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MANY-ONE DEGREES OF THE PREDICATES H,(x)

Y1iANNIS N. MOSCHOVAKIS

Spector proved in his Ph. D. Thesis that if |a| = |b]|
(a,be0), then H,(x) and Hy(x) have the same degree of un-
solvability; Davis had already shown that if |a| = |b| < «?,
then H,.(x) and H,(x) are in fact recursively isomorphic, i.e.,

(1) H,(z) = Hy(f (),

where f(x) is a recursive permutation.

In this note we prove that if |a| = |b| =&, then H,(x)
and Hyx) need not have the same many-one degree, unless
& =0 or is of the form 7 + 1 or 7 + w; if £ # 0 is not of the
form 7 + 1 or 7 + , then the partial ordering of the many-one
degrees of the predicates H,(x) with [a| = ¢ contains well-
ordered chains of length »; as well as incomparable elements.
The proof rests on a combinatorial result which relates the
many-one degree of H,.(x) (a’ = 3.5°€ O) to the rate with which
the sequence of ordinals |a,| approaches |a’|.

Summary of results. We denote the relations of many-one and
one-one reducibility by =<, and =<,. By a result of Myhill [5], if
P(x) =, Q(x) and Q(x) =, P(x), then P(x) and Q(x) are recursively

isomorphiec,
Let o’ = 3.5% and b’ = 3.5° be names in O of the same limit ordinal
[a |=|b| =& We say that « is recursively majorized by b and

write a’ < ¥, if there is a recursive funetion f(n) such that for all n,
(2) | = [bsm] -

(Here a, ~ {a}(n,); in dealing with constructive ordinals and hyper-
arithmetic predicates we use without apologies and sometimes without
reference the notations of Kleene’s [2] and [3].) If ¢’ < ? and &' < d/,
o’ and b are equivalent, @’ ~ b’; if neither o/ < ', nor & < o/, @’ and
b’ are incomparable, a’|0’. Notations such as @’ T b’ are self-explanatory.

THEOREM 1. Let ¢/ =38.5"c0,b =350, |a'| =|b| =& Then
H,(2) =, H,(x) ©f and only +f H,(x) <, H,(x) ©f and only if a’ < ¥'.

THEOREM 2. Ifé&isoftheformn + lorn+ w and |a|=|b|=¢,
then H,(x) and H,(x) are recursively isomorphic.

For each constructive ordinal &, let <~(£) be the partial ordering
of the many-one degrees of the predicates H,.(x) with |a’| = &.
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THEOREM 3. If &+ 0 is not of the form n+1 or n+ w, then
(&) contatns well-ordered chains of length w,.

THEOREM 4. If &+ 0 15 not of the form n + 1 or 7+ w, then
Z(&) contains incomparable elements.

2. Proof of Theorem 1.

Lemma 1. (Kleene’s Lemma 3 in |2]). There is a partial re-
cursive function oa, b, x), such that

(3) if a=,b, then H,((x)= Hy(o/(a,b,x)).
Let P’(x) denote the jump of the predicate P(x),
(4) P(z) = (Ey)T (2, x, y) .
LEMMA 2. (a) There is a primitive recursive oe, ) such that
iof Q(x) is recursive in P(x) with Godel number e, then
(5) Q(x) = P'(0y(e, v)) .
(b) There 1s a primitive recursive gi(e) such that

(6) of t=o4e) and {e}(t) s defined ,
then P'(t) = P({e}(t)) .

(Both of these facts are implicit in Section 1.4 of [4] and the
references given there to [1] and [6].)

LEMMA 3. There ts a partial recursive ofa, b, ¢, x) such that for
a,b,¢c in O,
(7) 4f lal =|b] and b<,c, then H,(») = H(o(a,b,c, ).

Proof. By Spector’s Uniqueness Theorem in [7], if |a| = |b],
then H,(z) is recursive in H,(x) with Godel number z(a, b) (t recursive).

Since b <, ¢ implies 2 <, ¢, Lemma 1 together with Lemma 2(a) imply
that

H,(x) = Hy(o.(z(a, b), ©)) = H,(0,(2", ¢, 0:(7(a, b), 2)))

and we can define ¢, as the argument of H, in this equivalence.

