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ON THE MULTIPLICATIVE EXTENSION PROPERTY

RICHARD AND SANDRA CLEVELAND

A subspace M of a Banach algebra B is said to have the
multiplicative extension property (abbr. m.e.p.) if whenever L
is a linear functional on M of norm not greater than one, L
is the restriction to M of a multiplicative linear functional
on B. This property is considered in two settings—the mea-
sure algebra Miff) of a suitable group, and the disc algebra
A(D) of functions analytic in the unit disc with continuous
boundary values. The following theorems are proved.

THEOREM 2. If Q is a compact subset of G such that MC{Q)
has the m.e.p., then (i) for every nonzero teG, the set
Q Π (Q — t) has μ-measure zero for every continuous measure
μ on G, and (ii) m(Q) = 0, where m is the Haar measure for G.

THEOREM 3. Suppose G contains an independent Cantor
set. Then there exists a compact subset Q of G such that for
infinitely many t Φ 0, Q n (Q — t) is countably infinite, and
Me(Q) has the m.e.p.

THEOREM 4. There exist infinite dimensional subspaces of
A(D) with the m.e.p.

These last two theorems are proved by constructing
examples using a special decomposition of the Cantor set.
This decomposition is presented in a separate section to simplify
notation.

The multiplicative extension property was formulated by Hewitt in
[1] after Hewitt and Kakutani [2] had given examples of such sub-
spaces of the measure algebra of certain locally compact groups. In
[1] Hewitt poses the problem of characterizing the subspaces with the
m.e.p. in a general Banach algebra, and points out that the question
was open even for the algebra C(X) of all continuous complex valued
functions on a compact Hausdorff space X. Later Phelps [4], who calls
the m.e.p. "property (H)", announced such a characterization for C(X).
Phelps has shown that a closed subspace A of C(X) has the m.e.p. if
and only if X is homeomorphic to a symmetric compact convex subset
of a locally convex space and A is the space of linear functions on X.
If B is any commutative Banach algebra with unit and maximal ideal
space X, and if M is a closed subspace of B with the m.e.p., then
the Gelfand transform is an isometric isomorphism of M onto a closed
subspace of C(X) which has the m.e.p. Thus Phelps' result charac-
terizes arbitrary subspaces with the m.e.p., in a sense. However, this
result gives no information on whether a given algebra has subspaces
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with the m.e.p., or how to find such subspaces if they do exist.
The purpose of this paper is to give some further examples of

subspaces with the m.e.p. We consider two algebras—the measure
algebra of a suitable group G, and the disc algebra A of all functions
analytic in the unit disc with continuous boundary values. In M(G)
we consider the following question: what conditions must be satisfied
by a compact set Q in order that the space MC(Q) of all continuous
measures supported on Q have the m.e.p.? This question seems to be
very difficult, and we cannot give a complete answer, but we do arrive
at some necessary conditions on Q. Roughly speaking, such a set Q
must be fairly independent from a measure theoretic point of view,
while an example is constructed to show that it can be rather de-
pendent from an algebraic point of view. This is done in Section 3.
In Section 4 we consider the disc algebra A where we construct an
infinite dimensional subspace M with the multiplicative extension proper-
ty. This subspace M has the interesting property that if / and g
are linearly independent elements of norm 1 in M, then g assumes every
value in some closed disc on the set of zeroes of / .

While the two examples of this paper are very different in character,
they are both constructed by means of a special decomposition of the
Cantor set into an uncountable family of disjoint perfect subsets.
While this decomposition is not new, it is presented in Section 2 in
order to provide a common notation for the later constructions.

2* Decomposition of the Cantor Set* Let C be the Cantor
ternary set. If we let x(ri) denote the nth ternary digit of xeC,
where x(n) — 0 or x(n) — 2, then each x has a unique ternary expan-
sion. For each xe C, let

Ex = {ye C: y(2n) = x(n) for all n e N} .

The following statements are easily verified:
(1) For each xe C, Ex is a nonempty perfect subset of C.
(2) If xφy then ExΓ\Ey = 0 , and C= \JxeoEx.
( 3 ) // tneEXn (n= 1,2, •••,), and tn-*t0 where toeEXo, then

xn • > x0.

For each xeC we define a map hx from Eo to Ex as follows: for
yeE0 and ke N,

ί f k ί

[y(k), if k is odd.

