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SUFFICIENT CONDITIONS FOR AN OPTIMAL
CONTROL PROBLEM IN THE CALCULUS

OF VARIATIONS

EDWIN H. MOOKINI

An arc C is a collection of parameters bp (p = 1, , r) on
an open set B and sets of functions y\x)9 a\x) (i = 1, , n;
h = 1, , m) defined on an interval x1 ̂  x ^ xz with y\x) con-
tinuous and yι{x)9 a\x) piecewise continuous. The arc is admis-
sible if it satisfies the differential equations

if = PXx9y,d) (£ = 1, -- 9n)

on x1 S x ^ x2 and the end conditions

xs = X φ\ y%xs) = Yis(b) (β = 1, 2 ) .

The dot denotes differentiation with respect to x. The problem
at hand is to find in a class of admissible arcs C, an arc Co,
which minimizes the integral

where P(x, y9 a) and f(x9 y, a) are assumed to be class C" for
(x, y, a) in an open set R while g(b), Xs(b), Yis(b) are of class
Cπ on B. Under the added assumption that P(x9 y, a) is Lip-
schitzian in y and a, the indirect method of Hestenes is used
to prove that the necessary conditions for relative minima of
the problem above, strengthened in the usual manner, yield a
set of sufficient conditions. This problem differs from that of
Pontryagin in the choice of (x9 y9 a) to lie in an open set.

DEFINITIONS AND NOTATION. The arc C will be denoted by

C: δ, y(x), a(x)

and the minimizing arc will be called Co. A set of parameters βp and
functions ^(x), ah(x) is called a variation 7 and denoted by

7: β, η(x)9 a(x)

if η\x) are continuous and φix), ah(x) are in L2 on x1 ^ x ^ x2. The
variation 7 is differentially admissible if

hΎ) = Pyj7J3' + Pah(X

along Co for almost all x on x1 ^ x ^ x2. Repeated indices indicate sum-

mation. It is admissible if in addition to being differentially admissible
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264 EDWIN H. MOOKINI

it also satisfies the variational end conditions

γix8) = {F;s - tfwxfip = σ β* (s = i, 2)

where the subscript p denotes the derivative with respect to δp.

2* Condition £«. An admissible arc

C o : 60, yQ(x), ao(x)

will be said to satisfy condition S if the following are true.

( a ) aQ(x) is continuous on X1(60) ^ % ̂  ^ 2 (δ 0 ) .
( b ) Co satisfies the first necessary conditions, i.e., the Euler

equations,

i\x) = -Hyi, yl{x) = H,i, Haκ = 0

and the transversality condition

)X° - ^(aj;) Ypίβ];=ϊ = o

with zι{x) being continuous and having continuous derivatives on a
neighborhood of Co. The symbol [f(xs)]i=l means /(α;2) - f(xι).

( c ) Co is nonsingular, i.e., the determinant \Hahak\ is nonzero
along Co where

H(x, y, α, «) = ^(a JP^a?, T/, a) - f(x, y, a) .

( d ) CQ with ^' (x) satisfies the strengthened condition IIN of
Weierstrass, Eπ(x, y, p, q, z) 7> 0 whenever (x, y, p, z) is near those on
Co and (x, y, p) Φ (x, y, q) in R. The l?-function is given by

EH(x, y, p, q, z) = -H{x, y, q, z) + H(x, y, p, z)

+ (qh -

( e ) For every nonnull admissible variation 7, the second vari-
ation J2(7) along Co is greater than zero where

— I 2ω(x, r/, a)dx ,
Jx1

( f ) There is a neighborhood of Co in x^-space such that

I P(a?, y, a) - P(x, Y, A)\ < c{\y - Y\2 + \a - A \ψ2, c > 0

holds for all elements (x,y,a), (x,Y, A) of R which have (x, y) in
that neighborhood.
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Unless otherwise specified it will be assumed that the arc denoted
by Co will satisfy condition S. The principal theorem of this paper can
now be stated and its proof will be given in § 7, using the results of
the intervening sections.

THEOREM 2.1. Let Co be an admissible arc on x1 5g x ^ x2 satis-
fying condition S. There is a neighborhood N of Co in b y-space
such that I(C) > I(CQ) for all admissible arcs C with (b, y) in N and
(x, y, a) in R.

