COHOMOLOGY OF CYCLIC GROUPS OF PRIME SQUARE ORDER

J. T. Parr

Let G be a cyclic group of order p^{2}, p a prime, and let U be its unique proper subgroup. If A is any G-module, then the four cohomology groups

$$
H^{0}(G, A) \quad H^{1}(G, A) \quad H^{0}(U, A) \quad H^{1}(U, A)
$$

determine all the cohomology groups of A with respect to G and to U. This article determines what values this ordered set of four groups takes on as A runs through all finitely generated G-modules.

Reduction. Let G be any finite group. A finitely generated G module M is quotient of a finitely generated G-free module L. The kernel K is Z-free, and since the cohomology of L is zero with respect to all subgroups of G, K is a dimension shift of M. The standard dimension shifting module $P=Z G /\left(S_{G}\right)$ is Z-free, so $K \otimes P$ is a Z-free G-module having the same cohomology as M with respect to all subgroups of G.

Proposition 1. If G is any finite p-group and M any Z-free G module, the cohomology of M is that of $R \otimes M$ where R is the ring of p-adic integers.

Proof. Because M is Z-free, $0 \rightarrow M \rightarrow R \otimes M \rightarrow R / Z \otimes M \rightarrow 0$ is a G-exact sequence. $R / Z \otimes M$ is divisible and p-torsion free, so its cohomology is zero, and $M \rightarrow R \otimes M$ induces isomorphism on all cohomology groups.

If M is Z-free and finitely generated, $R \otimes M$ is an R-torsion free, finitely generated $R G$-module. So we see that if G is any finite p-group, every finitely generated G-module has the same cohomology as a finitely generated, R-torsion free $R G$-module.
2. Exact sequences. Let G be generated by an element g of order p^{2} and let U be its subgroup of order p. Heller and Reiner [2] have determined all indecomposable finitely generated R-torsion free $R G$-modules:
(a) R with trivial action
(b) $B=R(\omega), \omega$ a primitive p th root of $1, g \omega^{j}=\omega^{j+1}$
(c) $C=R(\theta), \theta$ a primitive p^{2} th root of $1, g \theta^{j}=\theta^{j+1}$

[^0](d) $E=R H, H$ a cyclic group of order p generated by h, $g h^{j}=g h^{j+1}$
(e)-(i) a module M such that there exists an exact sequence
(e) $0 \rightarrow R \rightarrow M \rightarrow C \rightarrow 0$
(f) $0 \rightarrow E \rightarrow M \rightarrow C \rightarrow 0$
(g) $0 \rightarrow B \rightarrow M \rightarrow C \rightarrow 0$
(h) $0 \rightarrow R \oplus E \rightarrow M \rightarrow C \rightarrow 0$
(i) $0 \rightarrow R \oplus B \rightarrow M \rightarrow C \rightarrow 0$
We compute the cohomology of the modules in (a)-(d) directly, and find their sets of four groups to be

(a) $Z_{p^{2}}$	0	Z_{p}	0
(b) 0	Z_{p}	$(p-1) Z_{p}$	0
(c) 0	Z_{p}	0	$p Z_{p}$
(d) Z_{p}	0	$p Z_{p}$	0

The exact cohomology sequences arising from the exact sequences (e)-(i) restrict the cohomology possibilities to
(e) $\begin{aligned} & Z_{p^{2}} \\ & Z_{p^{2}} \\ & Z_{p} \\ & Z_{p}\end{aligned}$
(f) 0
Z_{p}
Z_{p}
0
0
0
Z_{p}

Z_{p}	$p Z_{p}$
0	$(p-1) Z_{p}$
Z_{p}	$p Z_{p}$
0	$(p-1) Z_{p}$
$n Z_{p,}$	$n Z_{p}$
$n Z_{p}$	$n Z_{p}$

