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COHOMOLOGY OF CYCLIC GROUPS
OF PRIME SQUARE ORDER

J. T. PARR

Let G be a cyclic group of order p2, p a prime, and let
U be its unique proper subgroup. If A is any G-module, then
the four cohomology groups

H%G, A) HKG, A) H\U, A) H\U, A)

determine all the cohomology groups of A with respect to G
and to U. This article determines what values this ordered
set of four groups takes on as A runs through all finitely
generated G-modules.

Reduction* Let G be any finite group. A finitely generated G-
module M is quotient of a finitely generated G-free module L. The
kernel K is Z-ΐΐee, and since the cohomology of L is zero with respect
to all subgroups of G, K is a dimension shift of M. The standard
dimension shifting module P = ZG/(Sa) is Z-free, so K(g)P is a Z-ϊree
G-module having the same cohomology as M with respect to all sub-
groups of G.

PROPOSITION !• If G is any finite p-group and M any ^-free G-
module, the cohomology of M is that of R 0 M where R is the ring
of p-adic integers.

Proof. Because M is Z-ίree, 0 -> M —•> R (g) M -»R/Z 0 M — 0 is
a G-exact sequence. R/Z0M is divisible and p-torsion free, so its
cohomology is zero, and ikf—> i? 0 M induces isomorphism on all coho-
mology groups.

If M is Z-free and finitely generated, R (g) M is an i2-torsion free,
finitely generated i2G-moduleβ So we see that if G is any finite
p-group, every finitely generated G-module has the same cohomology
as a finitely generated, lϋ-torsion free RG-module.

2* Exact sequences* Let G be generated by an element g of
order p2 and let U be its subgroup of order p. Heller and Reiner [2]
have determined all indecomposable finitely generated iί-torsion free
iϋG-modules:

( a) R with trivial action
( b ) B — R{ώ), ω a primitive pth root of 1, gωj = ωj+1

( c) C = Λ(0), 6> a primitive p2th root of 1, flf(?J" = θj+1
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( d ) E — RH, H a cyclic group of order p generated by h,
ghj = gh*+1

( e)—(i) a module M such that there exists an exact sequence
( e ) 0—>R—>M-+C—>0
( f ) 0~->E->M->C-+Q
(g) 0 - 5 - M - C — 0
(h) Q-^R(£)E-+M^C-+Q
( i ) Q->R(&B->M-^C~> 0

We compute the cohomology of the modules in (a)—(d) directly,
and find their sets of four groups to be

( a )
( b )
( c )

( d )

Zpϊ

0
0

zp

0

zp
zP0

zp1)ZV

0

0
0

0

The exact cohomology sequences arising from the exact sequences
(e)—(i) restrict the cohomology possibilities to

( e )

( f )

( g )

( h )

( i )

-ώ p 3

ZP2

zv
zP0

^ p

0
0

Zv i

2ZP

Zp2 ~

Zp2

Zpi

zp

vzp

zpzp0
0
0

zpn

2ZP

Zp2

n

0
0

zv

Zpl

2ZP

zv

- o , . . . ,
(n +
(n +
(n +

n = 0, ••

w = 0, •

0

0
nZP

nZp

V

nZp

nZp

p - 1

1)ZP

,ί>
nZp

nZp

nZp

,3>

(w +
(w +

pZp

1)ZP

vzpV)ZV

nZp

nZp

Ϊ)ZP

V)ZP

nZp

nZp

nZp

nZp

nZp

nZp

In § 4 we shall determine which of these combinations actually
occur.

3* Enlargements* An i?-enlargement of C by A is an Jί-split
jRG-exact sequence 0 - ^ A - ^ M — > C - ^ 0 [1]. Two enlargements involv-
ing M and Mr are equivalent if there exists an i2G-homomorphism
u : M-+ Mf such that
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commutes .

The 12-split exact sequence gives M the ^-structure of AφC.
The first summand is determined by the sequence, but the second is
not; choose any one of the poss ble 12-submodules for the second sum-
mand. Because the sequence is a G-sequence, g(a, 0) = (ga, 0) and the
second component of g(0, c) is gco Denote the first component of
g(Q, c) by f(c); g(0, c) = (/(c), gc). So / is a function from C into A,
and is an jβ-homomorphism because g is an ϋ?-homomorphism. The
equation gp\09 c) = ({NGf){c), c) = (0, c) gives us that / is a — 1-cocycle
of the G-module HomΛ(C, A) where G acts by (gf)(c) = gf{g^c). Clearly,
every — 1-cocycle defines an action by G on A 0 C which makes an
^-enlargement o f O — > i - ^ i 0 C - > C — > 0 . If two — 1-cocycles ft and
f2 differ by a coboundary, f, — f2 = (g — l)/3, then

u(a, c) = (a+ [(1 - g)fA{Q~[c), c)

defines an i?G-isomorphism u of A 0 C with G-module structure given
by /i onto 4 0 C with G-module structure given by /2; the 2?G-modules
corresponding to /2 and f± are isomorphic. So to investigate all enlarge-
ment modules M of C by A we need only look at those corresponding
to a set of representative cocycles of Ήrι(G, HomΛ(C, A))9