For future use it is convenient to state a theorem of Hestenes
[8, Theorem 5.1] as

THEOREM 2.2. Let Co be a nonsingular admissible minimizing
arc satisfying condition IIN. There is a neighborhood No of Co in
b y a-space and a constant h > 0 such that

Eπ{%, y, P, q, z) ^ hl(q - p)

for (x, y, p) in No and (x, y, q) in R where

l(q - p) = Vl+\q-p\2 - 1

and I q — p \ — the length of the vector q — p.

3* I*(C). Let Co be a nonsingular minimizing arc and define

E%{C) -

= -\X\-H(a) + H(a0) + (ah - a>)HAθo)}dx

where the missing arguments are (x, y(x), z(x)). Choose a function
I*(C) so that

I*(C) + E*(C) .

It follows from the definitions of I(C) and E%{C) that

I*{C) - gφ) + {*(χ )y\χ )\\z\
xHb)

{zi{x)yi{x) + H(x, y, aQ, z) + {ah - al}Haκ{x, y, α0, z)}dx .
)

ί {
xHb)

Since E£{C0) - 0,

I(C) - /(Co) = I*{C) - I*(C0) + E*(C) .

From the definition of I*(C),
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I*(C) - I*(C0) = {g(b) - g(b0)}

(3.1)

4 - 2/S} + H(y)

zιy\ + H(yQ)}dx
)x2ib0)

Xι{b)

XιibQ)
zψo + H(yo)}da

where the missing arguments in H are (x, ao,z). The following result
can now be proved.

THEOREM 3.1. Let Co be a nonsingular admissible minimizing
arc satisfying condition IIN. For every ε > 0 there exists a con-
stant 8 > 0 and a neighborhood F of Co in by-space such that

for every admissible arc C in F whose endpoints are in a δ-neigh-
borhood of these on Co.

Given ε > 0, δ and a neighborhood Nλ of Co in b ?/-space can be chosen
such that from equation (3.1),

I fX2(&) c

/Q o\ I T*(Γ} — T*(Πyί <f \ iπh — πHTT JT IJ Π ?\ΓIΎ 4-
IJi^δ) 2

for all arcs C with (6, ̂ /) in NlΦ Since Hah(xy yQ, α0, «) = 0, it follows
that for ε > 0 a neighborhood N2 of Co in 6 y-space can be chosen so
that

(3.3) I Hak(x, y, α0, z) \ < ε1

for all arcs C with (6, ?/) in ΛΓ2. From Theorem 2.2,

EH(C) ^ fcί(g — p) > h{\a — aQ\ — 1}

and

(C) + A}.a-ao h

This together with inequality (3.3) yields

1 {ah — ai}Hah(x, y, a0, z)dx < ελ \a
J x1 J x1

(3.4)
α0
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Choose εx such that ε±(x2 — x1) < ε/2 and εjh < ε. If in addition F is
taken to be the smaller of the neighborhoods Nλ and Ni9 the theorem
follows readily from inequalities (3.2) and (3.4).

THEOREM 3.2. Given a constant σ > 0 there are positive con-
stants δ, p and a neighborhood F of Co in b y-space such that for
every admissible arc C in F satisfying theorem 3.1, I(C) > I(C0) — σ.
If E£(C) ^ p, then I{C) < I(CQ) + σ. If E*{C) ^ 2σ, then I{C) >

σ.

The definition of I(C) and Theorem 3.1 yield

- e + {1 - s}E*(C) < I{O - I(C0) < ε + {1 + ε}E*{C)

for all admissible arcs C with (δ, y) in F. The theorem follows im-
mediately from the proper choice of ε and p.

4* Extension of the arcs Co and C. We shall extend the arcs
Co, C to lie on a fixed interval e1 ^ x ^ e2 containing -X"1^) ^ & ̂  ^ 2(δ 0)
and X\b) ^x ^ X\b). The equation

(4.1) Hak(x, y, α, «) = 0

has a solution 7/ = ^/0(^), a = αo(ίc) corresponding to the minimizing arc
Co. By the nonsingularity of Co, there is a solution α = a(x, y, z) of
equation (4.1) which is continuous and has continuous derivatives in a
neighborhood of Co. Further, on X^bo) ^ x ^ -X"2(δ0), ̂ (^, 2/o, ̂ ) = αo(^)
By an imbedding theorem [2, pp. 196] the equations

y = i2;(£, 2/, α(a;, y, z))

have a solution y ~ y(x), z = I(a?) on e1 ^ x ^ β2 such that e1 < X^δo) <
X2(6o) < e2 and jr(a?) = yo(x), z(x) = 20(a;) on X^δo) ^ α? ̂  Z2(δ0). The
arc Co,

Co: δ0, y(x), Φ) = «(», ^(a?), «(»))

coincides with Co on x1 ^ x ^ x2, is defined on the larger interval
e1 ^ x ^ e2 and is therefore an extension of the arc Co. Since this
extension is unique, the extended arc will be denoted by Co,

Co: δ0, yo(x) = ^(a?), αo(«) = α(») .

