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INVARIANT SUBSPACES AND UNSTARRED
OPERATOR ALGEBRAS

D. SARASON

It is proved in the present paper that if A is a normal
Hilbert space operator, and if the operator B leaves invariant
every invariant subspace of A, then B belongs to the weakly
closed algebra generated by A and the identity, This may
be regarded as a refinement of the von Neumann double
commutant theorem. A generalization is given in which the
single operator A is replaced by a commuting family of
normal operators. Also the same result is proved for the
case where A is an analytic Toeplitz operator.

The results to be obtained will now be described in greater detail.
Theorem 1 refines the following well-known result.

THEOREM 0. If A s a mormal operator on a Hilbert space H,
and if the operator B on H commutes with every projection that
commutes with A, then B belongs to the weakly closed star-algebra
generated by A and the identity.

This is essentially the von Neumann double commutant theorem; see
[13, p. 64] for the separable case and [11, p. 173] for the nonseparable
case, both in conjunction with [3, p. 43, Lemma 6].

To say that an operator B commutes with every projection that
commutes with the operator A amounts to saying that B is reduced
by every subspace that reduces A. The following theorem thus has a
stronger hypothesis than Theorem 0 and draws a stronger conclusion.

THEOREM 1. If A is a mnormal operator on a Hilbert space H,
and if the operator B on H leaves tnvariant every itnvariant sub-
space of A, then B belongs to the weakly closed algebra generated
by A and the identity.

Theorem 1 can be obtained very easily from Theorem 0. A proof
is presented in § 2. As an immediate consequence of Theorem 1 we
have the

COROLLARY. If A is a normal Hilbert space operator, then the
weakly closed algebra gemerated by A is a star-algebra tf and only
©f every tnvariant subspace of A is a reducing subspace.
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For the case where A is unitary this is closely related to a
theorem of R. W. Goodman [5]. We might mention that Wermer [14]
has given a simple example of a normal operator A which has no
nonreducing invariant subspaces but is such that A* is not the weak
limit of any sequence of polynomials in A.

Theorems 0 and 1 can both be regarded as special cases of a more
general result.

THEOREM 2. If &7 4s a commutative, identity containing,
weakly closed algebra of mormal operators on a Hilbert space H,
and if the operator B on H leaves invariant every invariant sub-
space of 7, then B belongs to .o7.

If .7 is a star-algebra this is again essentially the von Neumann
double commutant theorem, a well-known result. The theorem for
the case where A is not a star-algebra can be obtained from the
case where it is by the same reasoning that yields Theorem 1 from
Theorem 0. A proof is briefly indicated in § 2.

Theorem 1 is not true in general for nonnormal operators; one
can give a trivial counter-example involving two-by-two matrices.
However there is a class of nonnormal operators for which Theorem 1
does hold, namely the analytic Toeplitz operators (to be defined later).

THEOREM 3. If A and B are analytic Toeplitz operators, and
if B leaves invartant every invariant subspace of A, then B belongs
to the weakly closed algebra generated by A and the identity.

The analytic Toeplitz operators form an algebra; in fact they form
the weakly closed algebra generated by the so-called unilateral shift
operator and the identity. The special properties of the shift will
enable us to prove Theorem 3 in the same way as Theorem 1. This
is done in § 3.

One question that suggests itself is: which operators besides the
shift generate the algebra of analytic Toeplitz operators? In view of
Theorem 3, an equivalent question is: which analytic Toeplitz operators
have precisely the same invariant subspaces as the shift? This problem
is investigated in detail in the following paper. In § 4 of the present
paper a few immediate conclusions are obtained.

2. Proof of Theorem 1. The reader is assumed familiar with
the basic theory of normal operators, and we shall employ elementary
results from this theory without further explanation. In terminology
we follow Halmos’s book [6]. First some notations are needed. Sup-
pose that A is a normal operator on a Hilbert space H, and let I be
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the spectral measure of A. (We regard F as defined on the Borel
subsets of the complex plane.) For 2 in H we let E, denote the
Borel measure on the plane defined by E.(S) = (E(S)x, ). For m a
natural number we let H, denote the direct sum of H with itself m
times, A, the direct sum of A with itself m times (regarded as an
operator on H,), and E, the direct sum of E with itself m times (so
E, is the spectral measure of A,).

The following lemma is the essential step in the proof of Theorem 1.