(g) $\begin{aligned} & 0 \\ & 0\end{aligned}$

$2 Z_{p}$	$n Z_{p}$	$(n+1) Z_{p}$
$Z_{p^{2}}$	$n=0, \cdots$,	$n-1$

(h) $Z_{p^{2}}$
$0 \quad(n+1) Z_{p}$

$$
n Z_{p}
$$

$$
2 Z_{p} \quad 0 \quad(n+1) Z_{p} \quad n Z_{p}
$$

$$
Z_{p^{2}}+Z_{p} \quad Z_{p} \quad(n+1) Z_{p} \quad n Z_{p}
$$

$$
n=0, \cdots, p
$$

In § 4 we shall determine which of these combinations actually occur.
3. Enlargements. An R-enlargement of C by A is an R-split $R G$-exact sequence $0 \rightarrow A \rightarrow M \rightarrow C \rightarrow 0$ [1]. Two enlargements involving M and M^{\prime} are equivalent if there exists an $R G$-homomorphism $u: M \rightarrow M^{\prime}$ such that

The R-split exact sequence gives M the R-structure of $A \oplus C$. The first summand is determined by the sequence, but the second is not; choose any one of the poss ble R-submodules for the second summand. Because the sequence is a G-sequence, $g(\alpha, 0)=(g a, 0)$ and the second component of $g(0, c)$ is $g c$. Denote the first component of $g(0, c)$ by $f(c) ; g(0, c)=(f(c), g c)$. So f is a function from C into A, and is an R-homomorphism because g is an R-homomorphism. The equation $g^{p^{2}}(0, c)=\left(\left(N_{G} f\right)(c), c\right)=(0, c)$ gives us that f is a - 1-cocycle of the G-module $\operatorname{Hom}_{R}(C, A)$ where G acts by $(g f)(c)=g f\left(g^{-1} c\right)$. Clearly, every - 1-cocycle defines an action by G on $A \oplus C$ which makes an R-enlargement of $0 \rightarrow A \rightarrow A \oplus C \rightarrow C \rightarrow 0$. If two -1-cocycles f_{1} and f_{2} differ by a coboundary, $f_{1}-f_{2}=(g-1) f_{3}$, then

$$
u(a, c)=\left(a+\left[(1-g) f_{3}\right]\left(g^{-\perp} c\right), c\right)
$$

defines an $R G$-isomorphism u of $A \oplus C$ with G-module structure given by f_{1} onto $A \oplus C$ with G-module structure given by f_{2}; the $R G$-modules corresponding to f_{2} and f_{1} are isomorphic. So to investigate all enlargement modules M of C by A we need only look at those corresponding to a set of representative cocycles of $H^{-1}\left(G, \mathrm{Hom}_{H}(C, A)\right)$.

Since the modules R, B, C, and E^{\prime} are R-free, the exact sequences (e)-(i) are R-split, and M is an enlargement in each case of C by another module.

For the application of this section, we shall need the following propositions.

Proposition 2. If A is an $R G$-module on which U acts trivially, then $N_{G} \operatorname{Hom}_{R}(C, A)=0$.

Proof. Let $f \in \operatorname{Hom}_{R}(C, A)$. We easily compute that $\left(N_{G} f\right)\left(\theta^{j}\right)=$ $g^{j}\left(N_{G} f\right)(1)$, and using the facts that θ satisfies

$$
x^{p(p-1)}+x^{p p-2)}+\cdots+x^{p}+1=0
$$

and that g^{p} acts trivially on A, we find by writing it out that $\left(N_{G} f\right)(1)=0$, which then implies that $N_{G} f=0$.

Abbreviate $p(p-1)=m$. Since C is the R-direct sum of the R-submodules generated by $\theta^{i}, i=0,1, \cdots, m-1$, then $\operatorname{Hom}_{R}(C, A)$ is the direct sum of subgroups F_{i}, where F_{i} is the set of all R-homomorphisms from C to A which have value zero for all θ^{j} except possibly for $j=i$.