Then it is easy to check that each hx is a homeomorphism of EQ onto
EX1 and h0 is the identity map. Moreover, we have

( 4 ) For xeC, yeEQ let H(x, y) ~ hx(y). Then H is continuous
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from C x Eo onto C.
Indeed, if {xn: n e N} c C, {yn: n e N} c J57O, OJW —> x0, and yn —> #0, and
keN, then we may choose y so that for w i> y, yn(j) = yo(j) for
j ^2k + 1, while a;Λ(i) = a?0(i) for j ^ /c. Thus, for i ^ 2 H 1 we
have iϊ(x%, 2/«)(j) = H(xQ, yo)(j), n^v. Since k is arbitrary, we see
that

lim H(xn, yn) = iϊ(ίc0, τ/0) .

3* Subspaces of M(G). In this section we consider the algebra
M(G) of measures on a nondiscrete locally compact abelian group G.
We are interested in what properties a compact QaG must have in
order that MC(Q), the subspace of continuous measures carried on Q,
have the m.e.p. Hewitt and Kakutani show in [2] that if P is an
independent Cantor set in G then MC(P{J( — P)) has the m.e.p. The
proof of this relies heavily on the independence of P. Our results
show that in general if MC(Q) has the m.e.p., then Q must be "almost
independent" in a sense to be made more precise. Then we give an
example that shows that the set Q can be, at the same time, rather
dependent.

THEOREM 1 (Hewitt and Kakutani). Suppose Q is a compact sub-
set of G such that MC(Q) has the m.e.p. Then if k, I are distinct
positive integers and \, •• ,λJk and μlf *--,μι are nonnegative mea-
sures in MC(Q) and if π, p are arbitrary invertible elements of norm
1 in M(G), then the measures λ = λj. * * λ*. * π and μ ~ μx * * μι * p
are mutually singular.

Hewitt and Kakutani prove this in [2] (Theorem 4.8) in the case
that Q = P u ( - P ) . But their proof only uses the fact that MC(Q) has
the m.e.p. and goes over to the general case without change.

THEOREM 2. If Q is a compact subset of G such that MC(Q) has
the m.e.p., then

( i ) for every nonzero teG, the set Q Π (Q — t) has μ-measure
zero for every continuous measure μ on G.

(ii) m(Q) — 0, where m is the Haar measure for G.

Proof, (ii) is a simple consequence of (i) since m(Q ΓΊ (0 — x)) is
continuous as a function of x. To see (i), suppose on the contrary
that μ(Q (Ί (Q - t)) Φ 0 for some t Φ 0 and μ e MC(G). Let v be the
restriction of μ to subsets of Q Π (Q — t). Then both v and vt = v*εt

are in MC(Q). Now v and vt cannot be linearly independent, since then
there would be a multiplicative linear functional h on M(G) such that
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h{v) = 0, h(vt) Φ 0, by the m.e.p. But h(vt) = h(v)h(εt). Hence vt = a-v
for some a Φ 0. Now let F be a symmetric neighborhood of 0 such
that t$V+V. Then choose xeQf](Q-t) so that v{x + F) Φ 0.
Let λ be the restriction of ι> to subsets of U = x + V. Since
Z7 Π (Z7 + ί) = 0 and since λ$ is carried on U + t, we see that λΛ Φ α λ,
for any α. But λ and λέ are both in MC(Q), and by the same argument
as above with λ in place of v, Xt = α λ, for some α. This contradiction
establishes the result.

In particular, we see from (i) that if Q is metrizable then Q Π (Q — t)
must be at most countable for every t Φ 0. This is the sense of
"almost independence'' mentioned above.

We give an example to show that Q ΓΊ (Q — t) can actually be
countably infinite infinitely often. For this example we suppose G
contains an independent set P homeomorphic to Cantor's set. This is
always true, for example, if G contains arbitrarily small elements of
infinite order [5, p. 100].

THEOREM 3. Suppose G contains an independent Cantor set.
Then there exists a compact subset Q of G such that for (countably)
infinitely many t Φ 0, Q Π (Q — t) is countably infinite, and MC(Q)
has the m.e.p.

Proof. Let P be an independent Cantor set in G and let P — S U T
where S and T are disjoint Cantor sets. Let σ and τ be homeomor-
phisms of C onto S and T, respectively, and for xeC, let Sx = σ(Ex)
and Tx = τ(Ex). Let c0 < c1 < c2 < be a monotone sequence in E
and denote the limit by c^. Choose a sequence {Un: n = 0,1, 2, •} of
disjoint clopen (relative to Eo) sets such that cne Un. Write U^ — {c^}.
For 0 ̂  n <Ξ oo, xeC, let

Bn(x) = τ(hx(Un)) if nΦO

B0(x) = σ(E.) = σ(hx(E0)) .