LeMmMA 4. There is ¢ partial recursive o(a,b,e), such that tf
@ <ob, then o(a, b, e) s defined and
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(8) if t=o(a,b,e) and {e}(t) s defined,
then H,(t) = H,({e}(?)) .

Proof is by induction on be O for fixed a€ O and the recursion
theorem, utilizing Lemma 2 (b).

Case 1. b =2 Set o(a,b, e) = gye).

Case 2. b= 2° and ¢ # a. In this case, if ¢ <,b we must have
a <,c¢ and the Ind. Hyp. applies to a and ¢. Put

(9) y = a(a, ¢, dx{e}(ay(c, b, x))) ,

and

(10) o(a, b, e) = agc, b, y).

(For a partial recursive f(®,, +++, x,, ¥), Ayf(®,, -+, &,, y) is a primitive

recursive function of z,, ---, 2, and a Godel number of f such that

{Ayf (@, <=+, oy WHY) = f(®1, =+, %0y Y) 5

see [1], Section 65.)

Since ¢ <, b, g,(c, b, x) is totally defined; since @ <, ¢, the induction
hypothesis implies that y is defined, hence o(a, b, ) is defined. We
now derive a contradiction from the assumption

11) for t = o(a,b,e), {e}(t) is defined and

Hy(t) = H,({e}(?)) .
Since

HJ(y) = Hy(o:(c, b, y)) = Hy(?) ,

we have

H(y) = H.({e}?)) ;
but

{e}(t) = {e}a.(c, b, v)) = {4x{e}(a.(c, b, 2)Ny) ,

hence

H.(y) = H.({4x{e}(o.(c, b, ))}(v))

which by induction hypothesis is false if y is given by (9).

Case 3. b=3.5°. In this case a <,b implies a =, 2.,.,, Where
¢(a, z) is partial recursive ([2], Lemma 2). Now the definition and
proof of Case 2 apply if we substitute ¢(a, z) for ¢ throughout.

The proof is completed by securing via the recursion theorem a
partial recursive function o(a, b, ¢) such that
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oe) if b=2,

o1((b)s, b, a(a, (b),, Ax{e}(a.((b),, b, ))))
if b=2% (b), = a,

ai((a, (b).), b, a(a, da, (b)), Au{e}(a.(«(a, (b)), b, x))))
if b= 3.5,

0 otherwise .

o(a, b, ) =~

LEMMA 5. Let o =3.6°b =3.5'e0,|a'|=|0|. If H,(z) =<,
H,(x), then H,(x) =, H,(x).

Proof. Suppose that H,.(x) = H,(f(x)), with f(x) general recursive,
possibly many-one. Put

g() = 243",
where
U = 2x3(f(x))0 3 v = Gl(b(f(x))oa bu9 (f(x))l)

and o, is the partial recursive funection of Lemma 1, It is clear that
g(x) is general recursive and one-one. To complete the proof we compute:

H,(g9(x)) = H,,(v) = H, (0:(bi s, buy (f(2)))
= Hyyi, ((f(2)) = Hy (f(2)) = Ho(2) .

Proof of Theorem 1. First assume that o < b, i.e., for some
general recursive f(») we have |a,| = |bs., |, 8ll n. Since, for each
7, bpiwy <o bpiwyes, Lemma 3 yields

H, (%) = Hy, . (0, bsony, bsinyes, @)
Hence
H, (x) = H, (2% .3"=) |
with
w(x)y = f(@) + 1,
0(@) = 0@y Bricons st s (2)0)

which implies H,(v) <, H,(z}; by Lemma 5 this is equivalent to
H, (x) <, H,(%).
To prove the converse assume that for all #

(12) H,(x) = H,({e}(x)) ,

with {e}(z) general recursive. For fixed n we compute:
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(13) H,,,(x) = H,(2"*-3") = H,({e}(2"**-3"))
= H,, (x),

where

(14) @, = ({e}(2**-37)), ,

(15) x, = ({e}(2"*-37), .