LEMMA 1. With the above mnotations, let B be an operator omn
H which leaves tnvariant every invariant subspace of A. Then B,
leaves tnvariant every invariant subspace of A,, m =1,2,3, «--

Proof. It will be enough to show that every ecyeclic invariant
subspace of A,, is invariant under B,. To this end, let # be a vector
in H, and let M be the smallest reducing subspace of A4, containing
2. The measure (F,), is absolutely continuous with respect to K, and so
there is a vector y in H such that £, = (E,),. Let N be the smallest
reducing subspace of A containing y. Since (¥,), = E,, the operators
A, | M and A| N are unitarily equivalent. Henece there is an isometry V'
of N onto M such that A,,| M= VAV, Itfollowsthatif ¢isany complex
polynomial in two variables, then ¢(A4,, 4%) | M = Vq(A, A*)V-'. But
by Theorem 0, there is a net {g;} of such polynomials with ¢,(4, A*)— B
weakly. Therefore also g¢;(4,, 4%) — B,, weakly. It follows that
B, |M = VBV~ Hence V maps invariant subspaces of B onto in-
variant subspaces of B,. Let L be the smallest invariant subspace
of A, containing x. Then V'L is invariant under A, and therefore
also under B. Hence L is invariant under B, and the proof of the
lemma is complete.

Proof of Theorem 1. Let A and B satisfy the hypotheses of
Theorem 1. Let ,, «+-,®,, ¥, *++-, ¥, be unit vectors in H, let ¢ be
a positive number, and define 77" to be the set of all operators 7 on
H satisfying

'(T:ij yj) - (ijy y7)1 < é€ ’ j - ly T, W

Then <" is 2 weak neighborhood of B, and the family of all such
sets 7 is a base of weak neighborhoods of B. Hence it will suffice
to show that 2¢” contains a polynomial in 4. To do this we form the
vector 2 =2, H---Pe, in H,. By Lemma 1, B,x belongs to the in-
variant subspace of A, generated by . Hence there is a polynomial p
such that || p(4,)r — B,x || <e. This implies that ||p(4)z; — Bz, || < e
for =1, ..., m, and therefore
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[ (p(A)z;, y;) — (Bej, y5) | = (| p(A)x; — B |||yl <e, §=1,+-,m.

Thus p(A) belongs to &7, and the proof is complete.

We now sketeh the proof of Theorem 2. Suppose . and B
satisfy the hypotheses of that theorem, and let .7, be the weakly
closed star-algebra generated by .. Then .97, is commutative by
Fuglede’s theorem [4]. Thus, by Theorem 2 for the case of star-
algebras, the operator B belongs to .97;. Moreover there is a spectral
measure F such that .97 is the weakly closed star-algebra generated
by the spectral projections E(S) (see for example [10, p. 106]). It is
now possible to repeat verbatim the argument used to prove Theorem
1, but with the role of the operator A taken by the algebra .o7.

3. Amnalytic Toeplitz Operators. Let C be the unit circle in
the complex plane, regarded as a measure space with normalized
Lebesgue measure. The spaces L*C) and L=(C) will be denoted simply
by L* and L*. The functions ¢,(z) = 2", » = 0, =1, =2, ..., form an
orthonormal basis for L?. The bilateral shift is the operator W on
L? defined by (Wf)(z) = 2f(2), or equivalently by We, =e,.,. For each
@ in L” we define the operator o(W) on L* by @(W)f = ¢f, and we
denote by L=(W) the algebra of all such operators. It is well-known
that L=(W) is the weakly closed star-algebra generated by W,

The invariant subspaces of the operator W have been much studied;
see [1], [8], [7]. One obvious invariant subspace is the subspace spanned
by the basis vectors e, with n = 0; we denote this subspace by H->
If o is in L* and H® is invariant under @{W), then @ obviously
belongs to the algebra H= = H*N L>. We denote by H=(W) the
algebra of operators o(W) with @ in H=, It is well-known that
H=(W) is the weakly closed algebra generated by W and the identity
[9, p. 19]. (The last conclusion can also be obtained by using Theorem
1 together with the known structure of the invariant subspaces of W.)

