=H_{y^{i} y^{j}} \eta^{i} \eta^{j}+2 H_{y^{i} a_{a} \eta^{i}} \alpha^{h}+H_{a^{h} a^{k}} \alpha^{h} \alpha^{l c}
\end{aligned}
$$

(f) There is a neighborhood of C_{0} in $x y$-space such that

$$
|P(x, y, a)-P(x, Y, A)|<c\left\{|y-Y|^{2}+|a-A|^{2}\right\}^{1 / 2}, c>0
$$

holds for all elements $(x, y, a),(x, Y, A)$ of R which have (x, y) in that neighborhood.

Unless otherwise specified it will be assumed that the arc denoted by C_{0} will satisfy condition S. The principal theorem of this paper can now be stated and its proof will be given in § 7, using the results of the intervening sections.

Theorem 2.1. Let C_{0} be an admissible arc on $x^{1} \leqq x \leqq x^{2}$ satisfying condition S. There is a neighborhood N of C_{0} in $b y$-space such that $I(C)>I\left(C_{0}\right)$ for all admissible arcs C with (b, y) in N and (x, y, a) in R.

For future use it is convenient to state a theorem of Hestenes [8, Theorem 5.1] as

THEOREM 2.2. Let C_{0} be a nonsingular admissible minimizing arc satisfying condition $I I_{N}$. There is a neighborhood N_{0} of C_{0} in by a-space and a constant $h>0$ such that

$$
E_{H}(x, y, p, q, z) \geqq h l(q-p)
$$

for (x, y, p) in N_{0} and (x, y, q) in R where

$$
l(q-p)=\sqrt{1+|q-p|^{2}}-1
$$

and $|q-p|=$ the length of the vector $q-p$.
3. $I^{*}(C)$. Let C_{0} be a nonsingular minimizing arc and define

$$
\begin{aligned}
E_{H}^{*}(C) & =\int_{x^{1}}^{x^{2}} E_{H}(C) d x \\
& =-\int_{x^{1}}^{x^{2}}\left\{-H(a)+H\left(a_{0}\right)+\left(a^{h}-a_{0}^{h}\right) H_{a^{h}}\left(a_{0}\right)\right\} d x
\end{aligned}
$$

where the missing arguments are $(x, y(x), z(x))$. Choose a function $I^{*}(C)$ so that

$$
I(C)=I^{*}(C)+E_{H}^{*}(C)
$$

It follows from the definitions of $I(C)$ and $E_{H}^{*}(C)$ that

$$
\begin{aligned}
I^{*}(C)= & g(b)+\left[z^{i}\left(x^{s}\right) y^{i}\left(x^{s}\right)\right]_{s=1}^{s=2} \\
& -\int_{X^{1}(b)}^{x^{2}(b)}\left\{\dot{z}^{i}(x) y^{i}(x)+H\left(x, y, a_{0}, z\right)+\left\{a^{h}-a_{0}^{h}\right\} H_{a^{h}}\left(x, y, a_{0}, z\right)\right\} d x
\end{aligned}
$$

Since $E_{H}^{*}\left(C_{0}\right)=0$,

$$
I(C)-I\left(C_{0}\right)=I^{*}(C)-I^{*}\left(C_{0}\right)+E_{H}^{*}(C)
$$

From the definition of $I^{*}(C)$,

$$
\begin{align*}
I^{*}(C)-I^{*}\left(C_{0}\right)= & \left\{g(b)-g\left(b_{0}\right)\right\} \\
& \quad+\left[z^{i}\left(x^{s}\right) y^{i}\left(x^{s}\right)-z^{i}\left(x_{0}^{s}\right) y_{0}^{i}\left(x_{0}^{s}\right)\right]_{s=1}^{s=2} \\
& -\int_{X^{1}(b)}^{X^{2}(b)}\left\{\dot{z}^{i}\left\{y^{i}-y_{0}^{i}\right\}+H(y)\right. \\
& \left.\quad-H\left(y_{0}\right)+\left\{a^{h}-a_{0}^{h}\right\} H_{a^{h}}(y)\right\} d x \tag{3.1}\\
& -\int_{X^{2}\left(b_{0}\right)}^{X^{2}(b)}\left\{\dot{z}^{i} y_{0}^{i}+H\left(y_{0}\right)\right\} d x \\
& \quad+\int_{X^{1}\left(b_{0}\right)}^{X^{1}(b)}\left\{\dot{z}^{i} y_{0}^{i}+H\left(y_{0}\right)\right\} d x
\end{align*}
$$

where the missing arguments in H are $\left(x, \alpha_{0}, z\right)$. The following result can now be proved.

Theorem 3.1. Let C_{0} be a nonsingular admissible minimizing arc satisfying condition $I I_{N}$. For every $\varepsilon>0$ there exists a constant $\delta>0$ and a neighborhood F of C_{0} in by-space such that

$$
\left|I^{*}(C)-I^{*}\left(C_{0}\right)\right|<\varepsilon\left\{1+E_{H}^{*}(C)\right\},
$$

for every admissible arc C in F whose endpoints are in a o-neighborhood of these on C_{0}.

Given $\varepsilon>0, \delta$ and a neighborhood N_{1} of C_{0} in $b y$-space can be chosen such that from equation (3.1),

$$
\begin{equation*}
\left|I^{*}(C)-I^{*}\left(C_{0}\right)\right|<\left|\int_{X^{1}(b)}^{X^{2}(b)}\left\{a^{h}-a_{0}^{h}\right\} H_{g^{k}}\left(x, y, a_{0}, z\right) d x\right|+\frac{\varepsilon}{2} \tag{3.2}
\end{equation*}
$$

for all arcs C with (b, y) in N_{1}. Since $H_{a^{h}}\left(x, y_{0}, a_{0}, z\right)=0$, it follows that for $\varepsilon>0$ a neighborhood N_{2} of C_{0} in $b y$-space can be chosen so that

$$
\begin{equation*}
\left|H_{a^{h}}\left(x, y, a_{0}, z\right)\right|<\varepsilon_{1} \tag{3.3}
\end{equation*}
$$

