# COHOMOLOGY OF CYCLIC GROUPS OF PRIME SQUARE ORDER

## J. T. PARR

Let G be a cyclic group of order  $p^2$ , p a prime, and let U be its unique proper subgroup. If A is any G-module, then the four cohomology groups

$$H^{0}(G, A) = H^{1}(G, A) = H^{0}(U, A) = H^{1}(U, A)$$

determine all the cohomology groups of A with respect to G and to U. This article determines what values this ordered set of four groups takes on as A runs through all finitely generated G-modules.

Reduction. Let G be any finite group. A finitely generated Gmodule M is quotient of a finitely generated G-free module L. The kernel K is Z-free, and since the cohomology of L is zero with respect to all subgroups of G, K is a dimension shift of M. The standard dimension shifting module  $P = ZG/(S_G)$  is Z-free, so  $K \otimes P$  is a Z-free G-module having the same cohomology as M with respect to all subgroups of G.

PROPOSITION 1. If G is any finite p-group and M any Z-free G-module, the cohomology of M is that of  $R \otimes M$  where R is the ring of p-adic integers.

*Proof.* Because M is Z-free,  $0 \to M \to R \otimes M \to R/Z \otimes M \to 0$  is a G-exact sequence.  $R/Z \otimes M$  is divisible and p-torsion free, so its cohomology is zero, and  $M \to R \otimes M$  induces isomorphism on all cohomology groups.

If M is Z-free and finitely generated,  $R \otimes M$  is an R-torsion free, finitely generated RG-module. So we see that if G is any finite p-group, every finitely generated G-module has the same cohomology as a finitely generated, R-torsion free RG-module.

2. Exact sequences. Let G be generated by an element g of order  $p^2$  and let U be its subgroup of order p. Heller and Reiner [2] have determined all indecomposable finitely generated R-torsion free RG-modules:

- (a) R with trivial action
- (b)  $B = R(\omega)$ ,  $\omega$  a primitive *p*th root of 1,  $g\omega^j = \omega^{j+1}$
- (c)  $C = R(\theta), \ \theta$  a primitive  $p^2 th$  root of 1,  $g\theta^j = \theta^{j+1}$

Received December 27, 1963.

#### J. T. PARR

(d) E = RH, H a cyclic group of order p generated by h,  $gh^{j} = gh^{j+1}$ (e)—(i) a module M such that there exists an exact sequence (e)  $0 \rightarrow R \rightarrow M \rightarrow C \rightarrow 0$ (f)  $0 \rightarrow E \rightarrow M \rightarrow C \rightarrow 0$ (g)  $0 \rightarrow B \rightarrow M \rightarrow C \rightarrow 0$ (h)  $0 \rightarrow R \bigoplus E \rightarrow M \rightarrow C \rightarrow 0$ (i)  $0 \rightarrow R \bigoplus B \rightarrow M \rightarrow C \rightarrow 0$ 

We compute the cohomology of the modules in (a)-(d) directly, and find their sets of four groups to be

| ( a ) | $Z_{p^2}$ | 0       | ${Z}_p$    | 0      |
|-------|-----------|---------|------------|--------|
| (b)   | 0         | $Z_p$   | $(p-1)Z_p$ | 0      |
| ( c ) | 0         | ${Z}_p$ | 0          | $pZ_p$ |
| (d)   | $Z_p$     | 0       | $pZ_p$     | 0      |

The exact cohomology sequences arising from the exact sequences (e)—(i) restrict the cohomology possibilities to