The unilateral shift is the operator U =W | H*. For o in H*
we define p(U) = (W) | H?, and we denote by H=(U) the algebra of
all such operators @(U). The operators in H=(U) are called anralytic
Toeplitz operators. The assertion at the end of the preceding para-
graph implies that every operator in H>=(U) is a weak limit point
of polynomials in U. On the other hand, it is known that H=(U)
consists precisely of the operators on H*® that commute with U [2,
Theorem 7], and consequently H=(U) is weakly closed. Thus H=(U)
is the weakly closed algebra generated by U and the identity. We
also note that if the operator B on H® leaves invariant every invariant
subspace of U, then B must belong to H=(U). This can be easily
proved by using the fact that each complex number a¢ of modulus less
than unity is an eigenvalue of unit multiplicity of U*; the corre-
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sponding eigenvectors are the functions &, defined by 4,(2) = (1 — az)".
If B leaves invariant every invariant subspace of U, then B* bears
the same relation to U* and therefore has each h, as an eigenvector.
Since the functions h, span H? this implies that B* commutes with
U*, which means that B commutes with U and therefore belongs to
H=(U).

We can now get on with the proof of Theorem 3. For each
natural number m we let H, denote the direct sum of H* with itself
m times, and for A an operator on H* we denote by A, the direct
sum of A with itself m times.

LEMMA 2. Let A and B be analytic Toeplitz operators, and
suppose that every invariant subspace of A 1is tnvariant under B.
Then every invariant subspace of A, s invariant under B,, m =
1,2,8, ...

It is obvious that once this is proved, Theorem 3 will follow by
the same reasoning we used above to obtain Theorem 1 from Lemma 1.

Proof of Lemma 2. As in the proof of Lemma 1, it will be
enough to show that every cyclic invariant subspace of A, is invariant
under B,. Suppose that x is a nonzero vector in H2, and let M be
the smallest invariant subspace of U, containing ®. Then as Halmos
has shown [7, Theorem 2], the subspace M is generated by a unit
wandering vector of U,, that is to say, there is in M a unit vector
w such that (U w, w) = 0 for n > 0 and such that the vectors U] w,
n = 0, span M. Hence we can define an isometry V of H?® onto M
by setting Ve, = Ujw, n=10,1,2, --., and we have U, | M = VUV,
Since A and B are weak limits of polynomials in U, it follows that
A,|M=VAV~" and B,|M =VBV~. From this point the proof
proceeds exactly as that of Lemma 1,

4. Generators of H®, The weak topologies on H=(W) and
H=(U) induce topologies on H= by virtue of the isomorphisms
@ — p(W) and ¢ — @(U). The topology induced by H=(U) is obvi-
ously coarser than that induced by H=(W). It turns out that these two
topologies are in fact identical and coincide with the weak-star topology
of H=, A proof of this can be found in [12, Proposition 11]. We
shall call a function @ in H* a generator if the polynomials in ¢ are
weak-star dense in H=., Theorems 1 and 2 together with the preceding
remark give the following result.

PROPOSITION 1. If ¢ is in H> then the following are equivalent.
(i) o s a generator of H=.
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(ii) @(W) has the same invariant subspaces as W.
(iii) @(U) has the same invariant subspaces as U.

To coneclude this paper we obtain two simple necessary conditions
for a function to be a generator of H=, The question of the generators
of H> will be discussed in detail in the following paper. We call a
function @ on C univalent almost everywhere if there is a null subset
S of C such that ¢ is univalent on C — S,

ProproSITION 2. If @ 1is @ generator of H*™ then ¢ s untvalent
almost everywhere.

Proof. If ¢ is not univalent almost everywhere, then it follows
from multiplicity theory that (W) even has reducing subspaces that
are not invariant under W. For a more elementary proof we can
argue as follows. If ¢ is a generator of H*, then e, belongs to the
invariant subspace of @(W) generated by e, This implies that there
is a sequence of polynomials {p,} such that p,(@(z)) — 2 almost every-
where on C, from which it obviously follows that ¢ is univalent almost
everywhere.

Let D be the open unit disk, and for ¢ in H= let ¢, be the
Poisson integral of . Thus @, is a bounded analytic funetion in D
whose radial limits agree with ¢ almost everywhere on C.

ProposITION 3. If @ ts a generator of H> then @5 is unitvalent.

Proof. If a is a point of D then the evaluation functional ¢ — ¢,(a)
on H= is weak-star continuous because it is induced by a function in
L' (namely by the Poisson kernel for a). The proposition is now immediate.
A different proof can be based on the fact that for each a in D, the
function %, (defined in Section 3) is an eigenvector of @(U)* with
eigenvalue ¢,(@). If ¢, assumes the same value at two distinet points
a and b of D, then the one dimensional subspace spanned by k; + hy
is invariant under @(U)*, although this subspace is not invariant
under U*,
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