Now assume that for a fixed x

{6) 0., = @l ;

this implies that for each y

(17) Hb@o(y) = Han_l,l(o-‘i(b:cos a’m an+1y y)) ’
which for y = x, yields
(18) Han+2(x) = Han+1(04(bzoy a’n: a’n+ly xl)) .

Equivalence (18) however is impossible if
(19) T = 0(Qui1y Upigy AT0O(by, Cry Cyysy X))

by Lemma 4, hence for this « the negation of (16) must be true. Thus
to prove o’ < b’ it is enough to set

(20) f(n) =,
where « is given by (19) and x, by (14).

3. Proof of Theorem 2. It is implicit in [4], Section 1.4, that
if P(x) is recursive in Q(z), then P'(x) <, Q'(x). Thus if |a]| =|b| =
7 + 1, Spector’s Uniqueness Theorem implies that H,(x) and H,(x) are
one-one reducible to each other and hence recursively isomorphie. The
case |a'| = |b'| = 7 + w is settled by the following Lemma in view of
Theorem 1.

LeEMMA 6. If |a'|=|V]|=9n+ o, then o’ <V

Proof. It is easy to define primitive recursive functions L(x) and
N(z) so that for x €O,
(21) @ = L(x) +, N(x) ,

where L(x) =1 or | L(x)| is a limit ordinal and | N(x) | < w (with these
requirements L(x) and N(x) are uniquely determined on members of O).
Let a° and b° be the uniquely determined elements of O such that

(22) @ <., |al=7n; VY, [¥|=7.
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Set
(23) f(n) = py[d® +, N(a,) =,b,] .

That f(n) is totally defined follows from the fact that if z is any
ordinal notation for an integer (in particular if z = N(a,)), then
0" +,2 <, and hence there is a y so that & +,2 <,b,. That f(n)
is recursive follows from the fact that <, is recursive on the <,-
predecesors of o' (see [3], Section 21.).

If |a,| =%, then |a,| = |b,., |, since for each n, |bs, | =»n. If
|a,| > 7, then L{a,) = o', hence |a, | = |a’" +, N(a,} | = [a'| + | N(a,) | =
[0°] + | N(a,)| = [0+, N(a,) | =|bs, |, which completes the proof.

4. Proof of Theorem 3 for special ordinals. Call an ordinal
¢ spectal if & > @ and whenever 7,7’ < &, then 7 + 7' < &.

LeMMA 7. There is a primitive recursive p,(a’) such that if
a' €0 and |a'| is spectal, then o,(a’) € O, | p(a) | =|a'| and o’ £ p.{a’).

Proof. Define f(n,t) by the recursion

fin,0) =a,

2 if Tin,n,t-+1)
S, t +1) = )
Gy Otherwise .

(24)

It is clear that if ¢’ = 3.5°€ O, then f(n, %) is general recursive and
its range is a subset of O. Moreover:

(la,| +w if {n}{wn) is not defined ,

25 S, t) | =
@) Xm0 llan] & @ | + @ if {W}n) is defined .

Put

Ofu
I
Ms

LfO, 01,

i

0

(26) N
En+§|f(va+1,t)i .

Il

S

n+1

Since ¢ is special, for each n, &, < &; since for each n, |a,| < &,, {Z.}
is a fundamental sequence converging to :.

By an elementary construction one can define a primitive recursive
o(a’) such that if ¢’ = 3.5°¢ O, then p(a’) = b’ = 3.5 € O and for each n,
16, ] = é&,.

Since, for each n, la,| < 2, |f(n, )| < &,, it is trivial that ¢’ < ¥'.
To show that the converse is impossible assume that for all » |b,| =
&, = | @y |; this is absurd for n = m, since
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Em: Sm——l_’—ztlf(m’ t)l - Sm—1+ la/m| + la/(m}(m)l + o> |a'(m](m)| .

This lemma already shows that for each @’ with |a’'| = w* there
is a b, |b | = w such that the many-one degree of H,(x) is strictly
greater than the many-one degree of H,.(x).

LEMMA 8, Let o’ = 38.5°€ 0, |a’| be special. There is a primitive
recursive pJ\e) such that if for each t, {e}(t)c O and |{e}(t)| = |a’|,
then p,(e)€ 0, |pe)| = |a'| and for each t, {e}(t) < p.e).