for all $\operatorname{arcs} C$ with (b, y) in N_{2}. From Theorem 2.2,

$$
E_{H}(C) \geqq h l(q-p)>h\left\{\left|a-a_{0}\right|-1\right\}
$$

and

$$
\left|a-a_{0}\right| \leqq \frac{1}{h}\left\{E_{H}(C)+h\right\}
$$

This together with inequality (3.3) yields

$$
\begin{align*}
\left|\int_{x^{1}}^{x^{2}}\left\{a^{h}-a_{0}^{h}\right\} H_{a^{h}}\left(x, y, a_{0}, z\right) d x\right| & <\varepsilon_{1} \int_{X^{1}}^{x^{2}}\left|a-a_{0}\right| d x \\
& <\frac{\varepsilon_{1}}{h}\left\{E_{H}^{*}(C)+h\left(x^{2}-x^{1}\right)\right\} . \tag{3.4}
\end{align*}
$$

Choose ε_{1} such that $\varepsilon_{1}\left(x^{2}-x^{1}\right)<\varepsilon / 2$ and $\varepsilon_{1} / h<\varepsilon$. If in addition F is taken to be the smaller of the neighborhoods N_{1} and N_{2}, the theorem follows readily from inequalities (3.2) and (3.4).

Theorem 3.2. Given a constant $\sigma>0$ there are positive constants δ, ρ and a neighborhood F of C_{0} in $b y$-space such that for every admissible arc C in F satisfying theorem $3.1, I(C)>I\left(C_{0}\right)-\sigma$. If $E_{H}^{*}(C) \leqq \rho$, then $I(C)<I\left(C_{0}\right)+\sigma$. If $E_{H}^{*}(C) \geqq 2 \sigma$, then $I(C)>$ $I\left(C_{0}\right)+\sigma$.

The definition of $I(C)$ and Theorem 3.1 yield

$$
-\varepsilon+\{1-\varepsilon\} E_{H}^{*}(C)<I(C)-I\left(C_{0}\right)<\varepsilon+\{1+\varepsilon\} E_{H}^{*}(C)
$$

for all admissible arcs C with (b, y) in F. The theorem follows immediately from the proper choice of ε and ρ.
4. Extension of the arcs C_{0} and C. We shall extend the arcs C_{0}, C to lie on a fixed interval $e^{1} \leqq x \leqq e^{2}$ containing $X^{1}\left(b_{0}\right) \leqq x \leqq X^{2}\left(b_{0}\right)$ and $X^{1}(b) \leqq x \leqq X^{2}(b)$. The equation

$$
\begin{equation*}
H_{a^{h}}(x, y, a, z)=0 \tag{4.1}
\end{equation*}
$$

has a solution $y=y_{0}(x), a=a_{0}(x)$ corresponding to the minimizing are C_{0}. By the nonsingularity of C_{0}, there is a solution $a=a(x, y, z)$ of equation (4.1) which is continuous and has continuous derivatives in a neighborhood of C_{0}. Further, on $X^{1}\left(b_{0}\right) \leqq x \leqq X^{2}\left(b_{0}\right), a\left(x, y_{0}, z\right)=a_{0}(x)$. By an imbedding theorem [2, pp. 196] the equations

$$
\begin{aligned}
& \dot{y}=H_{z}(x, y, a(x, y, z)) \\
& \dot{z}=-H_{y}(x, y, a(x, y, z))
\end{aligned}
$$

have a solution $y=\bar{y}(x), z=\bar{z}(x)$ on $e^{1} \leqq x \leqq e^{2}$ such that $e^{1}<X^{1}\left(b_{0}\right)<$ $X^{2}\left(b_{0}\right)<e^{2}$ and $\bar{y}(x)=y_{0}(x), \bar{z}(x)=z_{0}(x)$ on $X^{1}\left(b_{0}\right) \leqq x \leqq X^{2}\left(b_{0}\right)$. The $\operatorname{arc} \bar{C}_{0}$,

$$
\bar{C}_{0}: b_{0}, \bar{y}(x), \bar{a}(x)=a(x, \bar{y}(x), \bar{z}(x))
$$

coincides with C_{0} on $x^{1} \leqq x \leqq x^{2}$, is defined on the larger interval $e^{1} \leqq x \leqq e^{2}$ and is therefore an extension of the arc C_{0}. Since this extension is unique, the extended arc will be denoted by C_{0},

$$
C_{0}: b_{0}, y_{0}(x)=\bar{y}(x), a_{0}(x)=\bar{a}(x)
$$

If an admissible arc C lies in a sufficiently small neighborhood of C_{0} then $e^{1} \leqq X^{1}(b)<X^{2}(b) \leqq e^{2}$ and the arc C may be extended uniquely to the interval $e^{1} \leqq x \leqq e^{2}$ by requiring that $a(x)=a_{0}(x)$ where it is undefined and that $\dot{y}=P(x, y, a(x))$ also holds on the extension. The extended arc will also be denoted by C.

This method of extension will be used throughout the rest of the paper. In the formulas for $I(C)$ and $I^{*}(C)$ it will be understood that the integrals will be evaluated on the interval $x^{1} \leqq x \leqq x^{2}$ and not on the extended interval. An exception to this convention is made in the formula for $K\left(C, C_{0}\right)$ which is discussed in the next session.
5. The function $K\left(C, C_{0}\right)$. To measure the deviation of comparison ares from the minimizing arc, we shall define a function $K\left(C, C_{0}\right)$ where C, C_{0} are the unique extensions of admissible arcs given in the last section as

$$
K\left(C, C_{0}\right)=\left|b-b_{0}\right|^{2}+\max _{e^{1} \leqq x \leq e^{2}}\left|y(x)-y_{0}(x)\right|^{2}+\int_{e^{1}}^{e^{2}} l\left(\alpha-a_{0}\right) d x
$$

with

$$
l\left(a-a_{0}\right)=\sqrt{1+\left|a-a_{0}\right|^{2}}-1 .
$$

Since $a(x)=a_{0}(x)$ on the extension,

$$
\int_{e^{1}}^{e^{2}} l\left(a-a_{0}\right) d x=\int_{x^{1}}^{x^{2}} l\left(a-a_{0}\right) d x
$$

and $E_{H}(C)$ is not changed by extending the interval.
ThEOREM 5.1. Let C, C_{0} be extensions to $e^{1} \leqq x \leqq e^{2}$ of an admissible arc and a nonsingular minimizing arc respectively. For every $\varepsilon>0$ there is a b y-neighborhood of C_{0} such that $K\left(C, C_{0}\right)<\varepsilon$ for all arcs C in that neighborhood satisfying $E_{H}^{*}(C)<\varepsilon / 2$.