Proposition 3. If A is any $R G$-module, every element of $\mathrm{Hom}_{R^{-}}$ (C, A) is equivalent mod the -1 -coboundary group $(g-1) \operatorname{Hom}_{R}(C, A)$ to some element of F_{m-1}.

Proof. If $f \in F_{0}$, then $g^{-1} f \in F_{m-1}$, and $g^{-1} f-f=\left(g^{-1}-1\right) f=$ $(g-1)\left(g^{p^{2}-2}+\cdots+g+1\right) f$. If $f \in F_{i}^{\prime}$, then $g f \in F_{i+1}+F_{0}$ differs from f by $(g-1) f$. The proof succeeds by repeated application of these cases to the F_{i}-components of an arbitrary f.

Corollary. If M is one of the modules described in (e)-(i), M is an enlargement module of C by $A(A=R, B, E, R \oplus B, R \oplus E)$ corresponding to an element of F_{m-1}.

Because we are concerned only with indecomposable modules, the following proposition will spare us some unnecessary computations later on.

Proposition 4. Let M be an enlargement module of C by $A \oplus D$ corresponding to $f \in \operatorname{Hom}_{R}(C, A \oplus D) \cong \operatorname{Hom}_{R}(C, A) \oplus \operatorname{Hom}_{R i}(C, D)$, and let $f=f_{1}+f_{2}$ be the corresponding decomposition of f. Then if either f_{1} or f_{2} represents a G-split enlargement of C by A or D, M is decomposable as a G-module.

Proof. Suppose f_{1} represents an $R G$-split enlargement of C by A. Let N be $A \oplus C$ with action of C defined by f_{1}. Since the enlargement splits there is an $R G$-homomorphism $w: N \rightarrow A$ such that $A \rightarrow$ $N \rightarrow A$ is the identity of A. Let u be the restriction of w to the given copy of C in N . That w is an $R G$-homomorphism right inverse to the inclusion of A in N requires that $g u(c)=f_{1}(c)+u(g c)$.

Let M be $A \oplus D \oplus C$ with action of G defined by f. Then $v(a+d+c)=a+u(c)$ defines an $R G$-homomorphism right inverse to the inclusion of A in M, so M is decomposable as an $R G$-module.
4. Computations. In this section we determine which of the possibilities for the cohomology of (e)-(i) actually occur.

Proposition 5. Let A be an $R G$-module left fixed by U, and let M be an enlargement module of C by A corresponding to $f \in F_{m-1}$. Then
i) $\quad H^{0}(G, M)=A^{G} /\left(N_{G} A+N_{G / U} f\left(\theta^{m-1}\right)\right)$
ii) $H^{0}(U, M)$ is isomorphic to the quotient of $A / N_{U} A$ with respect to the cyclic G / U-submodule generated by the class of $f\left(\theta^{m-1}\right)$.

Proof. M^{G} is just the copy of A^{G} canonically (by the given exact sequence) contained in M, M^{U} the copy of A^{σ}. Since A is a submodule,
the norms of elements of the copy of A are the images of the norms in A. Computation shows

$$
\begin{aligned}
& N_{G}\left(0, \theta^{i}\right)=N_{G}(0,1)=\left(N_{G / U} f\left(\theta^{m-1}\right), 0\right) \\
& N_{U}\left(0, \theta^{i}\right)=g^{i} N_{U}(0,1)=g^{i}\left(f\left(\theta^{m-1}\right), 0\right)
\end{aligned}
$$

whence the result.
We are now able to settle case (e).
(e) M is an enlargement module of C by R. By Proposition 5, $H^{0}(G, M)$ is $Z_{p^{2}}$ if $f\left(\theta^{m-1}\right)$ is a multiple of p and Z_{p} if not; and $H^{0}(U, M)$ is Z_{p} if $f\left(\theta^{m-1}\right)$ is a multiple of p and 0 if not. This, together with the information in Section 3, shows that the only cohomology this module M might have is
or

$Z_{p^{2}}$	Z_{p}	Z_{p}	$p Z_{p}$
Z_{p}	0	0	$(p-1) Z_{p}$.