Proof. If e satisfies the hypothesis, then for each ¢, {e}(¢) = 3.5™®
and | m(t), |, | m(t),], --+, is a fundamental sequence converging to |a’|.
Put

F(0) = m(0),
@+ 1) = f(t) +6m0)ers +o ML) srs +o -+ +cM()ess
+om(t + 1)y +om(t + 1); +o + o+ +om(E + 1)1,

where the association is to the left; since by [3], XVII if €O and
Y >,1, then 2 <,x +,vy, we have for each ¢,

f) <oft+1).

Since |a’| is special, for each ¢, | f(¢) | < | @' |; since for each ¢t | m(0),| =
|f()|, the sequence |f(0)|, |f(Q)]|, -+, is fundamental and converges
to |a’|.

It is easy to construct a primitive recursive p,(e) such that if the
hypotheses are fulfilled then p,(e¢) = 3.5° and for each ¢, b, = f(f). Now
0(e) €0, | 0e)| = |a'| and for each t,n

[m(E)s| = [M(E)nre| = [f(n +8)] = [Dyri],
which proves that {e}(t) < 3.5°.
LEMMA 9. Let o’ = 3.5°€ O, |a’| be special. There is a primitive

recursive o(x) such that

(1) o) =d
(ii) 4f €O, then p(x)e O and |p(x)| = |a’|,
(i) of ® <oy, then o(z) X o(y).

Proof. Using the recursion theorem we obtain a o(x) satisfying:

o) =,
0(25) = p,(p@)) ,
0(3.5) = p(4t0(z.) .

Proof that o(x) is the required function is by induction on x€ 0. To
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treat the case # = 3.5°—here the induction hypothesis is that for each
t, 0)€ 0, o) = |a| and o(z) £ 0(2,.,). Lemma 8 assures us that
for each ¢ p(z,) < 0{3.5%); if for some ¢ p(3.5°) < p(z,), the transitivity
of < would imply that p(z,,,) < p(z,), violating the induction hypothesis.

Theorem 3 for special ordinals follows from Lemma 9 by letting A
be a subset of O, linearly ordered under <, and containing a notation
for each constructive ordinal and considering p(A).

5. Proof of Theorem 4 for special ordinals. Let &= |3.5%]
be a special ordinal. In the proof of Lemma 6 we constructed a
notation &' = 3.5° of & determined by a fundamental sequence {£,} which
was in turn defined from a double sequence f(n,t) by equations (26).
Here we will define two such double sequences, f(n, t) and g(n, t), such
that the notations b = 3.5 and ¢’ = 3.5° for sequences {£,} and {,}
determined as in equations (26) from f(n,t) and g(n,t) respectively
will be incomparable.

We define the functions f(n,t) and g(n,t) in stages; at stage 2s
we will define f(n,t) for n,t < s and at stage 2s + 1 we will define
g(n, t) for n,t <s. At each stage s we will also define finite sets F',
and G, of pairs {(m, k) of integers which will determine partial functions
—i.e., if {m,kyeF, and <{m, k' >ecF,, then k = k', and similarly for
G,. We give the definitions informally, but it is a routine matter to
derive Herbrand-Godel-Kleene equations for f and g from our instructions.

Basts 0. s= 0. Put f(0,0) = a,; F,= {0, 0>}; G, = KO0, 0>}.

Basis 1. s=1, Putg(0,0)=a,; F,.=F,UK1,1}; G.=G,U {1, 1>}

Even Induction Step 2s + 2,

B Case 1. For every pair {m, k>c F,,,, and for every y =< 2s + 1,
Ti(m, k, y). In this case set:

S, s +1) =2 (n=s),
(27) Ss+1,0)=a,..,
fs+1,t)=2 1=t=ss+1).

Put F,,., = F,,,, U {2s + 2, k")} where k£’ is the smallest integer larger
than all the second members of the pairs in F, .; put G, =
G U {K2s + 2, k') where k' is the smallest integer larger than all the
second members of the pairs in G,,.,,.