By Theorem 2.2 and the hypothesis,

$$
\frac{\varepsilon}{2}>E_{H}^{*}(C)>h \int_{x^{1}}^{x^{2}} l\left(a-a_{0}\right) d x
$$

Choose a neighborhood of C_{0} in $b y$-space such that

$$
\left|b-b_{0}\right|^{2}+\max _{e^{1} \leq x \leq e^{2}}\left|y(x)-y_{0}(x)\right|^{2}<\frac{(2 h-1) \varepsilon}{2 h} .
$$

In that neighborhood,

$$
K\left(C, C_{0}\right)<\frac{(2 h-1) \varepsilon}{2 h}+\frac{\varepsilon}{2 h}=\varepsilon
$$

and the theorem is proved.
THEOREM 5.2. Let C_{q} be the extension of an admissible arc and let the sequence $\left\{C_{q}\right\}$ of such extended arcs have the property that given
a neighborhbood F of C_{0} in $b y$-space there is an integer q_{0} such that C_{q} is in F for $q>q_{0}$. If $\lim \sup _{q=\infty} I\left(C_{q}\right) \leqq I\left(C_{0}\right)$, then $\lim _{q=\infty} K\left(C_{q}, C_{0}\right)=0$.

If F is the neighborhood in Theorem 3.2 and $E_{H}^{*}\left(C_{q}\right) \geqq 2 \sigma$ for $q>q_{0}, \sigma>0, I\left(C_{q}\right)>I\left(C_{0}\right)+\sigma$ which contradicts the hypothesis that $\lim \sup _{q=\infty} I\left(C_{q}\right) \leqq I\left(C_{0}\right)$. Hence, $E_{H}^{*}\left(C_{q}\right) \leqq 2 \sigma<\varepsilon / 4$. Theorem 5.1 asserts that $K\left(C_{q}, C_{0}\right)<\varepsilon$ for arbitrary $\varepsilon>0$ and the theorem is proved.

Theorem 5.3. The sequence of arcs $\left\{C_{q}\right\}$ in Theorem 5.2 has the property that $\left\{b_{q}\right\}$ converges to $b_{0},\left\{y_{q}(x)\right\}$ converges uniformly to $y_{0}(x)$ and $\left\{a_{q}(x)\right\}$ converges almost uniformly in subsequence to $a_{0}(x)$.

Since $\lim _{q=\infty} K\left(C_{q}, C_{0}\right)=0$, it follows that

$$
\begin{gathered}
\lim _{q=\infty}\left|b_{q}-b_{0}\right|^{2}=0 \\
\lim _{q=\infty} \max _{\varepsilon^{1} \leq x \leq \Omega^{2}}\left|y_{q}(x)-y_{0}(x)\right|^{2}=0
\end{gathered}
$$

and

$$
\begin{equation*}
\lim _{q=\infty} \int_{e^{1}}^{e^{2}} l\left(a_{q}-a_{0}\right) d x=0 \tag{5.1}
\end{equation*}
$$

The first two of these equalities give the convergence properties of the sequences $\left\{b_{q}\right\}$ and $\left\{y_{q}(x)\right\}$ respectively. Suppose now that there is a subset S of $e^{1} \leqq x \leqq e^{2}$ of positive measure, $m(S)>0$, such that for any integer q_{0} there is a $q>q_{0}$ for which $\left|a_{q}(x)-a_{0}(x)\right|>\sigma>0$ for all x in S. Then, since $l\left(a_{q}-a_{0}\right) \geqq 0$ for all q, it follows that

$$
\int_{e^{1}}^{e^{2}} l\left(\alpha_{q}-a_{0}\right) d x \geqq \int_{S} l\left(\alpha_{q}-a_{0}\right) d x>\left\{\sqrt{1+\sigma^{2}}-1\right\} m(S)>0
$$

for infinitely many q 's. This contradicts equation (5.1) and the sequence $\left\{a_{q}(x)\right\}$ must converge in measure to $a_{0}(x)$ on $e^{1} \leqq x \leqq e^{2}$. There is then a subsequence, call it $\left\{a_{q}(x)\right\}$, which converges almost uniformly to $a_{0}(x)$ on $e^{1} \leqq x \leqq e^{2}$ and the theorem is proved.

Theorem 5.4. Let $\left\{C_{q}\right\}$ be a sequence of extended arcs having the convergence properties of the last theorem. Given a constant $\rho>0$ there is a constant $\delta>0$ and an integer q_{0} such that if M is a subset of $e^{1} \leqq x \leqq e^{2}$ of measure at most δ and $q \geqq q_{0}$ then

$$
0 \leqq \int_{M} l_{q}(x) d x<\rho
$$

where $l_{q}(x)=l\left(a_{q}-a_{0}\right)+2=1+\sqrt{1+\left|a_{q}-a_{0}\right|^{2}}$.
By the definition of $l_{q}(x)$,

$$
\int_{M} l_{q}(x) d x \leqq 2 \delta+\int_{M} l\left(\alpha_{q}-a_{0}\right) d x .
$$

If q_{0} is chosen so that $K\left(C_{q}, C_{0}\right)<\rho / 2$ for all $q>q_{0}$ and δ is chosen to be $\rho / 4$, the right side of the desired inequality is proved. The proof is completed by noting that $l_{q}(x) \geqq 0$. We have just proved that $\int_{M} l_{q}(x) d x$ is an absolutely continuous function of M uniformly with respect to q.
6. Variations γ_{q}, γ_{0}. Let k_{q} be the positive square root of $K\left(C_{q}, C_{0}\right)$ and define a variation γ_{q} as follows.

