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A PROBLEM COMPLEMENTARY TO
A PROBLEM OF ERDOS

J. CHIDAMBARASWAMY

Let fix), g(x), and h(x) be rational integer coefficient poly-
nomials of positive degree and with positive leading coefficients
and satisfying

(1.1) f(x) = g(x) + hix) .

k(x) also being such a polynomial of degree ^ 0, let

(1.2) Q(x) = (/(*))! K(g(x) + k(x))\ Qι(x))\) .

Question 1: Is Q(x) integral for an infinity of integers x,
at least when k(x) is of degree zero, say k(x) = fe(έ 1)?

Question 2: Is Q(x) nonintegral for all sufficiently large
integers x, at least when the degree of k(x) is ^ 1? No general
answer is known to both these questions. In this paper, we
consider the question of existence of an infinity of integers x
for which Q(x) is not an integer: in the context of question 1,
we obtain certain conditions on the coefficients of g(x) and
h(x) and k to ensure the existence of an infinity of integers
x for which Q(x) is not an integer, and in the context of
question 2, we prove Q(x) is nonintegral infinitely often.

The method rests upon a generalization of the usual representation
of an integer a in the scale of a prime p so as to include negative
coefficients also and the consequent generalization of the well known
result of Legendre concerning the exponent of the highest power of
the prime p that divides al.

As regards to question 1, which is a generalization of a problem
of Erdos (Research problem, American Mathematical Monthly, May
1947) who takes g(x) — h(x) = x, we know, however, by (ί) of Theorem
I of [1] that some multiple of Q(x), i.e., Q(x)L(x) is an integer in-
finitely often where L(x) is the integer coefficient G.C.D. (in fact,
the monic G.C.D. over the rationale) with least positive leading co-
efficient of the polynomials

Π (f(x) + i), Π (g(x) + ϊ), and Π (h(x) - i + 1) .

In the case of Erdos problem (#(#) = h(x) = x), L(x) — 1, and it is
easily seen that Q(x) is an integer for all integers x ^ 1 in case k =
1, while Q(x) is not an integer for all integers x = 1 + 23' in case
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k = 3. Also, it is easy to give examples of similar situations with
degrees of g(x) and h(x) greater than 1 and with all coefficients of
g(x) and h(x) positive. Our generalization mentioned above enables to
construct examples of similar situations in which some of the co-
efficients of g{x) and h(x) may be negative.

For convenience, we shall write, for any positive integers α, 6,
and c, h{a, c) to stand for the exponent of the highest power of c that
divides a and D(a/b, c) for h(a, c) — h(b, c).

THEOREM I. If k(x) is of positive degree

( i) lim DiQip*), p) = — °o for each prime p;

(ii) ίhn D(Q(p*),p)= - -

(iii) If k(x) is of degree at least 2, lim D(Q(p), p) = — °° .
p->oo

Theorem I obviously implies that Q(x) is not an integer when x
is sufficiently large power of a prime or the square of a sufficiently
large prime and if k(x) is of degree ^ 2, when x is any sufficiently
large prime.

THEOREM II. (a) If k(x) is of degree zero, say k(x) — k,

g(x) = a0 + axx + + ,
h(x) = 60 + bλx + + , and
f(χ) = Co + CjX + +

so that for each i, c4 = a^ + bi9 then for sufficiently large primes p,

(1.3) D(Q(p), p) ^ 0 if

(1.4) either aQ ^ 0 or a0 < 0 α^d α0 + & < 0 αnώ

(1.5) D(Q(p), p)^-r if

(1.6) a0 < 0, α2 = α2 = = αr_2 = 0 ^ α r α^d a0 + k > 0 .

(b) TT̂ e inequality in (1.3) becomes an equality if together with

(1.4), £fte following condition

(1.7) AΓo£ &o£/ι α̂  and 6̂  are negative and c{ < 0 /or i > 0 implies
afii Φ 0.
/^oϊcίs. T/̂ β inequality in (1.5) becomes an equality if (1.6)
(1.7) Λoίd.

THEOREM III. (a) // k and n are integers, k ^ 1, n > 1
exists an infinity of integers x such that

(1.8) (wa?)!/{(a? + fc)!}

is not an integer.
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(b) If al9 α2 and cx are positive integers and if there is a prime
p such that

(1-9) aλ + α2 < p ^ αx + cx ,

there exists an infinity of integers x such that

(1.10) ((αi + α2) xy./da.x + cdKa.xy.)

is not an integer.

REMARK. We do not know whether (1.8) is an integer infinitely
often in case k > 1; however, we know that it is in case k — 1 (see
MordeiPs paper listed under references in [1]). Also (1.10) is integer
infinitely often (see Theorem IV of [1]).

§2: DEFINITION 1. Let a be a positive integer and p a prime. An
expression

(2.1) a0 + axp + a2p
2 + + anp

n, where

(2.1a) (i) a = aQ + aj> + a,p2 + + anp
n, and

(ii) an > 0, I a, | < p for 0 ^ i ^ n

is called a representation of order n of a in the scale of p; the repre-
sentation is called proper if α̂  ^ 0 for each i and improper otherwise.