Case 2. Otherwise. Let m be the smallest integer such that some
k,{m, k>e F,,, and for some y < 2s + 1, T.(m, k, y); let k and y be
the corresponding (unique) & and y.

Subcase 2a. U(y) =z = s.
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For any stage (in particular 2s 4 1) and any « < s (in particular
z) consider the array of values of g(u,v) with w = and v =<s. Put

g(Oy O) +o0 g(Oy 1) +o +o g(or S) +0w0
+09(1,0) +o91, 1) +5 -+ +59(1,8) +ow,
(28) Jy(w,s) =1+o "

+o9(x, 0) +og(x, 1) +5 -+ 4+, g(x, 8) +ow,,

where w, is some fixed ordinal notation of w and the association in the
sum is to the left. It is clear that if all the values of g(u, v) for
w =< x, v < are elements of O, then so is J,(x,s). Put

fn,s+1)=2 n=sn=+k),
flk, s+ 1) = Jiz,3),

fs+1,0)=a,,,

fs+1,t)=2 1=tss+1).

Put F,,., = F,,., — m, D} U {K2s + 2, k">}, where k' is the smallest
integer larger than all the second members of the pairs in F, ..

To define G, ., first remove from G,,,, all pairs <m’, k'> with m’'=m;
then introduce one pair <m’, k"> for each m',m < m’ < 2s 4 2 in some
systematic way, so that if m’ = m//, then ¥’ - k", and all the second
members of the new pairs are larger than all the second members of
the pairs in G,,., and also larger than z.

(29)

Subcase 2b. U(y) = z > s. Give exactly the same definitions as
in Subcase 2a, except for the second equation of (29) for which we
substitute

(B0) fk,s+1)=J(s,8) +001F0Wo +oCis+0Wo+o++ +0oa, +ow,.

(Remark: the last conditions on the definition of G,,.,, that all new
second members be larger than z, will be utilized for this subcase.)

Odd Induction Step 2s + 3. The definitions are symmetric to those
in the Even Ind. Step, except for the following differences:

(i) In Subcase 2a we put J,(z, s + 1) where complete symmetry
would suggest J4(z, s).

(ii) In Subcase 2b we put g(k,s+1) =J(s+1,8+1) +owy +o---
“+0@, +o Wp.

(iii) In Case 2 we define F,,,, by removing from and reintroducing
in F,, ., all pairs with first members m’ > m (rather than m’ = m).

It is easy to prove by induction on s that for all n,t f(n,t),
9(n,t)e O and |f(n,?)| <&, |g(n,t)| <& Put
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q= 150,01, L= 100,01,
(31) t=0 =0

‘Sn-Fl:San_%'f(n_I_lyt)ly C?H—l:Cn—i_t};éig(/n_{_l!t)i'

By a routine construction numbers & = 3,5° and ¢ = 3.5° can be
defined such that & € O, ¢’ € O and for all »,

bl =6, Jel=¢.

We will prove that |b'| = |¢'| = & and that & and ¢’ are incomparable.

Say that m F-joins k at stage s if <m, k>e F, but {m, k)¢ F,_;
m F-leaves k at stage s if <m,k>¢F, but {m, k>eF,_,. (Similarly
with G in place of F' throughout.)

Clearly at each stage s, some m F'-joins some k. Using this we
can show by an induction on s that if m F-joins k at stage s, then
k is larger than all the second members of all the pairs in F,, with
t < s. This in turn implies that for a fixed k¥ and in the course of the
whole computation there is at most one stage s at which some m F-
joins k, and consequently at most one stage s at which some m F-
leaves k. Hence for each %k there is a ¢, such that for ¢t = ¢, f(k,t) =
2, since only if ¢ = 0 or some m F-leaves k at stage ¢ is f(k, t) = 2,
and we have

(32) S fk, 0 = 1 fe )| + 0 <&,

since & is special. Now a simple induction on n shows that for each
n, &, < & and since clearly |a,| < &, we have proved that lim &, =
[0 ] =&.

(Exactly the same considerations for g prove that |¢'| = &.)

We prove by induection the following proposition depending on m:
m F-joins only finitely many k’s, and G-joins only finitely many k’s.