If an admissible arc C lies in a sufficiently small neighborhood of Co

then e1 ^ X\b) < X2(δ) ^ ^2 and the arc C may be extended uniquely
to the interval e1 ^ x ^ β2 by requiring that α(a?) = αo(α;) where it is
undefined and that y = P(a?, 7/, α(a?)) also holds on the extension. The
extended arc will also be denoted by C.
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This method of extension will be used throughout the rest of the
paper. In the formulas for I(C) and I*(C) it will be understood that
the integrals will be evaluated on the interval x1 rg x ίg x2 and not on
the extended interval. An exception to this convention is made in
the formula for K(C, Co) which is discussed in the next session.

5* The function K(C, Co)* To measure the deviation of com-
parison arcs from the minimizing arc, we shall define a function
K(C, Co) where C, Co are the unique extensions of admissible arcs
given in the last section as

K(C, Co) = I b - δ01
2 + max ( y(x) - yQ(x) \2 + Γ l(a - aύ)dx

with

l(a - a0) = τ/1 + I a - a01
2 - 1 .

Since a(x) — ao(x) on the extension,

l(a — αo)dx = \ ϊ(α — aQ)dx

e1 Jccl

and ER(C) is not changed by extending the interval.

THEOREM 5.1. Let C, Co δβ extensions to e1 S. % S e2 of an admis-
sible arc and a nonsingular minimizing arc respectively. For every
ε > 0 there is a b y-neighborhood of Co such that K(C, Co) < ε for all
arcs C in that neighborhood satisfying E#(C) < ε/2.

By Theorem 2.2 and the hypothesis,

UC) > h\\l(a - ao)dx .

Choose a neighborhood of Co in b ?/-space such that

—

\b-bQ\2+ max \y(x)-yQ(x)\>< {2h ~

In that neighborhood,

and the theorem is proved.

THEOREM 5.2. Let Cq be the extension of an admissible arc and
let the sequence {Cq} of such extended arcs have the property that given
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a neighborhbood F of Co in b y-space there is an integer q0 such that Cq is
in F for q> q0. If lim supg=oo I(Cg) ^ I(C0), then limg==oo K(Cq, Co) = 0.

If F is the neighborhood in Theorem 3.2 and E%(Cq) ^ 2σ for
<ϊ > tfo, σ > 0,1(Cq) > /(Co) + σ which contradicts the hypothesis that
lim supg=oo I(Cg) ^ I(C0). Hence, E£(Cq) <L2σ < ε/4. Theorem 5.1 as-
serts that K(Cq, Co) < ε for arbitrary ε > 0 and the theorem is proved.

THEOREM 5.3. The sequence of arcs {Cq} in Theorem 5.2 has the
property that {bq} converges to bQi {yq(x)} converges uniformly to yQ(x)
and {aq(x)} converges almost uniformly in subsequence to ao(x).

Since lim,=co K(Cqy Co) = 0, it follows that

lim I bq - b01
2 = 0 ,

lim max | yq(x) - yo(x) |2 = 0 ,

and

(5.1) lim I l(aq — ao)dx = 0 .

The first two of these equalities give the convergence properties of
the sequences {bq} and {yq(x)} respectively. Suppose now that there
is a subset S of e1 g x g e2 of positive measure, m(S) > 0, such that
for any integer qQ there is a q > #0 for which | αff(α) — αo(aj) | > σ > 0
for all x in S. Then, since l(aq — a0) ^ 0 for all g, it follows that

Γ l(aq - aQ)dx ^ ί l(aq - aQ)dx > {i/l + σ2 -l}m(S) > 0

for infinitely many g's. This contradicts equation (5.1) and the sequence
{aq(x)} must converge in measure to ao(x) on e1 ^ x ^ β2. There is then
a subsequence, call it {aq(x)}9 which converges almost uniformly to ao(x)
on e1 ^ x ^ β2 and the theorem is proved.