$$
\gamma_{q}: \beta_{q}=\frac{b_{q}-b_{0}}{k_{q}}, \quad \eta_{q}(x)=\frac{y_{q}(x)-y_{0}(x)}{k_{q}}, \quad \alpha_{q}(x)=\frac{a_{q}(x)-\alpha_{0}(x)}{k_{q}} .
$$

For a sequence of ares C_{q} with the property that $\lim _{q=\infty} K\left(C_{q}, C_{0}\right)=0$ it will be shown that the sequence of variations $\left\{\gamma_{q}\right\}$ converges in subsequence to a variation γ_{0} which is admissible on $x^{1} \leqq x \leqq x^{2}$. From the definitions of γ_{q} and $K\left(C_{q}, C_{0}\right)$ it follows that

$$
\begin{equation*}
\left|\beta_{q}\right|^{2}+\max _{e^{1 \leq} \leq x \leq e^{2}}\left|\eta_{q}(x)\right|^{2}+\int_{e^{1}}^{e^{2}} \frac{\left|\alpha_{q}(x)\right|^{2}}{l_{q}(x)} d x=1 . \tag{6.1}
\end{equation*}
$$

Since each term is nonnegative.

$$
\begin{gather*}
\left|\beta_{q}\right|^{2} \leqq 1 \tag{6.2}\\
\max _{e^{1} \leqq x \leq e^{2}}\left|\eta_{q}(x)\right|^{2} \leqq 1 \tag{6.3}
\end{gather*}
$$

and

$$
\begin{equation*}
\int_{e^{1}}^{e^{2}} \frac{\left|\alpha_{q}(x)\right|^{2}}{l_{q}(x)} d x \leqq 1 \tag{6.4}
\end{equation*}
$$

Using these inequalities we shall obtain several theorems, the first of which is

Theorem 6.1. Let $\left\{C_{q}\right\}$ be a sequence of extended arcs for which $\lim _{q=\infty} K\left(C_{q}, C_{0}\right)=0$ and $\beta_{q}=\left(b_{q}-b_{0}\right) / k_{q}$. The sequence $\left\{\beta_{q}\right\}$ converges in subsequence to a parameter β_{0}.

This follows immediately from inequality (6.2) and the BolzanoWeierstrass theorem.

Theorem 6.2. Let $\left\{C_{q}\right\}$ be the sequence of arcs in the previous theorem and $\alpha_{q}(x)=\left(\alpha_{q}(x)-\alpha_{0}(x)\right) / k_{q}$. There is a function $\alpha_{0}(x)$ in L_{2} on $e^{1} \leqq x \leqq e^{2}$ such that the sequence $\left\{\alpha_{q}(x)\right\}$ converges weakly in
subsequence to $\alpha_{0}(x)$ in L_{2} on every measurable set M on which $a_{q}(x)$ converges uniformly to a_{0}. Moreover, for every bounded integrable function $g(x)$,

$$
\begin{equation*}
\lim _{q=\infty} \int_{e^{1}}^{e^{2}} g(x) \alpha_{q}(x) d x=\int_{e^{1}}^{e^{2}} g(x) \alpha_{0}(x) d x . \tag{6.5}
\end{equation*}
$$

From inequality (6.4) and the inequality of Schwarz,

$$
\left|\int_{M} \alpha_{q}(x) d x\right|^{2} \leqq \int_{M} \frac{\left|\alpha_{q}(x)\right|^{2}}{l_{q}(x)} d x \int_{M} l_{q}(x) d x \leqq \int_{M} l_{q}(x) d x
$$

for all measurable subsets M of $e^{1} \leqq x \leqq e^{2}$. Hence

$$
\lim _{m(\mathbb{M})=0} \int_{M} \alpha_{q}(x) d x=0
$$

by Theorem 5.4 and $\int_{M} \alpha_{q}(x) d x$ is absolutely continuous in M uniformly with respect to q. In addition, equation (5.1) and the definition of $l_{q}(x)$ imply that there is an integer q_{0} such that for $q>q_{0}, \int_{e^{2}}^{e^{2}} l_{q}(x)$ is bounded. Hence $\int_{e^{1}}^{e^{2}}\left|\alpha_{q}(x)\right| d x$ is bounded. Banach [1] proved that there is an integrable function $\alpha_{0}(x)$ such that the sequence $\left\{\alpha_{q}(x)\right\}$ satisfies equation (6.5) for all bounded integrable functions $g(x)$.

Now let M be a subset of $e^{1} \leqq x \leqq e^{2}$ on which $\left\{a_{q}(x)\right\}$ converges uniformly to $a_{0}(x)$. For x in M there is an integer q_{1} such that for $q>q_{1}, l_{q}(x)<3$. Thus $\int_{M}\left|\alpha_{q}(x)\right|^{2} d x<3$ for all $q>q_{1}$. Banach [1, p. 130] showed that for a sequence of functions $\left\{\alpha_{q}(x)\right\}$ in L_{2} satisfying this last inequality, there is a function $\alpha_{0}(x)$ in L_{2} to which $\left\{\alpha_{q}(x)\right\}$ converges weakly in L_{2} in subsequence on M. Consequently,

$$
3 \geqq \liminf _{q=\infty} \int_{M}\left|\alpha_{q}(x)\right|^{2} d x \geqq \int_{M}\left|\alpha_{0}(x)\right|^{2} d x .
$$

Since this holds for every set M as above, we have $\int_{e^{1}}^{e^{2}}\left|\alpha_{0}(x)\right|^{2} d x \leqq 3$ and $\alpha_{0}(x)$ is in L_{2} on $e^{1} \leqq x \leqq e^{2}$. The theorem is thus proved.