| (e) | $Z_{p^2}$                           | ${Z}_p$   | ${Z}_p$               | $pZ_p$     |  |  |  |
|-----|-------------------------------------|-----------|-----------------------|------------|--|--|--|
|     | $Z_{p^2}$                           |           | 0                     | $(p-1)Z_p$ |  |  |  |
|     | $Z_p$                               | 0         | ${Z}_p$               | $pZ_p$     |  |  |  |
|     | $Z_p$                               | 0         | 0                     | $(p-1)Z_p$ |  |  |  |
| (f) | 0                                   |           | $nZ_p$                | $nZ_p$     |  |  |  |
|     | $Z_p$                               | $Z_p$     | $nZ_p$                | $nZ_p$     |  |  |  |
|     | $n=0,\cdots,p$                      |           |                       |            |  |  |  |
| (g) | 0                                   | $2Z_p$    | $nZ_p$                | $(n+1)Z_p$ |  |  |  |
|     | 0                                   |           | $nZ_p$                | $(n+1)Z_p$ |  |  |  |
|     |                                     | n =       | $0,\cdots,p-1$        |            |  |  |  |
| (h) | $Z_{p^2}$                           | 0         | $(n+1)Z_p$            | $nZ_p$     |  |  |  |
|     | $2Z_p$                              |           | $(n+1)Z_p$            | $nZ_p$     |  |  |  |
|     | $\overline{Z_{p^2}}+\overline{Z_p}$ |           | $(n+1)Z_p$            | $nZ_p$     |  |  |  |
|     |                                     | n         | $=0,\cdots,p$         | -          |  |  |  |
| (i) | ${m Z}_{p^2}$                       | $Z_{v^2}$ | $nZ_p$                | $nZ_p$     |  |  |  |
| • • | $\hat{Z_{p^2}}$                     |           | $nZ_p$                | $nZ_p$     |  |  |  |
|     | $\hat{Z_p}$                         |           | $nZ_p$                | $nZ_{p}$   |  |  |  |
|     | -                                   | -         | $=$ 0, $\cdots$ , $p$ | -          |  |  |  |
|     |                                     |           |                       |            |  |  |  |

In §4 we shall determine which of these combinations actually occur.

3. Enlargements. An *R*-enlargement of *C* by *A* is an *R*-split RG-exact sequence  $0 \rightarrow A \rightarrow M \rightarrow C \rightarrow 0$  [1]. Two enlargements involving *M* and *M'* are equivalent if there exists an *RG*-homomorphism  $u: M \rightarrow M'$  such that

468



The *R*-split exact sequence gives *M* the *R*-structure of  $A \oplus C$ . The first summand is determined by the sequence, but the second is not; choose any one of the possible *R*-submodules for the second summand. Because the sequence is a *G*-sequence, g(a, 0) = (ga, 0) and the second component of g(0, c) is gc. Denote the first component of g(0, c) by f(c); g(0, c) = (f(c), gc). So *f* is a function from *C* into *A*, and is an *R*-homomorphism because *g* is an *R*-homomorphism. The equation  $g^{p^2}(0, c) = ((N_G f)(c), c) = (0, c)$  gives us that *f* is a -1-cocycle of the *G*-module  $\operatorname{Hom}_R(C, A)$  where *G* acts by  $(gf)(c) = gf(g^{-1}c)$ . Clearly, every -1-cocycle defines an action by *G* on  $A \oplus C$  which makes an *R*-enlargement of  $0 \to A \to A \oplus C \to C \to 0$ . If two -1-cocycles  $f_1$  and  $f_2$  differ by a coboundary,  $f_1 - f_2 = (g - 1)f_3$ , then

$$u(a, c) = (a + [(1 - g)f_3](g^{-1}c), c)$$

defines an RG-isomorphism u of  $A \oplus C$  with G-module structure given by  $f_1$  onto  $A \oplus C$  with G-module structure given by  $f_2$ ; the RG-modules corresponding to  $f_2$  and  $f_1$  are isomorphic. So to investigate all enlargement modules M of C by A we need only look at those corresponding to a set of representative cocycles of  $H^{-1}(G, \operatorname{Hom}_R(C, A))$ .

Since the modules R, B, C, and E are R-free, the exact sequences (e)—(i) are R-split, and M is an enlargement in each case of C by another module.

For the application of this section, we shall need the following propositions.

PROPOSITION 2. If A is an RG-module on which U acts trivially, then  $N_{G}\operatorname{Hom}_{R}(C, A) = 0$ .