THEOREM 5.4. Le£ {Cg} 6β a sequence of extended arcs having
the convergence properties of the last theorem. Given a constant
p > 0 there is a constant δ > 0 and an integer q0 such that if M is
a subset of eι ^ x ^ e2 of measure at most δ and q Ξ> q0 then

0 ^ ί lg(x)dx < p

where lq(x) — l(aq — α0) + 2 = 1 + l / l + | aq — a0

By the definition of lq(x),
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\ lq(x)dx <; 2δ + I l(aq — ao)dx .

If g0 is chosen so that K(Cq, Co) < <o/2 for all q > q0 and S is chosen
to be |θ/4, the right side of the desired inequality is proved. The
proof is completed by noting that lq(x) ^ 0. We have just proved

that \ lq(x)dx is an absolutely continuous function of M uniformly
Jjtf

with respect to q.

6. Variations 7Qf 70* Let kq be the positive square root of K(Cq, Co)
and define a variation yq as follows.

aq(x) = aq(χ> 7 α°fo>.
7

q fVq rCq

For a sequence of arcs Cq with the property that limg=oo K(Cq, CQ) = 0
it will be shown that the sequence of variations {yq} converges in sub-
sequence to a variation 70 which is admissible on x1 ^ x ^ x2. From
the definitions of yq and K(Cq, CQ) it follows that

(6.1) I βq I
2 + max | ηq(x) |2 + V*\°^&Ldx = 1 .

i£** J 1 l(χ)W&)

Since each term is nonnegative.

(6.2) I βq |
2 g 1 ,

(6.3) max2 [ ^g(x) |2 g 1 ,

and

(6.4) \*\aAx)Jdx^l.lq(x)

Using these inequalities we shall obtain several theorems, the first of
which is

THEOREM 6.1. Let {Cq} be a sequence of extended arcs for which
limg=co K(Cq, Co) = 0 and βq = (bq — bQ)/kq. The sequence {βq} converges
in subsequence to a parameter β0.

This follows immediately from inequality (6.2) and the Bolzano-
Weierstrass theorem.

THEOREM 6.2. Let {Cq} be the sequence of arcs in the previous
theorem and aq(x) — (aq(x) — ao(x))/kgm There is a function ao(x) in
L2 on e1 ^ x ίg e2 such that the sequence {ocq{x)} converges weakly in
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subsequence to ao(x) in Lt on every measurable set M on which aq(x)
converges uniformly to a0. Moreover, for every bounded integrable
function g(x),

(6.5) lim I g(x)aq(x)dx = \ g(x)ao(x)dx .

From inequality (6.4) and the inequality of Schwarz,

lq(x)dx ^ ( lq(x)dxI ( aq(x)dx
\}M lq(χ)

for all measurable subsets M of e1 g x ^ e2. Hence

lim 1 aq(x)dx = 0
m(Λf)=0 JM

by Theorem 5.4 and I aq(x)dx is absolutely continuous in M uniformly
JM

with respect to q. In addition, equation (5.1) and the definition of lq(x)

S e2

lq(x) is bounded.
j aq(x) \ dx is bounded. Banach [1] proved that there is an in-

tegrable function ao(x) such that the sequence {aq{x)} satisfies equation
(6.5) for all bounded integrable functions g(x).

Now let I f be a subset of e1 S x ^ e2 on which {aq(x)} converges

uniformly to ao(x). For x in M there is an integer qx such that for

q > qu lq{x) < 3. Thus [ \ aq{x) \2 dx < 3 for all q > qlm Banach [1,

p. 130] showed that for a sequence of functions {aq(x)} in L2 satis-

fying this last inequality, there is a function aQ(x) in L2 to which

{aq(x)} converges weakly in L2 in subsequence on M. Consequently,

3 ^ lim inf ί | aq{x) |2 dx ^ ί | ao(x) \2 dx .
9=oo }M JM

S e2

I ao(x) |2 dx ^ 3
e1

and ao(x) is in L2 on e1 g x g e2. The theorem is thus proved.