Theorem 6.3. Let $\left\{C_{q}\right\}$ be the sequence of arcs in the previous theorem and let $\eta_{q}(x)=\left(y_{q}(x)-y_{0}(x)\right) / k_{q}$. There exists a function $\eta_{0}(x)$ whose derivative $\dot{\eta}_{0}(x)$ is in L_{2} such that the sequence $\left\{\eta_{q}(x)\right\}$ converges uniformly to $\eta_{0}(x)$ on $e^{1} \leqq x \leqq e^{2}$ and $\left\{\dot{\eta}_{q}(x)\right\}$ converges weakly in L_{2} to $\dot{\eta}_{0}(x)$ on every measurable set M on which $\left\{a_{q}(x)\right\}$ converges uniformly to $a_{0}(x)$. Moreover,

$$
\lim _{q=\infty} \int_{e^{1}}^{e^{2}} g(x) \dot{\eta}_{q}(x) d x=\int_{e^{1}}^{e^{2}} g(x) \dot{\eta}_{0}(x) d x
$$

for every bounded measurable function g.

Applying the Lipschitz condition of condition S to equation (6.1), we get

$$
\left|\beta_{q}\right|^{2}+\max _{e \leq x \leq e^{2}}\left|\eta_{q}(x)\right|^{2}+\frac{1}{c^{2}} \int_{e^{1}}^{e^{2}} \frac{\left|\dot{\eta}_{q}(x)\right|^{2}}{l_{q}(x)} d x \leqq 1+\int_{e^{1}}^{e^{2}} \frac{\left|\eta_{q}(x)\right|^{2}}{l_{q}(x)} d x
$$

Since $\max _{e^{1} \leqq x \leqq e^{2}}\left|\eta_{q}(x)\right|^{2} \leqq 1$ and $l_{q}(x) \geqq 2$,

$$
\int_{e^{1}}^{e^{2}}\left|\eta_{q}(x)\right|^{2} d x<\frac{1}{2} \int_{e^{1}}^{e^{2}} d x=\frac{1}{2}\left(e^{2}-e^{1}\right)=c_{1},
$$

a constant. Hence,

$$
\left|\beta_{q}\right|^{2}+\max _{e^{1} \leqq x \leqq e^{2}}\left|\eta_{q}(x)\right|^{2}+\frac{1}{c^{2}} \int_{e^{1}}^{e^{2}} \frac{\left.\dot{\eta}_{q}(x)\right|^{2}}{l_{q}(x)} d x \leqq 1+c_{1} .
$$

By an argument similar to that for the sequence $\left\{\alpha_{q}(x)\right\}$ it follows that there is a function $\dot{\eta}_{0}(x)$ in L_{2} to which the sequence $\left\{\dot{\eta}_{q}(x)\right\}$ converges weakly. Hence,

$$
\begin{equation*}
\lim _{q=\infty} \int_{e^{1}}^{x} \dot{\eta}_{q}(t) d t=\int_{e^{1}}^{x} \dot{\eta}_{0}(t) d t \tag{6.6}
\end{equation*}
$$

uniformly on $e^{1} \leqq x \leqq e^{2}$. Let

$$
\eta_{0}^{i}(x)=C_{\rho}^{i 1} \beta_{0}^{o}+\int_{x^{1}}^{x} \dot{\eta}_{0}(t) d t
$$

Since $\lim _{q=\infty} \eta_{q}\left(X^{1}\left(b_{q}\right)\right)=\eta_{0}\left(x^{1}\right)$, it follows from (6.6) that the sequence $\left\{\eta_{q}(x)\right\}$ converges uniformly to $\eta_{0}(x)$ on $e^{1} \leqq x \leqq e^{2}$ and the theorem is proved.

Theorem 6.4. Let $\left\{C_{q}\right\}$ be the sequence of extended arcs for which $\lim _{q=\infty} K\left(C_{q}, C_{0}\right)=0$ and define the variation γ_{q} as above. The sequence of variations $\left\{\gamma_{q}\right\}$ converges in subsequence to a variation γ_{0} which is admissible on $x^{1} \leqq x \leqq x^{2}$.

Let γ_{0} consist of the parameters β_{0} and the functions $\eta_{0}(x), \alpha_{0}(x)$ of the preceding three theorems. That γ_{0} is a variation follows directly from the definition of a variation and the properties of $\beta_{0}, \eta_{0}(x)$, and $\alpha_{0}(x)$. The variation γ_{0} will be admissible if it is differentially admissible and satisfies the endpoint equations in $\S 1$. Let M_{δ} be a subset of $x^{1} \leqq x \leqq x^{2}$ on which $\left\{a_{q}(x)\right\}$ converges uniformly to $a_{0}(x)$ and whose complement relative to $x^{1} \leqq x \leqq x^{2}$ has measure less than $\delta, \delta>0$. By Taylor's theorem,

$$
\dot{y}_{q}-\dot{y}_{0}=P_{y^{j}}\left\{y_{q}^{j}-y_{0}^{j}\right\}+P_{a^{h}}\left\{a_{q}^{h}-a_{0}^{h}\right\}+R_{q}
$$

the arguments of $P_{y^{j}}, P_{a^{k}}$ being (x, y_{0}, a_{0}) and

$$
\left|R_{q}\right| \leqq \varepsilon_{q}\left\{\left|y_{q}-y_{0}\right|+\left|a_{q}-a_{0}\right|\right\}
$$

on M where $\varepsilon_{q} \rightarrow 0$ as $q \rightarrow \infty$. Then

$$
\lim _{q=\infty} \int_{M_{\delta}} \dot{\eta}_{q}(x) d x=\lim _{q=\infty} \int_{M_{\delta}}\left\{P_{y^{j}} \eta_{q}^{j}+P_{a^{k}} X_{q}^{h}\right\} d x+\lim _{q=\infty} \int_{M_{\delta}} \frac{R_{q}}{k_{q}} d x .
$$