If m = 0 this is trivial since {0}(x) is the totally undefined function.

If m F-joins k at stage s either m = s or there is an m’ < m such
that m’ G-leaves some k' at stage s; by ind. hyp. each m’ < m G-joins
some k' only for finitely many 2’s, hence each m’ < m G-leaves some
k' only for finitely many s’s, which completes the proof of half the
induction step.

If m G-joins k at stage s, either m = s or there is an m' < m
such that m’ F-leaves some k' at stage s; we now use the ind. hyp.
and the first half of the ind. step which has been already proved to
see that this can only happen finitely often.

For a fixed m, let k be the largest integer such that m F-joins k
and assume that {m}(k) =~ z is defined. An easy induction on m shows
that there must be some stage 2s + 2 where Case 2 applies with this
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m and %k, and z = U(y). We prove that &, > (..

Subcase 2a. Since f(k,s + 1) = J (7, 8), & > | J,(7,8)|. We assert
that if w <2,v >s, then g(u,v) =2. Because if g(u,v) # 2, then
some m' G-leaves u at stage 2v + 1 > 2s 4 2; since at stage 2s + 2
each m'" = m G-joins some k"’ >z, we must have m’ < m; but this
implies that m F'-joins some k' >k, contrary to hyp. that % is the
largest integer that m F'-joins.

Now the above implies that {, = |J,(z, s)| < &,.

Subcase 2b. Now we can prove that if v <sandv >sors<u <z
and v > 0, then g(u, v) = 2, by exactly the same argument. Hence
C=1fk,s+1)| <&,

For a fixed m let k£ be the largest integer such that m G-joins k&
and assume that {m}(k) ~ z is defined. As before there must be some
stage 2s + 3 where case 2 applies for this m and this k. We give one
of the cases of the proof that , > &,.

Subcase 2a. We assert that if v <z, v >s + 1, then f(u, v) = 2,
Because if f(u, v) # 2z, then some m’ F-leaves w at stage 2v > 2s + 3;
since at stage 2s + 3 each m” > m F-joins some k" > z, we must have
m’ < m; but this implies that m G-joins some k' > k, contrary to hyp.
that k is the largest integer that m G-joins.

The above remarks complete the proof that ¥’ and ¢ are incom-
parable, Because if b’ < ¢/, then there is an m such that for each £,
[0c] = | etmyam |, 1.€e, &r < Cimyny, Which we showed to be false if £ is
the largest integer that m F'-joins, and similarly for ¢’ < ¥'.

6. Reduction of the general to the special case. In this section
we prove that if & =2 4+ {({ # 0), then #(§) and & ({) are similar
and that if & is #0 and not of the form » + 1 or » + w, then there
is a unique special ordinal { such that for some 7, & =7 + (.

LEMMA 10. There is a primitive recursive o(a, b) such that if
a=,b, then o(a,b)ec O and

(33) la| + |d(a, b)| =]b].

Proof. We obtain via the recursion theorem a primitive recursive
o(a, b) satisfying the following conditions:
oa,a) =1,
da, 2t) = 2 @ |
o(a, 3.5°) = 3.5Y, where for each t, y, =~ d(a, Z.z.0r+¢) ,
oa, )y =0 otherwise
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(recall that ¢(a, 2) is partial recursive and such that if a <,3.5°, then
0 =0 o)

We prove by induction on b€ O the following statement: if @ <, b,
then d(a, b) € O and for each z, if a <,z <,b, then d(a, ) <, d(a, b).
The following cases arise: (1) b=a, (2) b=2% (3) b= 2°and a<,¢
and (4) b = 3.5* and for some ¢, a <,z,.

Case 3. By Ind. Hyp. d(a, c¢)e O, hence d(a, b) = 2%*2¢cQ, If
x <,b, either x =c¢ or © <,¢; in the first case it is clear that
o(a, ¢) <, 0(a, b), while in the second case the Ind. Hyp. implies that
o(a, x) <, 0(a, ¢), hence d(a, x) <, d(a, b).