THEOREM 6.3. Let {Cq} be the sequence of arcs in the previous

theorem and let ηq(x) = (yQ(x) — Vo(%))/kq. There exists a function ηo(x)

whose derivative Ύ]Q{x) is in L2 such that the sequence {y]q{x)} converges

uniformly to ηo(x) on e1 ^ x g e2 and {ήq(x)} converges weakly in L2

to ήo(x) on every measurable set M on which {aq(x)} converges uni-

formly to aQ(x). Moreover,

g(x)ηq{x)dx = I g(x)ήo(x)dx

e1 Jeι

for every bounded measurable function g.
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Applying the Lipschitz condition of condition S to equation (6.1),
we get

I βq |
2 + max I ηq(x) |2 + λ

z^* C2

dx £ 1 + Γ
lq(χ) Jβi lq(χ)

Since maxβis^βa | ηq(x) |2 ^ 1 and lq(x) ^ 2,

a constant. Hence,

I βq I2 + max I ηq(χ) |2

By an argument similar to that for the sequence {aq(x)} it follows that
there is a function ήo(x) in L2 to which the sequence {r]q{x)} converges
weakly. Hence,

(6.6) lim \* ήq{t)dt = \* ήo(t)dt

uniformly on e1 ^ a? g e2. Let

Since limg=oo ηq{Xι{bq)) — TJJ^X1), it follows from (6.6) that the sequence
{f]q{x)} converges uniformly to rjQ(x) on e1 ^ x ^ e2 and the theorem is
proved.

THEOREM 6.4. Let {Cq} be the sequence of extended arcs for which
lim?=oo K(Cq, CQ) — 0 and define the variation yq as above. The sequence
of variations {jq} converges in subsequence to a variation γ0 which is
admissible on x1 ^ x ^ x2.

Let 70 consist of the parameters β0 and the functions Ύ]Q{x), CCO(X)

of the preceding three theorems. That j Q is a variation follows directly
from the definition of a variation and the properties of β0, ηo(x), and
ao(x). The variation τ 0 will be admissible if it is differentially admis-
sible and satisfies the endpoint equations in § 1. Let M5 be a subset
of x1 ^ x ^ x2 on which {aq(x)} converges uniformly to ao(x) and whose
complement relative to x1 ^ x ^ x2 has measure less than S, δ > 0. By
Taylor's theorem,

yq-y0 = Pyj{y{ - y>} + Pah{ah

q - αf} + i2, ,

the arguments of Pyi, PαA being (x, yQi aQ) and



SUFFICIENT CONDITIONS FOR AN OPTIMAL CONTROL 273

I -Kg I ^ M l VQ - Vo I + I aq - α 0 1}

on M where εq —> 0 as g —• oo. Then

lim \ ηq{x)dx = lim I {Py;$ + PaM\}dx + lim ί ^-dx .

Since the last integral on the right is bounded and εq —> 0 as q —» 00 ?

it follows from Theorems 6.2 and 6.3 that

I 7jo(x)dx = I
J iVg J i

and 70 is differentially admissible. The endpoint conditions on an
admissible arc yield

vi(χs) - yi(χί) = Yίsφq) - Yis(bQ) .

Expressing the left side as yq(xs) — yo(%s) + Vo(xs) — Vo(xl) and dividing
by kq we get

where

x'Q° = ^o

s + β̂ α - a;s

0), 0 < θx < 1

6J = b0 + ^2(6g - δ0), 0 < θ2 < 1 .

When g —> co ?

#(αS) = {Y;s - 2/SX;}/3g = Q/3g

and 70 is admissible.

7* Proof of the sufficiency theorem* Two theorems involving
I*(Cq) and E%{Cq) will be proved, then they will be used to obtain
a proof of the sufficiency theorem of § 2.

THEOREM 7.1. Let Co be an admissible arc on x1 ^ x g x2 satis-
fying condition S. If for any integer q there is an admissible arc
Cq Φ Co in the 1/q-neighborhood of Co such that I(Cq) S I(C0) then

Applying Taylor's theorem to the right side of equation (3.1) for
I*(C) - I*(C0) and dividing by k\ we get equations (7.1) to (7.4)

rCa
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where | Riq | < εiq \ βq |2 and limg=oo εiq = 0. The derivatives are evaluated
at b = b0.

(7 2)

-f-

where | R2q \ < ε2q | /9g (
2 and limg = o o ε2<7 = 0. Again the derivatives are

evaluated at b = δ0.

1 f*2

7 i {έ*(?/; - yl) + { ί ί^, 2/g, α0, z) - £Γ(^, 2/0, ̂ o? z)}

(7.3) + (αft — aξ)Hoh(x, yg, a0, z)}dx

= \X {^-Hyiyjη\ηi + Hy.aκηqa[\dx + [ R,qdx

where | R^ \ < e3q \ ηq |2 and l im^^ ε2q = 0. The derivatives Hyiyj, Hyiah
are evaluated along Co.

? y0, α0?