**Proof.** Let  $f \in \operatorname{Hom}_{\mathbb{R}}(C, A)$ . We easily compute that  $(N_{\sigma}f)(\theta^{j}) = g^{j}(N_{\sigma}f)(1)$ , and using the facts that  $\theta$  satisfies

$$x^{p(p-1)} + x^{p(p-2)} + \cdots + x^p + 1 = 0$$

and that  $g^p$  acts trivially on A, we find by writing it out that  $(N_a f)(1) = 0$ , which then implies that  $N_a f = 0$ .

Abbreviate p(p-1) = m. Since C is the R-direct sum of the R-submodules generated by  $\theta^i$ ,  $i = 0, 1, \dots, m-1$ , then  $\operatorname{Hom}_{\mathbb{R}}(C, A)$  is the direct sum of subgroups  $F_i$ , where  $F_i$  is the set of all R-homomorphisms from C to A which have value zero for all  $\theta^j$  except possibly for j = i.

#### J. T. PARR

PROPOSITION 3. If A is any RG-module, every element of  $\operatorname{Hom}_{R^{-}}(C, A)$  is equivalent mod the -1-coboundary group  $(g-1)\operatorname{Hom}_{R}(C, A)$  to some element of  $F_{m-1}$ .

**Proof.** If  $f \in F_0$ , then  $g^{-1}f \in F_{m-1}$ , and  $g^{-1}f - f = (g^{-1} - 1)f = (g - 1)(g^{p^{2-2}} + \cdots + g + 1)f$ . If  $f \in F_i$ , then  $gf \in F_{i+1} + F_0$  differs from f by (g - 1)f. The proof succeeds by repeated application of these cases to the  $F_i$ -components of an arbitrary f.

COROLLARY. If M is one of the modules described in (e)—(i), M is an enlargement module of C by A  $(A = R, B, E, R \oplus B, R \oplus E)$ corresponding to an element of  $F_{m-1}$ .

Because we are concerned only with indecomposable modules, the following proposition will spare us some unnecessary computations later on.

PROPOSITION 4. Let M be an enlargement module of C by  $A \oplus D$  corresponding to  $f \in \operatorname{Hom}_{R}(C, A \oplus D) \cong \operatorname{Hom}_{R}(C, A) \oplus \operatorname{Hom}_{R}(C, D)$ , and let  $f = f_1 + f_2$  be the corresponding decomposition of f. Then if either  $f_1$  or  $f_2$  represents a G-split enlargement of C by A or D, M is decomposable as a G-module.

**Proof.** Suppose  $f_1$  represents an RG-split enlargement of C by A. Let N be  $A \oplus C$  with action of C defined by  $f_1$ . Since the enlargement splits there is an RG-homomorphism  $w: N \to A$  such that  $A \to N \to A$  is the identity of A. Let u be the restriction of w to the given copy of C in N. That w is an RG-homomorphism right inverse to the inclusion of A in N requires that  $gu(c) = f_1(c) + u(gc)$ .

Let M be  $A \oplus D \oplus C$  with action of G defined by f. Then v(a + d + c) = a + u(c) defines an RG-homomorphism right inverse to the inclusion of A in M, so M is decomposable as an RG-module.

4. Computations. In this section we determine which of the possibilities for the cohomology of (e)—(i) actually occur.

PROPOSITION 5. Let A be an RG-module left fixed by U, and let M be an enlargement module of C by A corresponding to  $f \in F_{m-1}$ . Then

i)  $H^{0}(G, M) = A^{G}/(N_{G}A + N_{G/U}f(\theta^{m-1}))$ 

ii)  $H^{0}(U, M)$  is isomorphic to the quotient of  $A/N_{U}A$  with respect to the cyclic G/U-submodule generated by the class of  $f(\theta^{m-1})$ .

*Proof.*  $M^a$  is just the copy of  $A^a$  canonically (by the given exact sequence) contained in M,  $M^v$  the copy of  $A^v$ . Since A is a submodule,

the norms of elements of the copy of A are the images of the norms in A. Computation shows

$$egin{aligned} N_{ extsf{G}}(0,\, heta^{i}) &= N_{ extsf{G}}(0,\,1) = (N_{ extsf{G}/ extsf{U}}f( heta^{m-1}),\,0) \ N_{ extsf{U}}(0,\, heta^{i}) &= g^{i}N_{ extsf{U}}(0,\,1) = g^{i}(f( heta^{m-1}),\,0) \end{aligned}$$

whence the result.

or

We are now able to settle case (e).