Since the last integral on the right is bounded and $\varepsilon_{q} \rightarrow 0$ as $q \rightarrow \infty$, it follows from Theorems 6.2 and 6.3 that

$$
\int_{M_{\delta}} \dot{\eta}_{0}(x) d x=\int_{M_{\delta}}\left\{P_{y^{j}} \eta_{0}^{j}+P_{a h} \alpha_{0}^{h}\right\} d x
$$

and γ_{0} is differentially admissible. The endpoint conditions on an admissible arc yield

$$
y_{q}^{i}\left(x^{s}\right)-y_{0}^{i}\left(x_{0}^{s}\right)=Y^{i s}\left(b_{q}\right)-Y^{i s}\left(b_{0}\right)
$$

Expressing the left side as $y_{q}\left(x^{s}\right)-y_{0}\left(x^{s}\right)+y_{0}\left(x^{s}\right)-y_{0}\left(x_{0}^{s}\right)$ and dividing by k_{q} we get

$$
\eta_{q}^{i}\left(x^{s}\right)+\dot{y}_{0}^{i}\left(x_{0}^{\prime s}\right) X_{\rho}^{s}\left(b_{0}^{\prime}\right) \beta_{q}^{\rho}=Y_{\rho}^{i s}\left(b_{0}^{\prime}\right) \beta_{q}^{\rho}
$$

where

$$
\begin{aligned}
x_{0}^{\prime s} & =x_{0}^{s}+\theta_{1}\left(x^{s}-x_{0}^{s}\right), 0<\theta_{1}<1 \\
b_{0}^{\prime} & =b_{0}+\theta_{2}\left(b_{q}-b_{0}\right), 0<\theta_{2}<1
\end{aligned}
$$

When $q \rightarrow \infty$,

$$
\eta_{0}^{2}\left(x_{0}^{s}\right)=\left\{Y_{\rho}^{i s}-\dot{y}_{0}^{i} X_{\rho}^{s}\right\} \beta_{0}^{\rho}=C_{\rho}^{i s} \beta_{0}^{\rho}
$$

and γ_{0} is admissible.
7. Proof of the sufficiency theorem. Two theorems involving $I^{*}\left(C_{q}\right)$ and $E_{H}^{*}\left(C_{q}\right)$ will be proved, then they will be used to obtain a proof of the sufficiency theorem of $\S 2$.

Theorem 7.1. Let C_{0} be an admissible arc on $x^{1} \leqq x \leqq x^{2}$ satisfying condition S. If for any integer q there is an admissible arc $C_{q} \neq C_{0}$ in the $1 / q$-neighborhood of C_{0} such that $I\left(C_{q}\right) \leqq I\left(C_{0}\right)$ then

$$
\lim _{q=\infty} \frac{I^{*}\left(C_{q}\right)-I^{*}\left(C_{0}\right)}{k_{q}^{2}}=\frac{1}{2} I_{2}\left(\gamma_{0}\right)+\frac{1}{2} \int_{x^{1}}^{x^{2}} H_{a^{h} a^{k}} \alpha_{0}^{h} \alpha_{0}^{k} d x
$$

Applying Taylor's theorem to the right side of equation (3.1) for $I^{*}(C)-I^{*}\left(C_{0}\right)$ and dividing by k_{q}^{2} we get equations (7.1) to (7.4)

$$
\begin{equation*}
\frac{g\left(b_{q}\right)-g\left(b_{0}\right)}{k_{q}^{2}}=\frac{1}{k_{q}} g_{\rho} \beta_{q}^{\rho}+\frac{1}{2} g_{\rho \sigma} \beta_{q}^{\sigma}+R_{1 q} \tag{7.1}
\end{equation*}
$$

where $\left|R_{1 q}\right|<\varepsilon_{1 q}\left|\beta_{q}\right|^{2}$ and $\lim _{q=\infty} \varepsilon_{1 q}=0$. The derivatives are evaluated at $b=b_{0}$.

$$
\begin{align*}
& \frac{z^{i}\left(x^{s}\right) Y^{i s}\left(b_{q}\right)-z^{i}\left(x_{0}^{s}\right) Y^{i s}\left(b_{0}\right)}{k_{q}^{2}}=\frac{1}{k_{q}}\left[\dot{z}^{i} Y^{i s} X^{s}+z^{i} Y_{\rho}^{i s}\right]_{s=1}^{s=2} \beta_{q}^{\rho} \\
& +\frac{1}{2}\left[\ddot{z}^{i} Y^{i s} X_{\rho}^{s} X_{\sigma}^{s}+\dot{z}^{2}\left\{Y_{\sigma}^{\imath s} X_{\rho}^{s}+Y_{\rho}^{i s} X_{\sigma}^{s}\right\}\right. \tag{7.2}\\
& \\
& \left.\quad+\dot{z}^{i} Y^{\imath s} X_{\rho \sigma}^{s}+z^{i} Y_{\rho \sigma}^{i s}\right]_{s=1}^{s=2} \beta_{q}^{s} \beta_{q}^{\sigma}+R_{2 q}
\end{align*}
$$

where $\left|R_{2 q}\right|<\varepsilon_{2 q}\left|\beta_{q}\right|^{2}$ and $\lim _{q=\infty} \varepsilon_{2 q}=0$. Again the derivatives are evaluated at $b=b_{0}$.

$$
\begin{align*}
\frac{1}{k_{q}^{2}} \int_{x^{1}}^{x^{2}}\left\{\dot{z}^{i}\left(y_{q}^{2}-y_{0}^{i}\right)\right. & +\left\{H\left(x, y_{q}, a_{0}, z\right)-H\left(x, y_{0}, a_{0}, z\right)\right\} \\
& \left.+\left(a^{h}-a_{0}^{h}\right) H_{a} h\left(x, y_{q}, a_{0}, z\right)\right\} d x \tag{7.3}\\
= & \int_{x^{1}}^{x^{2}}\left\{\frac{1}{2} H_{y^{i} y^{3}} \eta_{q}^{i} \eta_{q}^{j}+H_{y^{2} a} \eta_{q}^{i} \alpha_{q}^{h}\right\} d x+\int_{x^{1}}^{x^{2}} R_{3 q} d x
\end{align*}
$$

where $\left|R_{3 q}\right|<\varepsilon_{3 q}\left|\eta_{q}\right|^{2}$ and $\lim _{q=\infty} \varepsilon_{3 q}=0$. The derivatives $H_{y^{i} y^{j},} H_{y^{i}{ }_{a} k}$ are evaluated along C_{0}.