?, 2/0, a0,

(7.4)
f&Ύ

where | R4q \ < εiq \ βq |2 and limg=00 ε4q — 0. All the terms on the right are
evaluated along CQ at x = Xx(&0). A result similar to this also holds for
the integral remaining in the expression for (I*(Cq) — I*(C0))/k2

g with
R5q as the error in place of R4q. The definition of R3q and the bound-

R3qdx ~ 0. Substituting equa-
a ; 1

tions (7.1) to (7.4) into equation (3.1), applying condition S and a
theorem of Hestenes [7, Lemma 6.3] we get the desired result.

THEOREM 7.2. Let Co be an admissible arc satisfying condition
S. Let {Cq} be admissible arcs related to CQ as described in the last
theorem and chosen so that the corresponding variation j q defined
previously converge to a variation γ0 as described. Then

lim inf
k] 2 jχMb0)

HaκakaSa*dx ^ 0
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For large q, EH(Cq) > 0 for Cq Φ CQ. Applying Taylor's theorem to
EH(Cq) it follows that

(7.6) ^ β ^ - 1 [ Hahak(x, V,, a>o, z)a\a\dx + f Rmdx

where M is a subset of x1 ^ x ^ x2 on which {aq(x)} converges uniformly

to ao(x). Since \R6q\ < s6q\aq\
2 and l i m ? = o o ε 6 g = 0 it follows from the

boundedness of I \aq\
2 dx that lim \ RMdx — 0. Now

- — I Hahak(x, yq, Oo, z)a\a\dx
2 Jiif

1 f
= - — Hahak(x, y0, α0, z)a\a\dx

2 JM

(7.7)
- — {£rβ*βt(a;, 2/,, α 0 , z) - HaKa*(%, y0, α 0 , z)}a$a*d%

ill J -M"

- — Hakak(x, y0, Oo, ̂ ){α^α^ - αXfc}<2a; .
2 JM

From the continuity of Hahak and the boundedness of 1 \aq |2 cte we get
Jα1

lim I {fl"efcefc(ic, τ/g, α0, «) — Hahak(x, y0, α0, jδ)}αjα*da? = 0 .

The last integral in equation (7.7) can be writ ten as

I jffα*βjfeαrJαJ(Za? = \ Haκak{a\ — a%){ak

q — a$}dx
JM JM

Since {aq(x)} converges weakly to ao(x) on M,

lim inf I — —Haκak(x*a*dx = — — \ Ή^^alaldx
q=oo JM 2 2 JM

(7.8)
+ lim inf - — ί ί ^ ^ K - ^o}K ~ a*}dx .

g=oo Jjyr 2

Therefore, from (7.6), (7.7) and (7.8),

lim inf M ^ i ) + 1 ( Ha^a\a\dx

(7.9)
^ lim inf - ±Haκak{ah

q - α*}{α* - ak

0}dx .
?=«* Jjlf 2

Since Co satisfies condition Π^ with multipliers zi{x) it also satisfies
the strengthened condition of Clebsch,
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Hakakπhπk g 0

in a neighborhood of Co for all (π) Φ (0). Hence the last integral in
(7.9) is nonnegative and the theorem is proved for every subset M on
which {aq(x)} converges uniformly to ao(x). Let M1 be the complement
of M on x1 ^ x ^ x\ Then

\ Ήahaka%ak

Qdx = \ HahaM
h

Qakdx + \ Hah
h1 JM jMi

Since the integrand Hahaka\a\ is integrable on x1 ^ x ^ #2, the last
integral of the preceding equation must go to zero as the measure of M1

tends to zero. Thus the theorem is proved over x1 ^ x S %*• We
now turn to the proof of Theorem 2.1. Suppose it is false. For any
integer q there is an admissible arc Cq Φ Co in the 1/g-neighborhood
of Co such that I(Cq) ^ I(C0). From equation (3.2) and Theorem 7.1,

(7.10) 0 ^ J2(7o) + — \XlHauaMtatdx + lim inf M
2 U1 <?=« k

which implies, by virtue of Theorem 7.2, that I2(y0) ^ 0. Statement (e)
of condition S requires that 70 must be null. Consequently I2(y0) = 0
and

PHahaka\a\dx = 0 .

By Theorem 2.2 and the inequality (7.10),

0 ^ lim inf E^Cq) = h lim inf Γ
lq(x)

which is impossible because of equation (6.1). Hence 70 Φ 0 and the
assumption that I(Cq) g I(C0) is false. This proves the sufficiency
theorem.
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