(e) M is an enlargement module of C by R. By Proposition 5,  $H^{0}(G, M)$  is  $Z_{p^{2}}$  if  $f(\theta^{m-1})$  is a multiple of p and  $Z_{p}$  if not; and  $H^{0}(U, M)$  is  $Z_{p}$  if  $f(\theta^{m-1})$  is a multiple of p and 0 if not. This, together with the information in Section 3, shows that the only cohomology this module M might have is

For the remaining cases, we shall need one more proposition.

PROPOSITION 6. Let H be a group of order p generated by h. Let A be a cyclic  $Z_pH$ -module of  $Z_p$ -dimension n. Then

(i)  $(h-1)^{j}A$  has dimension  $n-j, j=0, \cdots, n$ .

(ii) a is a generator for A if and only if  $a \notin (h-1)A$ .

(iii) a is a generator for A if and only if  $(h-1)^{n-1}a$  is nonzero.

*Proof.* (i) We have a properly descending chain

 $A \supset (h-1)A \supset \cdots \supset (h-1)^{n-1}A \supset (h-1)^n A = 0$ 

of  $Z_p$ -spaces, and we can see by counting that the dimension of  $(h-1)^j A$  is n-j.

(ii) The above chain exhibits all submodules of A.

(iii) If a generates A,  $(h-1)^{n-1}a$  generates  $(h-1)^{n-1}A$ , which is not zero. If not,  $a \in (h-1)A$ , so  $(h-1)^{n-1}a = 0$ .

(f) M is an enlargement module of C by E.  $E/pE = \overline{E}$  is a cyclic  $Z_p(G/U)$ -module of  $Z_p$ -dimension p. Let M be represented by  $f \in F_{m-1}$ , and  $f(\theta^{m-1}) = e$ . By Proposition 5,  $H^0(G, M)$  is the quotient of  $H^0(G, E)$  by the subgroup generated by  $N_{G/U}\overline{e} = (\overline{g} - 1)^{p-1}\overline{e}$ , hence zero if  $N_{G/U}\overline{e}$  is not zero,  $Z_p$  if it is. Using proposition 6 iii, we see

$$H^0(G,\,M)\cong 0 ext{ if } ar e ext{ generates } ar E ext{ over } Z_p(G/U) \ \cong Z_p ext{ if not }.$$

 $H^{0}(U, M)$  is the quotient of  $H^{0}(U, E) \cong \overline{E}$  by the  $Z_{p}(G/U)$ submodule generated by  $\overline{e}$ . Let n be the largest integer with  $\overline{e} \in (g-1)^{n}\overline{E}$ . By Proposition 6 ii then,  $\overline{e}$  generates  $(g-1)^{n}\overline{E}$ , which
is of dimension p-n, so the quotient has dimension n. The coho-

mology of M is

(g) M is an enlargement module of C by B.  $N_{G}M \subset M^{G} = B^{G} = 0$ . So  $H^{\circ}(G, M) = 0$  and  $H^{1}(G, M) \cong H^{-1}(G, M)$  is the quotient of M modulo (g-1)M. Let M correspond to  $f \in F_{m-1}$  and denote  $f(\theta^{m-1}) = b$ .

Case 1.  $b \in (g-1)B$ . Then  $H^1(G, M) \cong 2Z_p$ Case 2.  $b \notin (g-1)B$ . Then  $H^1(G, M) \cong Z_{p^2}$ .