For the remaining cases, we shall need one more proposition.
Proposition 6. Let H be a group of order p generated by h. Let A be a cyclic $Z_{p} H$-module of Z_{p}-dimension n. Then
(i) $(h-1)^{j} A$ has dimension $n-j, j=0, \cdots, n$.
(ii) a is a generator for A if and only if $a \notin(h-1) A$.
(iii) a is a generator for A if and only if $(h-1)^{n-1} a$ is nonzero.

Proof. (i) We have a properly descending chain

$$
A \supset(h-1) A \supset \cdots \supset(h-1)^{n-1} A \supset(h-1)^{n} A=0
$$

of Z_{p}-spaces, and we can see by counting that the dimension of $(h-1)^{j} A$ is $n-j$.
(ii) The above chain exhibits all submodules of A.
(iii) If a generates $A,(h-1)^{n-1} \alpha$ generates $(h-1)^{n-1} A$, which is not zero. If not, $a \in(h-1) A$, so $(h-1)^{n-1} a=0$.
(f) M is an enlargement module of C by $E . E / p E=\bar{E}$ is a cyclic $Z_{p}(G / U)$-module of Z_{p}-dimension p. Let M be represented by $f \in F_{m-1}$, and $f\left(\theta^{m-1}\right)=e$. By Proposition 5, $H^{0}(G, M)$ is the quotient of $H^{0}(G, E)$ by the subgroup generated by $N_{G / U} \bar{e}=(\bar{g}-1)^{p-1} \bar{e}$, hence zero if $N_{G / U} \bar{e}$ is not zero, Z_{p} if it is. Using proposition 6 iii, we see

$$
\begin{aligned}
H^{0}(G, M) & \cong 0 \text { if } \bar{e} \text { generates } \bar{E} \text { over } Z_{p}(G / U) \\
& \cong Z_{p} \text { if not } .
\end{aligned}
$$

$H^{0}(U, M)$ is the quotient of $H^{0}(U, E) \cong \bar{E}$ by the $Z_{p}(G / U)$ submodule generated by \bar{e}. Let n be the largest integer with $\bar{e} \in(g-1)^{n} \bar{E}$. By Proposition 6 ii then, \bar{e} generates $(g-1)^{n} \bar{E}$, which is of dimension $p-n$, so the quotient has dimension n. The coho-
mology of M is

$$
\begin{array}{cccccc}
0 & 0 & 0 & 0 & \text { if } & n=0 \\
Z_{p} & Z_{p} & n Z_{p} & n Z_{p} & \text { if } & n=1, \cdots, p .
\end{array}
$$

(g) $\quad M$ is an enlargement module of C by $B . \quad N_{G} M \subset M^{G}=B^{G}=$ 0 . So $H^{\circ}(G, M)=0$ and $H^{1}(G, M) \cong H^{-1}(G, M)$ is the quotient of M modulo $(g-1) M$. Let M correspond to $f \in F_{m-1}$ and denote $f\left(\theta^{m-1}\right)=b$.

Case 1. $b \in(g-1) B$. Then $H^{1}(G, M) \cong 2 Z_{p}$
Case 2. $b \notin(g-1) B$. Then $H^{1}(G, M) \cong Z_{p^{2}}$.
By Proposition 6 again,

$$
\begin{aligned}
H^{\prime}(G, M) & \cong 2 Z_{p} \text { if } \bar{b} \text { does not generate } B / p B \\
& \cong Z_{p^{2}} \text { if it does }
\end{aligned}
$$