Since the modules R, B, C, and 2? are JE-free, the exact sequences
(e)—(i) are JB-split, and M is an enlargement in each case of C by
another module.

For the application of this section, we shall need the following
propositions.

PROPOSITION 2. If A is an i2G-module on which U acts trivially,
then NJΆomJC, A) = 0.

Proof. Let fe HomΛ(C, A). We easily compute that (NGf)(θj) =
gj(NGf)(l), and using the facts that 0 satisfies

and that gp acts trivially on A, we find by writing it out that
(NGf)(l) = 0, which then implies that NGf = 0.

Abbreviate p(p ~ 1) = m. Since (7 is the i2-direct sum of the
ί?-submodules generated hj θ\ i = 0,1, , m — 1, then Hom^C, A)
is the direct sum of subgroups Fiy where F{ is the set of all i?-homo-
morphisms from C to A which have value zero for all θj except possibly
for j — i.
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PROPOSITION 3. If A is any i?G-module, every element of
(C, A) is equivalent mod the — 1-coboundary group (g — l)Ή.ornR(C, A)
to some element of JFV-I

Proof. If / e F 0 , then g ^ / e d , and g- 1 /- / = (gΓ1 - 1)/=
(</ - 1)(^2~2 + ... +g + l)f. If / e F , then <// 6 F i + 1 + F o differs
from / b y (# — 1)/. The proof succeeds by repeated application of
these cases to the ̂ -components of an arbitrary /.

COROLLARY. // M is one of the modules described in (e)—(i), M
is an enlargement module of C by A (A — R, B, E, R@ B, RQ) E)
corresponding to an element of Fm_lΛ

Because we are concerned only with indecomposable modules, the
following proposition will spare us some unnecessary computations
later on.

PROPOSITION 4. Let M be an enlargement module of C by A 0 D
corresponding to fe HomΛ(C, Aξ&D) = Homie(C, A) © Hom^C, D), and
let / = /i + /2 be the corresponding decomposition of /. Then if either
/i or f2 represents a G-split enlargement of C by A or D, M is decom-
posable as a G-module.

Proof. Suppose /Ί represents an JίG-split enlargement of C by A.
Let N be A 0 C with action of C defined by f. Since the enlarge-
ment splits there is an ίϋG-homomorphism w : N-^ A such that A —>
N—>A is the identity of A. Let u be the restriction of w to the
given copy of C in N. That w is an J2G-homomorphism right inverse
to the inclusion of A in N requires that gu(c) — f^c) + u(gc).

Let M be A®D(&C with action of G defined by /. Then
v(a + d + c) — a + u(c) defines an J?G-homomorphism right inverse to
the inclusion of A in M, so M is decomposable as an jRG-module.

4* Computations* In this section we determine which of the
possibilities for the cohomology of (e)—(i) actually occur.

PROPOSITION 5. Let A be an .RG-module left fixed by U, and let
M be an enlargement module of C by A corresponding to / e F m _ l β

Then
i) H\G, M) = AGI{NQA + iWO?"- 1 ))

ii) H°( U, M) is isomorphic to the quotient of A/NσA with respect
to the cyclic G/U-submodule generated by the class of

Proof. MQ is just the copy of AG canonically (by the given exact
sequence) contained in M, Mu the copy of Au. Since A is a submodule,
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the norms of elements of the copy of A are the images of the norms
in A. Computation shows

% 0)

*) = g'NviO, 1) = flrW-1), 0)

whence t h e resul t .
We are now able to sett le case (e).
(e) M is an enlargement module of C by R. By Proposition 5,

H\G, M) is Zp* if f{θm-χ) is a multiple of p and Zp if not; and H°(U, M)
is Zp if f(θm-1) is a mult iple of p and 0 if not . This, together w i t h
t h e information in Section 3, shows t h a t t h e only cohomology th i s
module M might have is

ZP2 Zp Zp pZp

or Zp 0 0 (p - V)ZP .