Case 4. Since a <,3.5% ¢(a, 2) is defined and for each ¢, @ <, Ziq,0)4¢.
Thus the Ind. Hyp. implies that for each ¢, y, is defined, y,€ O and
Y, <o Yese, Dence 0(a, bye 0. If © <,38.5%, then for some &, & <, Zi4,s 4
hence by Ind. Hyp. d(a, ) <, (@, 2,a.+e) = ¥, <o 0{a, b).

Equation (33) is proved easily by induction on |[b]|, using the
continuity of ordinal addition, e.g.,

la| + [d(a, 3.5 | = |a| + lim, | 6(a, 2 +e) |
= lim, (|| + [0(a, 2w+ )
= lim, | Zyqo) 1 |
=13.5%].

This lemma allows us to represent a construective limit ordinal as
an infinite sum of smaller ordinals,

13.5° | = |20 | 4 [ 0(20, 2) | + [ 021, 22) | + = -+ .

LEMMA 11. Assume that & = 9 + {, where { s a limtt ordinal.
Then (&) and ZF(C) are simelar.

Proof. Let uw be a fixed notation in O for 7. For each a' =

3.5°¢ O we define by induction
9(0) = u +,a,
g(n + 1) = g(n) +,06(a, Gpra)

A routine construction yields a primitive recursive 7(a’) such that if
o = 3.5°c 0, then z(a’) = 3.5°c O and for each n,x, = g(n). Notice
that by the definition of 0,
(34) 2.l =70+ |a.].

It is clear that if |a’| = {, then |2’'| = lim, |2, | =7+ (=4
Assume that |[b’'| = { and o’ < ¥, i.e., there is a general recursive
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f(n) such that for each n,|a,| < |b;,,|. Now if z(d’') = 8.5,

lxnI:v+ |a’n| §77+ ]bf(n)l: |yf(n)| ’

hence 7(a’) < 7(b).

Assume that 7(a’) < z(V’), i.e., there is a general recursive f(n)
such that for each n, |2,| =< |¥sw|. Then n + |a,| <9 + |bswm |, i€,
@, | = |bsn | Which proves that o’ < ¥'.

We have shown that z(a’) induces a mapping from & ({) into £ (§)
which is a similarity imbedding. To complete the proof we must show
that this mapping is onto, i.e., that given ¥/, |y’ | = &, there is an o/,
|a’| = ¢, such that if z(a’) = ', then o' ~ 9/,

If |y'| = ¢, there is a unique v <, ¥’ such that |»| = 7, and some
t such that v <,y,. Put

h(0) = 8(v, y,) ,
h(n + 1) = h’(n) +05(yt+7n yt+n+1)

and choose @’ = 3.5% so that for each %, a, = h(n). Surely '€ O and
since for each n,7 + |a,| = | ¥Yi:.|, we have |[a'| =lim, |a,|=C{. If
' = t(a’), then for each n we have

lxn|:77+ (a’nlz Iyt+nl

which implies 2’ ~ ¥’, which completes the proof.

LEMMA 12, Let & > 0 be given and assume that & s not of the
form 1y + 1 or 4+ w. Then there is a unique special ordinal { such
that for some n,& =179+ (.

Proof. Let L be the smallest nonzero ordinal for which there is
an 7 such that £ =9 + (. Our assumptions imply that { > w. If
is not special, there exist {;, {, < { such that {, +{,={. The continuity
of ordinal addition implies that there exist {,, {, < { such that {, + {=C
(hence {, # 0); but this is turn implies that & =9+ { + { with
0 < & < ¢, which violates the defining condition of .

To prove that { is unique assume that § =19, + {, =7, + {, and
without loss of generality further assume 7, <%,. Then there is a ¢
such that 7, + 6 = », which implies », + ¢ =7, + 60 + , ie., (=
6 + &. Now if {, is special we must have {, = {,, which completes
the proof.

7. Open problems. We do not have answers for the following
questions:

1. Is &2(&) for special ¢ an upper semi-lattice, a lower semi-lattice
or a lattice?
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2, Does () have a minimum for each special £? It is easy to
show that <“(w? has a minimum; we conjecture that & (w*) does not.

3. If £ and { are special and & = {, is it possible that (&) and
Z(Q) are similar? We conjecture that it is not.
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