The proper representation (which is unique) is the usual representa-
tion of a in the scale of p. It is easily seen that if n0 is the order
of the proper representation, there is no representation of order < n0

while to each n > n0, there are representations of order n.

DEFINITION 2. If R is a representation of a in the scale p given
by (2.1), we denote

(i) by SB(a,p) the integer Σ?=o»<, a n d

(ii) by IB(a, p) the number of negative terms plus the number of
zeros following immediately a negative term in the sequence of integers

(2.2) α0, au -- an ,

which may be called the digits of a in this representation R of a in
the scale of p.

EXAMPLE. 15,524 - - 1 + 0.3 + 0.32 + 2.33 - 34 + 35 + 0.36

- 2.37 + 0.38 + 39.
In this representation R of 15,524 in the scale of 3, £^(15,524,3) = 0
and JΛ(15,524,3) = 6

LEMMA 1. If R is the representation of a in the scale of p
given by (2.1), then
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(i) for each i in 0 ^ i g n

(2.3) Ti = anp
n-1 + α^p—*- x + + α< > 0 .

(ii) If in the sequence of integers (2.2), there are N blocks
Bu B2j , BN of negative terms each not immediately followed by a
zero and there are M blocks of negative terms Cu C2, CM, the block
Ci being immediately followed by a block Z^ of zeros and if r* is the
number of terms in Bi and s4 and ^ respectively are the number of
terms in Ci and Diy then

(2.4) h(al, p) = (((a - SB(a, p))/(p - 1)) - { Σ U + Σ .(*< + U)\
U=i i=i J

REMARKS, (i) The number in the curly brackets above is IR(a, p).
(ii) If N = 0 and M = 0, so that the representation is proper,

Lemma 1 reduces to the well known result due to Legendre.

Proof (i) We have a — pTx + aQ > 0; we observe that Tx < 0;
for, otherwise, it would follow that α0 is greater than a positive
multiple of p, contradicting (2.1a).

Further Tx Φ 0; for, if it were zero, then from 2\ — pT2 + au it
would follow that αx is divisible by p and so again by (2.1a) that
a1 = 0 and consequently T2 = 0. Thus proceeding, we arrive at the
contradiction αw = 0.

Starting with Tu we get T2 > 0 and so on.
(ii) We have from (2.1a) and (2.3)

[a/p] = T1 + θ0 where θ0 = [ajp], so that

# 0 = 0 if a0 ^ 0

= - 1 if α0 < 0 .

[α/p2] = [[a/p]/p] = T2 + θ, where θ1 = [(a, + θo)/p] so that

θ, = 0 if either αx ^ 0, #0 = 0 or αx > 0, θ0 = - 1

= — 1 if either αx ^ 0, #0 = - 1 or a, < 0, θ0 = 0 .

In general, if 1 ^ r ^ w + 1,

[α/pr] - Tr + (?r-1> where tf^ - [(αr_, + #r_2)/p] so that

θr_x = 0 if either ar_, ^ 0, #r_2 = 0 or ar^ > 0, θr_2 = - 1

= - 1 if either αr_x ^ 0, 6>r_2 = - 1 or αr_! < 0, θr_2 = 0 .

It is clear, now, that if a{ is the first negative term and aά is the
first positive term that occurs immediately after a{ in the sequence
(2.2), then θ{ = θi+ί = = θ^x = — 1, Θ3 = 0, even though there are
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some Γs such that i < I < j and at — 0. The lemma is clear since

NOTE. From the proof, it is clear that, if in (2.2) two blocks of
negative terms include between them a block of zeros, the three blocks
taken together can be regarded as a negative block.

As an immediate consequence of the lemma, we have the following:

COROLLARY. If R and R' are any two representations of a in
the scale of p,

SR(a, p) - SΛ,(a, P) = (P~ 1) V*(<>>, P) ~ 4(α, P)} .

DEFINITION 3. For any polynomial φ(x) over the domain of integers
given by

φ(x) = e0 + exx + e2x
2 + + enx

n ,

(2.5) Sφ(p) = tSBo(\ei\,p)sgn(ei)
i=0

where Ro denotes proper representation; and

(2.6) ±

LEMMA 2. Let φ(x) — e0 + eγx + e2x
2 + + enx

n, en > 0, be an
integer coefficient polynomial and p a prime, also if e{ Φ 0 let Xi9

μt be the exponents of the smallest and highest powers of p that
occur in the proper representation of \ et \ in the scale of p; let
βiλ, βi.A, , &im be the negative terms each not immediately followed
by a zero and e3 l9 e3 2, eiχ be the negative terms each immediately
followed by a zero, say eo is followed by a block of Ur zeros in the
sequence e0, elf en; further, let t satisfy