$$
\begin{align*}
& \frac{1}{k_{q}^{2}} \int_{x^{1}\left(0_{0}\right)}^{x^{1}(b)}\left\{\dot{z}^{i} y_{0}^{i}+H\left(x, y_{0}, a_{0}, z\right)\right\} d x \\
&= \frac{1}{k_{q}}\left\{\dot{z}^{i} y_{0}^{i}+H\left(x, y_{0}, a_{0}, z\right)\right\} X_{\rho}^{1} \beta_{q}^{\rho} \\
& \quad+\frac{1}{2}\left\{\ddot{z}^{i} y_{0}^{i}+H_{x}+H_{a^{h}} \dot{a}_{0}^{h}+H_{z^{2}} \dot{z}^{i}\right\} X_{\rho}^{1} X_{\sigma}^{1} \beta_{q}^{\rho} \beta_{q}^{\sigma} \tag{7.4}\\
& \quad+\frac{1}{2}\left\{\dot{z}^{i} y_{0}^{i}+H\right\} X_{\rho \sigma}^{1} \beta_{\square}^{\Omega} \beta_{q}^{\sigma}+R_{4 \eta}
\end{align*}
$$

where $\left|R_{4 q}\right|<\varepsilon_{4 q}\left|\beta_{q}\right|^{2}$ and $\lim _{q=\infty} \varepsilon_{4 q}=0$. All the terms on the right are evaluated along C_{0} at $x=X^{1}\left(b_{0}\right)$. A result similar to this also holds for the integral remaining in the expression for $\left(I^{*}\left(C_{q}\right)-I^{*}\left(C_{0}\right)\right) / k_{q}^{2}$ with $R_{5 q}$ as the error in place of $R_{4 q}$. The definition of $R_{3 q}$ and the boundedness of $\left|\eta_{q}\right|^{2}$ yield the fact that $\lim _{q=\infty} \int_{x^{2}}^{x^{2}} R_{3 q} d x=0$. Substituting equations (7.1) to (7.4) into equation (3.1), applying condition S and a theorem of Hestenes [7, Lemma 6.3] we get the desired result.

TheOrem 7.2. Let C_{0} be an admissible are satisfying condition S. Let $\left\{C_{q}\right\}$ be admissible arcs related to C_{0} as described in the last theorem and chosen so that the corresponding variation γ_{q} defined previously converge to a variation γ_{0} as described. Then

$$
\liminf _{q=\infty} \frac{E_{H}^{*}\left(C_{q}\right)}{k_{q}^{2}}+\frac{1}{2} \int_{x^{1}\left(b_{0}\right)}^{x^{2}\left(b_{0}\right)} H_{a^{k} a^{k}} \alpha_{0}^{k} \alpha_{0}^{k} d x \geqq 0
$$

For large $q, E_{H}\left(C_{q}\right)>0$ for $C_{q} \neq C_{0}$. Applying Taylor's theorem to $E_{H}\left(C_{q}\right)$ it follows that

$$
\begin{equation*}
\frac{E_{H}^{*}\left(C_{q}\right)}{k_{q}^{2}} \geqq-\frac{1}{2} \int_{M} H_{a^{k_{a} k}}\left(x, y_{q}, a_{0}, z\right) \alpha_{q}^{h} \alpha_{q}^{k} d x+\int_{M} R_{6 q} d x \tag{7.6}
\end{equation*}
$$

where M is a subset of $x^{1} \leqq x \leqq x^{2}$ on which $\left\{a_{q}(x)\right\}$ converges uniformly to $a_{0}(x)$. Since $\left|R_{x^{2}}\right|<\varepsilon_{6 q}\left|\alpha_{q}\right|^{2}$ and $\lim _{q=\infty} \varepsilon_{6 q}=0$ it follows from the boundedness of $\int_{x^{1}}^{x^{2}}\left|\alpha_{q}\right|^{2} d x$ that $\lim _{q=\infty} \int_{M} R_{6 q} d x=0$. Now

$$
\begin{align*}
& -\frac{1}{2} \int_{M} H_{a h_{a} k}\left(x, y_{q}, a_{0}, z\right) \alpha_{q}^{h} \alpha_{q}^{k} d x \\
= & -\frac{1}{2} \int_{M} H_{a h_{a} k}\left(x, y_{0}, a_{0}, z\right) \alpha_{0}^{h} \alpha_{0}^{k} d x \\
& -\frac{1}{2} \int_{M}\left\{H_{a h_{a} k}\left(x, y_{q}, a_{0}, z\right)-H_{a h_{a} k}\left(x, y_{0}, a_{0}, z\right)\right\} \alpha_{q}^{h} \alpha_{q}^{k} d x \tag{7.7}\\
& -\frac{1}{2} \int_{M r} H_{a h_{a} k}\left(x, y_{0}, a_{0}, z\right)\left\{\alpha_{q}^{h} \alpha_{q}^{k}-\alpha_{0}^{h} \alpha_{0}^{k}\right\} d x .
\end{align*}
$$

From the continuity of $H_{a^{h_{a} k}}$ and the boundedness of $\int_{x^{1}}^{x^{2}}\left|\alpha_{q}\right|^{2} d x$ we get

$$
\lim _{q=\infty} \int_{M}\left\{H_{a^{h} a^{k} k}\left(x, y_{q}, a_{0}, z\right)-H_{a^{h_{a} k}}\left(x, y_{0}, a_{0}, z\right)\right\} \alpha_{q}^{h} \alpha_{q}^{k} d x=0
$$

The last integral in equation (7.7) can be written as

$$
\begin{aligned}
& \int_{M} H_{a^{h_{a} k}} \alpha_{q}^{h} \alpha_{q}^{k} d x=\int_{M} H_{a^{h_{a} k}}\left\{\alpha_{q}^{h}-\alpha_{0}^{k}\right\}\left\{\alpha_{q}^{k}-\alpha_{0}^{k}\right\} d x \\
& \quad+\int_{M} H_{a h_{a} k}\left\{\alpha_{q}^{h} \alpha_{0}^{k}+\alpha_{0}^{h} \alpha_{q}^{k}\right\} d x-\int_{M} H_{a h_{a} k} \alpha_{0}^{h} \alpha_{0}^{k} d x
\end{aligned}
$$