By Proposition 6 again,

$$H^{_1}(G,\,M)\cong 2Z_p\,\,{
m if}\,\,\,ar b\,\,{
m does}\,\,{
m not}\,\,{
m generate}\,\,\,B/pB$$
 $\cong Z_{p^2}\,\,{
m if}\,\,\,{
m it}\,\,{
m does}\,\,.$ 

Similarly as in (f), if n is the greatest integer with  $\overline{b} \in (\overline{g} - 1)^n (B/pB)$ , then  $H^0(U, B) \cong nZ_p$ . The cohomology is thus

(h) M is an enlargement module of C by  $R \oplus E$ . Let M correspond to  $f \in F_{m-1}$  and write  $f(\theta^{m-1}) = r + e$ ,  $r \in R$ ,  $e \in E$ . We may assume r is not divisible by p, because if it were, M would be decomposable (Proposition 4).

Computation based on Proposition 5 shows

$$egin{array}{ll} H^{\scriptscriptstyle 0}\!(G,\,M) &\cong 2Z_p & ext{if} & N_{\scriptscriptstyle G/U}e & ext{is divisible by} & p \ &\cong Z_{v^2} & ext{if not,} \end{array}$$

and that

$$egin{array}{ll} H^{\scriptscriptstyle 0}(U,\,M) &\cong (n+1)Z_p & ext{if} & n=0,\,\cdots,\,p-1 \ &\cong pZ_p & ext{if} & n=p \end{array}$$

where n is the largest integer with  $\overline{e} \in (g-1)^n \overline{E}$ . So the cohomology of M may be

(i) M is an enlargement module of C by  $R \oplus B$ . Let  $f \in F_{m-1}$  represent the enlargement and write  $f(\theta^{m-1}) = r + b$ ,  $r \in R$ ,  $b \in B$ . Again we may assume r is not divisible by p.

 $H^{\circ}(G, M) \cong Z_p$  by Proposition 5.

Let j be the largest integer with  $\overline{b} \in (g-1)^j \overline{B}$ .

$$egin{array}{ll} H^{
m o}(U,\,M) = (j\,+\,1)Z_p & ext{ if } & j=0,\,\cdots,\,p-2 \ & = (p-1)Z_p & ext{ if } & j=p-1 \;. \end{array}$$

So the cohomology of M is

 $Z_{\scriptscriptstyle p} \qquad Z_{\scriptscriptstyle p} \qquad nZ_{\scriptscriptstyle p} \qquad nZ_{\scriptscriptstyle p} \qquad n=1,\,\cdots,\,p-1$  .

5. Summary. If M is any finitely generated G-module, then the cohomology of M is the direct sum of a finite number of the following:

|    | $H^{\scriptscriptstyle 0}(G,A)$ | $H^{1}(G, A)$ | $H^{\scriptscriptstyle 0}\!(U,A)$ | $H^{\scriptscriptstyle 1}\!(U,A)$ | 1)                 |
|----|---------------------------------|---------------|-----------------------------------|-----------------------------------|--------------------|
| 1. | $Z_{p^2}$                       | 0             | $Z_p$                             | 0                                 |                    |
| 2. | 0                               | $Z_{p^2}$     | 0                                 | $Z_p$                             |                    |
| 3. | $Z_p$                           | 0             | $pZ_p$                            | 0                                 |                    |
| 4. | 0                               | $Z_p$         | 0                                 | $p{Z}_p$                          |                    |
| 5. | $Z_p$                           | 0             | 0                                 | $(p - 1)Z_{p}$                    |                    |
| 6. | 0                               | $Z_p$ (       | $(p-1)Z_p$                        | 0                                 |                    |
| 7. | $oldsymbol{Z}_p$                | $Z_p$         | $nZ_p$                            | $nZ_p$                            | $n=1,\cdots,p$     |
| 8. | $2Z_p$                          | 0 (           | $n+1)Z_p$                         | $nZ_p$                            | $n=1, \cdots, p-1$ |
| 9. | 0                               | $2Z_p$        | $n{m Z}_p$                        | $(n+1)Z_p$                        | $n=1,\cdots,p-1$   |

Given any direct sum of finitely many of the above, there is a finitely generated G-module with that cohomology.

### BIBLIOGRAPHY

1. Samuel Eilenberg, Topological methods in abstract algebra, Bull. Amer. Math. Soc. 55 (1949), 3-35.

2. A. Heller and I. Reiner, Representations of cyclic groups in rings of integers I. Ann. of Math. 76 (1962), 73-92.