(2.7) (i) t> Max μ, and

(ii) φ(pt) > 0; then

h(φ(p% P) = ((9>(p*) - Sφ(p))/(P - 1))

- {(Σ Ur) + l + m}t - ( Σ λ<r+1 - λ,r)
r=l r=l

(Σ r) } (Σ
r=l r=l
I

Proof. The lemma follows, if we express each | et \ Φ 0 in the
proper representation of p and make use of Lemma 1, the note at the
end of its proof and (2.5).
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§ 3: Proof of Theorem I. (i) Choose t so large that conditions
(i) and (ii) of (2.7) are satisfied for f(x), g(x) + k(x) and h(x). By
Lemma 2,

(3.1) h(f(p% p) = ((fW) - Sf(p))/(P ~ 1)) + AJ + B,

where A1 and B± are numbers independent of t. Similarly,

(3.2) h({g(p') + k(pψ.,p)

= (G/foO + HP') - Sg+k(p))/(p - 1)) + A2t + £ 2

and

(3.3) h(h(p% p) = ( W ) - SA(p))/(p - 1)) + Aφ + ΰ 3 ,

where A2, B2, A3 and B3 are independent of ί. From (3.1), (3.2) and
(3.3), it follows that

(3.4) D(Q(p% p)/t = (

+ ({S9+k(p) + Sh(p) - Sf(p)}/(P -

+ (ΰ, - B2 ~ B,)Jt .

Taking limits on both sides of (3.4) as t —> ^, and observing that the
expression in curly brackets on R. H. S9 of (3.4) is independent of t,
we get (i).

(ii) Choose p large enough to ensure the substitution of p for
x in f(x), g{x) + k(x) and h(x) gives the representation of the numbers
f(p), 9(p) + h(p) a n ( i h(p) in the scale of p. (ii) follows by an appli-
cation of Lemma 1 and proceeding to the limit as p —> <>o.

(iii) The proof is similar to that of (ii).

Proof of Theorem II. (a) Choose p large enough as in the proof
of (ii) of Theorem I. In this representation, say Rp, αo + &iPH 1
of g(p) in the scale of p, obviously SB (g(p), p) — S(g). Also
IR (g(p)j P) — ^he number of negative terms plus the number of zeros
immediately following a negative term in α0, al9 let us denote this
number by I(g), and similarly for others.

First, we prove that

(3.5) I(g) + I(h) - /(/) ^ 0 .

To prove (3.5), let us observe that

Ci < 0, aφi = 0, di Φ 0 implies a{ < 0

Ci < 0, dibi = 0 , bi Φ 0 implies b{ < 0

Ci < 0, a%bi Φ 0 implies one of a{ and bt is negative; so that the
contribution to /(/) by a negative c{ is balanced by the contribution
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of a negative a{ or b{ to I(g) + I(h). Further, let c< = 0, c3- < 0,
Cj+i — c3+2 = = c<, if afii Φ 0, one of a{ and δ; is negative, if a{ =
0 = 6 ί f let λ be the largest integer such that λ < i and one of αλ, δλ

is not zero; clearly λ Ξ> i and one of αλ, 6λ is negative. So in any
case, the contribution of ct to /(/) is balanced and (3.5) is clear.
Next, we observe that

(3.6) I(g + ft) = 1(9) i f a n d only if (1.4) holds ,

and

(3.7) I(g + k) = /(#) - r, if and only if (1.6) holds .

Further, by Lemma 1,

(3.8) D(Q(p), p) = I(g + k) + J(A) - /(/) .

Now (1.3) follows from (3.8), (3.6) and (3.5) and (1.5) follows from
(3.8), (3.7) and (3.5).

It is easily verified that (1.7) implies the equality sign in (3.5)
and the proof is complete.

We now consider an example: Taking g(x) = 1 — xr + xn, h(x) =
— 2 + xr + xn and k = any odd integer > 1, it can be shown by an
application of Lemma 1, that

(2xn - ϊ)l/((xn - xr + 1 + k)\(xn + xr - 2)1)

is not an integer for x — 2ι where t is sufficiently large. In particular,
taking n — 2, r = 1, it is easily verified that L(x) — 1 and so it follows
that

(2x2 - l)l/((x2 - x + 1 + k)l(x2 + x - 2)1)

is an integer infinitely often and a non integer infinitely often.

Proof of Theorem III (a) It is easily verified by taking proper
representations, that, in case k ^ 2

Ddnpy./iip* + k)\}n, p) <0 where

p I k and t is sufficiently large and in case k — 1,
D({n(— 1 + 2*)}!/{(— 1 + 2* + ΐ)l}n, 2) < 0, where t is sufficiently large.
Hence (i).

(ii) Again, by taking proper representations in the scale of p
where p satisfies (1.9), it is easy to verify t h a t for x~l + p + p2 +
• + pι (t sufficiently large) t h a t

+ C!)!(α2a?)!, p)< 0 .
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