Since $\left\{\alpha_{q}(x)\right\}$ converges weakly to $\alpha_{0}(x)$ on M,

$$
\begin{align*}
& \liminf _{q=\infty} \int_{M}-\frac{1}{2} H_{a^{h_{a} k}} \alpha_{q}^{h} \alpha_{q}^{k} d x=-\frac{1}{2} \int_{M} H_{a^{h_{a} k}} \alpha_{0}^{h} \alpha_{0}^{k} d x \\
& \quad+\liminf _{q=\infty} \int_{M}-\frac{1}{2} H_{a^{h_{a} k}}\left\{\alpha_{q}^{h}-\alpha_{0}^{h}\right\}\left\{\alpha_{q}^{k}-\alpha_{0}^{k}\right\} d x \tag{7.8}
\end{align*}
$$

Therefore, from (7.6), (7.7) and (7.8),

$$
\begin{align*}
& \liminf _{q=\infty} \frac{E_{H}^{*}\left(C_{q}\right)}{k_{2}^{q}}+\frac{1}{2} \int_{M} H_{a h_{a} k} \alpha_{0}^{h} \alpha_{0}^{k} d x \tag{7.9}\\
& \quad \geqq \liminf _{q=\infty} \int_{M}-\frac{1}{2} H_{a^{h_{a} k}}\left\{\alpha_{q}^{h}-\alpha_{0}^{h}\right\}\left\{\alpha_{q}^{k}-\alpha_{0}^{k}\right\} d x .
\end{align*}
$$

Since C_{0} satisfies condition II_{N} with multipliers $z^{i}(x)$ it also satisfies the strengthened condition of Clebsch,

$$
H_{a^{h} a_{a}} \pi^{h} \pi^{k} \leqq 0
$$

in a neighborhood of C_{0} for all $(\pi) \neq(0)$. Hence the last integral in (7.9) is nonnegative and the theorem is proved for every subset M on which $\left\{a_{q}(x)\right\}$ converges uniformly to $a_{0}(x)$. Let M_{1} be the complement of M on $x^{1} \leqq x \leqq x^{2}$. Then

$$
\int_{x^{1}}^{x_{x}} H_{a^{h} a^{k}} \alpha_{0}^{h} \alpha_{0}^{k} d x=\int_{M} H_{a^{h_{a} k}} \alpha_{0}^{h} \alpha_{0}^{k} d x+\int_{M_{1}} H_{a^{h_{a} k}} \alpha_{0}^{h} \alpha_{0}^{k} d x
$$

Since the integrand $H_{a^{h} k} \alpha_{0}^{h} \alpha_{0}^{k}$ is integrable on $x^{1} \leqq x \leqq x^{2}$, the last integral of the preceding equation must go to zero as the measure of M_{1} tends to zero. Thus the theorem is proved over $x^{1} \leqq x \leqq x^{2}$. We now turn to the proof of Theorem 2.1. Suppose it is false. For any integer q there is an admissible arc $C_{q} \neq C_{0}$ in the $1 / q$-neighborhood of C_{0} such that $I\left(C_{q}\right) \leqq I\left(C_{0}\right)$. From equation (3.2) and Theorem 7.1,

$$
\begin{equation*}
0 \geqq I_{2}\left(\gamma_{0}\right)+\frac{1}{2} \int_{x^{1}}^{x^{2}} H_{a^{k_{a}} k} \alpha_{0}^{k} \alpha_{0}^{k} d x+\liminf _{q=\infty} \frac{E_{\square}^{*}\left(C_{q}\right)}{k_{q}^{2}} \tag{7.1}
\end{equation*}
$$

which implies, by virtue of Theorem 7.2, that $I_{2}\left(\gamma_{0}\right) \leqq 0$. Statement (e) of condition S requires that γ_{0} must be null. Consequently $I_{2}\left(\gamma_{0}\right)=0$ and

$$
\int_{x^{1}}^{x^{2}} H_{a^{h_{a}}} \alpha_{0}^{k} \alpha_{0}^{k} d x=0 .
$$

By Theorem 2.2 and the inequality (7.10),

$$
0 \geqq \liminf _{q=\infty} \frac{E_{\square}^{*}\left(C_{q}\right)}{k_{q}^{2}}=h \liminf _{q=\infty} \int^{x^{2}} \frac{\left|\alpha_{q}\right|^{2}}{l_{q}(x)} d x
$$

which is impossible because of equation (6.1). Hence $\gamma_{0} \neq 0$ and the assumption that $I\left(C_{q}\right) \leqq I\left(C_{0}\right)$ is false. This proves the sufficiency theorem.

References

1. S. Banach, Theorie des Operations Lineaires, Warsaw, 1932.
2. G. A. Bliss, Lectures on the Calculus of Variations, University of Chicago Press, 1945.
3. M. R. Hestenes, A General Problem in the Calculus of Variations with Applications to Paths of Least Time, RAND Research Memorandum, RM-100, 1950.
4. The Weierstrass E-function in the calculus of variation, Trans. Amer. Math. Soc. 60 (1946), 51-71.
5. Theorem of Lindeberg in the calculus of variations, Trans. Amer. Soc. 60 (1946), 72-92.
6. \longrightarrow, Sufficient conditions for the isoperimetric problem of Bolza in the calculus of variation, Trans. Amer. Math. Soc. 60 (1946), 93-118.
7. ——, An Indirect sufficiency proof for the problem of Bolza in nonparametric form, Trans. Amer. Math. Soc. 62 (1947), 509-535.
8. ations, Amer. J. Math. 70 (1948), 239-276.
9. E. J. McShane, Sufficient conditions for a weak relative minimum in the problem of Bolza. Trans. Amer. Math. Soc. 52 (1942), 344-379.