An(x) = Bn{x) - bn(x) + an(x) .

Let K be any countable closed subset of C and let

Q = \Jχeκ Uo^^^co An(x)

We break the rest of the proof into several steps.

LEMMA 1. Q is closed.

Proof. Indeed, consider the map 7 on JJ {Un: 0 ̂  n ^ 00} to

o
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{cn: 0 ^ n ^ co} defined by

where 1Λ denotes the characteristic function of A. Then 7 is continuous.
By Remark (4) of Section 2, the mapping

F(x, t) = τ{hx{t)) ~ ΦMt))) + σ(hjy(t)))

is a continuous mapping of the compact set K x J J ί ^ O ^ ^ ^ 0 0 }
onto Q. Thus Q is closed.

LEMMA 2. m(Q) = 0.

Proof. Each element of Q is of the form p — b + a, where p, 6,
a are in P. Hence Q is contained in the subgroup generated by P,
and, since P is independent, the Haar measure of this subgroup is zero.
(C.f. [5], p. 108).

LEMMA 3. Q Π (Q — t) is infinite for infinitely many t Φ 0.

Proof. For each n ^ 1 and x e K,

an(x) e An(x) n [AQ(x) + 60(a;) - ao(x)]

c Q ΓΊ (Q - tx)

where tx — aQ(x) — bo(x) φ 0.

We also note here that Q Π (Q — t) is at most countable for any
t Φ 0.

LEMMA 4. Suppose μl9 ,μr are nonnegative continuous measures
concentrated on disjoint subsets Du , Dr of Q. Let λ = μf * * μ™
and v — μ™1*" *μ™r. Then λ and μ are mutually singular unless
ni — tmi for 1 g % ^ r.

Proof. There are only a countable number of elements of Q of
the form

or αfc(a;) — 60(«) + αo(a0 , Λ ̂  0 .

Since the //< are continuous, we may assume without loss of generality
that no D{ contains a point of this type, λ is concentrated on Dλ —
n1D1 + + nrDr and v is concentrated on Du = mίD1 + + mrDr.
We shall show that Dλf]Dv = 0 unless ^ — mi for 1 ̂  i g r .

Let D = Dλf]Du. Each element of D has two representations
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(*) (2/ϊ + + O + + (Vl + + ylr)

= (z\ + + zlx) + .. + (zl + + zr

mi) ,

where y\ and 4 are in Dit Each element of D{ is of the form

βn{x) - bn(x) + an(x)

where βn(x)eBn(x), and /3w(α?) ^ δn(α), w ^ 1, and βo(x) Φ ak(x), k S 0.
Thus (*) is an equation between two combinations of elements of P.
Since P is independent, the coefficients of distinct terms on either side
must be equal. For fixed n and x suppose an(x) appears k times on
the left hand side of (*), i.e., the coefficient of an(x) on the left is k.
This means that there are k elements on the left of the form

βi(x) - bn(x) + an(x)

and k elements on the right of the form

7i(aO - K(x) + an(x)

where βi(x) and Tn(x) are in Bn(x), since an(x) can occur only in this
way. Since none of the β's or τ's can occur in any other way on
either side of the equation, we must have

and so the β\{x) are just a permutation of the Ύi(x). Thus the y) that
belong to a fixed An(x) are just a permutation of the zj that belong to
An(x). It follows that the y's are a permutation of the z's and, by the
disjointedness of Dlf , 2?r, n{ — m{ for 1 ^ i ^ r.

LEMMA 5. Λfc(Q) has the m.e.p.

The rest of the proof is exactly the same as the proof of Theorem
5.4.1 in [5], so we will not duplicate that proof here.

By a slight modification of the proof of Theorem 6.2 in [2], one
can show that if P is, in addition, a Kronecker set, then the multipli-
cative extensions of linear functionals are in the closure of the dual
of G.

It is natural to ask whether the above construction of the set Q
could be modified in such a way that Q Π (Q — t) is infinite for un-
countably many t. The following example shows that MC(Q) may fail
to have the m.e.p. even though Q Π (Q — t) has at most two elements
for every t Φ 0.

Consider the set

Q = Uxe
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where the notation is as above, except for Q. This Q is a compact
set of Haar measure zero, and Q Π (Q — t) has at most two points for
t Φ 0, but MC(Q) does not have the m.e.p. Indeed, suppose λ is the
Cantor measure on C. Let μu μ2i μ3j μ4 and p be the measures obtained
respectively as images of λ under the (bicontinuous) maps x—>αx(x),
x —> cφή, x —• Oiix) — bo(x) + ao(x), x —• α.(x) — δo(ίc) + αo(x), and x —>
α â?) + α2(a;) — bo(x) + αo(x). Then μu , μ4 are mutually singular
measures in MC(Q) and we have

p < μ i * μ 4 and p <t μ2*μ?> .