For the remaining cases, we shall need one more proposition.
PROPOSITION 6. Let H be a group of order p generated by h.

Let A be a cyclic ZpH-modxΛe of Zp-dimension n. Then
( i) (h - l)jA has dimension n — j , j = 0, , n.
(ii) a is a generator for A if and only if a£ (h — 1)A.
(iii) a is a generator for A if and only if (h — ly^a is nonzero.

Proof. ( i ) We have a properly descending chain

. o ( i - l ) ^ 1 ^ z> (ft - 1)»A - 0

of Zp-spaces, and we can see by counting that the dimension of
(h — l)jA is n — i .

(ii) The above chain exhibits all submodules of A.
(iii) If a generates A, (h — ly^a generates (h — ly^A, which is

not zero. If not, ae(h — 1)A, so (h — ly^a = 0.
(f) M is an enlargement module of C by E. E/pE — E is a

cyclic ^P(G/ C/)-module of ^-dimension 39. Let Λf be represented by
fe Fm_u and /(θ™-1) = e. By Proposition 5, -ff^G, M) is the quotient
of H°(G, E) by the subgroup generated by NQJUe = (g — l)p~1e, hence
zero if NGlue is not zero, Zp if it is. Using proposition 6 iii, we see

H°(G, M) = 0 if e generates E over ZP(G/U)

= Zp if not .

H°(U,M) is t h e quotient of H\U, E) g* E by t h e ZP(G/U)~
submodule generated by e. Let n be t h e largest integer w i t h
ee(g — ΐ)nE. By Proposition 6 ii then, e generates (g — l)nE, which
is of dimension p — n, so t h e quotient has dimension n. The coho-
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mology of M is

0 0 0 0 if w = 0

Zp Zp nZp nZp if n = 1, , p .

(g) M is an enlargement module of C by B. N0Mcz M° = BG =
0. So H°(G, M) = 0 and H\G, M) = H~\G, M) is the quotient of M
modulo (g — 1)M. Let M correspond to fe Fm^ and denote /(tf™"1) — 6.

Case 1. 6 6 (g - 1)B. Then H\G, M) = 2ZP

Case 2. b$(g- 1)B. Then i P ( G , M) ~ Zp* .

By Proposition 6 again,

H\G, M) ^ 2ZV if 6 does not generate B/pB

= ZP2 if it does .

Similarly as in (f), if n is the greates t integer with be (g — l)n(BjpB),
then H\U,B) = ^ ^ p . The cohomology is t h u s

0 Z p 2 0 ^ if w ^ 0

0 2ZP nZp (n + 1)ZP if n — 1, , p — 1 .

(h) M is an enlargement module of C by R 0 £7. Let M cor-
respond to feFm^ and write /O?™"1) = r + e, r e i 2 , βG£7. We may
assume r is not divisible by p, because if it were, M would be decom-
posable (Proposition 4).

Computation based on Proposition 5 shows

H°(G, M) s 2ZP if Nme is divisible by p

= ^P2 if not,

and that

H\U, M) ~ (n + 1)ZP if % = 0, - . . , p - l

= ί?Z p if % = ί?

w h e r e ^ is t h e l a r g e s t i n t e g e r w i t h e e (g — l ) 7 ^ . So t h e cohomology
of M m a y be

Z2,2 0 Zp 0 or

2 ^ 0 (rc + 1)Z P wZ, ^ = 1, , p - 1 .

( i ) M is an enlargement module of C by RφB. Let feFm_x

represent the enlargement and write f(θm^) — r + 6, r e i?, 6 e B.
Again we may assume r is not divisible by p.

H\G, M) ~ Zp by Proposition 5.
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Let j be the largest integer with be (g — lyB.

H\U, M) = (j + 1)ZP if j = 0, . , p - 2

if i = p - l .

So the cohomology of M is

^ Zp nZp nZp n = 1, , p - 1 .

5* Summary. If Λf is any finitely generated G-module, then the
cohomology of M is the direct sum of a finite number of the following:

1.
2.
3.
4.
5.
6.
7.
8.
9.

#""((?, A)
Zp2

0

zp0

zP0

zP2ZP

0

0
Zpi

0

0

zP
zP0

1) iϊo(C7, A)

zP0

0
0 (p

(2? - 1 ) ^

(n + V)ZP

nZp (n

H\U,
0

zP0

pZp

- i)zp

0
nZp

7iZp

+ DZP

A)

n ~
n =
n =

1,
1,
1,

" ,P

" ,P ~
~,p-

1
1

Given any direct sum of finitely many of the above, there is a
finitely generated G-module with that cohomology.
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