Similarly as in (f), if n is the greatest integer with $\bar{b} \in(\bar{g}-1)^{n}(B / p B)$, then $H^{\circ}(U, B) \cong n Z_{p}$. The cohomology is thus

$$
\begin{array}{cccrll}
0 & Z_{p^{2}} & 0 & Z_{p} & \text { if } & n=0 \\
0 & 2 Z_{p} & n Z_{p} & (n+1) Z_{p} & \text { if } & n=1, \cdots, p-1 .
\end{array}
$$

(h) M is an enlargement module of C by $R \oplus E$. Let M correspond to $f \in F_{m-1}$ and write $f\left(\theta^{m-1}\right)=r+e, r \in R, e \in E$. We may assume r is not divisible by p, because if it were, M would be decomposable (Proposition 4).

Computation based on Proposition 5 shows

$$
\begin{aligned}
H^{0}(G, M) & \cong 2 Z_{p} \quad \text { if } N_{G / V} e \text { is divisible by } p \\
& \cong Z_{p^{2}} \quad \text { if not, }
\end{aligned}
$$

and that

$$
\begin{array}{rlrl}
H^{0}(U, M) & \cong(n+1) Z_{p} & \text { if } \quad n=0, \cdots, p-1 \\
& \cong p Z_{p} & & \text { if } \quad n=p
\end{array}
$$

where n is the largest integer with $\bar{e} \in(g-1)^{n} \bar{E}$. So the cohomology of M may be

$$
\begin{array}{rrrrl}
Z_{p^{2}} & 0 & Z_{p} & 0 & \text { or } \\
2 Z_{p} & 0 & (n+1) Z_{p} & n Z_{p} & n=1, \cdots, p-1 .
\end{array}
$$

(i) M is an enlargement module of C by $R \oplus B$. Let $f \in F_{m-1}$ represent the enlargement and write $f\left(\theta^{m-1}\right)=r+b, \quad \mathrm{r} \in R, \quad b \in B$. Again we may assume r is not divisible by p.
$H^{0}(G, M) \cong Z_{p}$ by Proposition 5.

Let j be the largest integer with $\bar{b} \in(g-1)^{j} \bar{B}$.

$$
\begin{aligned}
H^{0}(U, M) & =(j+1) Z_{p} \\
& =(p-1) Z_{p} \quad \text { if } \quad j=0, \cdots, p-2 \\
& \text { if } \quad j=p-1
\end{aligned}
$$

So the cohomology of M is

$$
Z_{p} \quad Z_{p} \quad n Z_{p} \quad n Z_{p} \quad n=1, \cdots, p-1 .
$$

5. Summary. If M is any finitely generated G-module, then the cohomology of M is the direct sum of a finite number of the following:

	$H^{\circ}(G, A)$	$H^{1}(G, A)$	$H^{\circ}(U, A)$	$H^{1}(U, A)$	
1.	$Z_{p^{2}}$	0	Z_{p}	0	
2.	0	$Z_{p^{2}}$	0	Z_{p}	
3.	Z_{p}	0	$p Z_{p}$	0	
4.	0	Z_{p}	0	$p Z_{p}$	
5.	Z_{p}	0	0	$(p-1) Z_{p}$	
6.	0	Z_{p}	$(p-1) Z_{p}$	0	
7.	Z_{p}	Z_{p}	$n Z_{p}$	$n Z_{p}$	$n=1, \cdots, p$
8.	$2 Z_{p}$	0	$(n+1) Z_{p}$	$n Z_{p}$	$n=1, \cdots, p-1$
9.	0	$2 Z_{p}$	$n Z_{p}$	$(n+1) Z_{p}$	$n=1, \cdots, p-1$

Given any direct sum of finitely many of the above, there is a finitely generated G-module with that cohomology.

Bibliography

1. Samuel Eilenberg, Topological methods in abstract algebra, Bull. Amer. Math. Soc. 55 (1949), 3-35.
2. A. Heller and I. Reiner, Representations of cyclic groups in rings of integers I. Ann. of Math. 76 (1962), 73-92.

[^0]: Received December 27, 1963.