But there exists a linear functional L of norm 1 on MC(Q) such that
L(σ) = 0 for σ < μγ and L(σ) = σ(G) for a < //,-, i = 2, 3, 4. If MC(Q)
has the m.e.p. then there exists a multiplicative linear functional M
on Λf(G) that extends L. By the results of Sreϊder [6], M is represented
by a generalized character, i.e., a function χ on M(G) x G such that

for each σeM(G), %(ίτ,.) is Borel measurable and M(σ) = \χ(σ, x)σ(cίx).

Combining a basic property of generalized characters ([6], equation (35)),
namely

) a.e. (σ x

with the fact that

\α(2)σ*α/r(dz) = l\α(s + t)σ(ds)ψ(dt)

we see that χ ^ * μ 4 , t) = 0 a.e. (μi*μ4) and χ(μ2*μ3, t) = 1 a.e. (μ^μj).
Since χ(<o, ί) = χiμ^μ*, t) = χ(^2*/^3, ί) a.e. (p) ([6], Definition 1), we
have a contradiction.

4* The disc algebra* Suppose ΰ is an arbitrary Banach algebra
with unit and maximal ideal space X. Let g be a family of linearly
independent elements of i? of norm 1. Denote by [%] ([%]~) the linear
span (closed linear span) of $. The following elementary proposition
is useful in constructing subspaces of B with the m.e.p.

PROPOSITION. If for any {fu , /»} c g and any points zίy ---,zn

in D — {z: \ z | ^ 1}, there exists an Me X with M{f3) — z3- j — 1, , n,

then [%]~ has the m.e.p.

Proof. If L is a linear functional on [§]~ with | | L | | fg 1, the
hypothesis states that the closed sets

for fe% have the finite intersection property. The conclusion is then
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immediate from the compactness of X.
We denote by A(D) the algebra of functions continuous on D and

analytic in D.

THEOREM 4. There exist infinite dimensional subspaces of A(D)
with the m.e.p.

Proof. By the transformation x —• e2πix of the unit interval we
obtain a Cantor set on the boundary of D. By abuse of language we
keep all the notation of Section 2, and regard C, Exy hx as the objects
induced by this transformation.

Let Dω be the product of D with itself a countable number of
times. Since this is a compact metric space, there is a continuous map
φ of C onto Dω.

For σeDω, let Eσ = \J {Ex: φ(x) = σ}. Each Eσ is a perfect sub-
set of C. In fact Eσ = H[φ~\{σ}) x 2£0]. Also the E* are pairwise
disjoint and C = (J {#*: 0" e 5ω}.

Define a sequence {fn} of functions on C as follows. For ζ e C,
choose α so that ζe Eσ, and set /n(ζ) = σ(w). Then each /Λ is continuous
on C. For suppose ζ3- —> ζ0, ζ̂  e C Then each ζy e EXj for some α y e C,
and <£>(%) = σy e 5 ω , and ζ0 G ^ Q with <p(cc0) = σ0. By 2.3, xs —• aj0.
Since >̂ is continuous σ3 —> σ0. Thus

3

= σ-Λrc) -> α 0(w) = Λ(ζ0) .

Also clearly | | / n | | = 1 for each n.
By Rudin's theorem on extension of continuous functions to analytic

functions [3, p. 81], for each n there is a function Fne A which agrees
with fn on C and | Fn(z) \ S 1 f or z e D. If we let

it is clear that the hypotheses of the proposition are satisfied and thus
[g]- has the m.e.p., and the theorem is proved.

The following properties of the functions Fn in the above example
are noteworthy:

( i ) \\Fn + Fm\\ = 2 for all n, m
(ii) J F " 1 ^ } ) is uncountable for every we D and every n.
(in) F^F^dw})] = D for every we D and every pair n, m with

n Φ m.
(iv) If f and g are any two linearly independent elements of

[§]"> then for some r, 0 < r ^ 1,
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Subspaces with the m.e.p. may be constructed in this manner in
any algebra B whose maximal ideal space contains a set K homeomorphic
to C with the following property. If feC(K) there is an xeB such
that 11 # | | = | | / | |oo and the Gelfand transform of x agrees w i t h / o n K.
For example, the algebra of continuous functions on the Stone-Cech
compactification of the reals has this property.
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