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ON THE BOUNDED SLOPE CONDITION

PHILIP HARTMAN

Let 2 be a bounded open set in R” and let ¢(x), x €02,
satisfy a ‘“‘bounded slope condition’’. The latter reduces to
the classical ‘‘3-point condition” if n=2 and occurs in papers
on partial differential equations., The properties of ¢(x) are
studied. It is shown, for example, that if 02eC! or C1?,
0< 2 <1, then ¢(x)e C* or Ct*, Hence, if 02 € C*! is uniformly
convex, then ¢(x), x €952, satisfies a bounded slope condition if
and only if ¢(x)eC'', The proofs use generalized convex
functions of Beckenbach and, if n > 2, the equivalence of the
bounded slope condition and an ‘‘(n + 1)-point condition”.

Let n =2, x = (x', ---, 2") denote a point of R” and z€ R', so that
(z,2) e BR**', Let 2 be a bounded open set in R™ with boundary I" =002,

DerINITION (BSC). A real valued function ¢(x) defined for x € I" is
said to satisfy a bounded slope condition (BSC) [with constant K] if, for
every x,€ I, there exist two linear functions .(x) = N.(z, ;) of =,

LD Nl @) = e (o — @) + 9(w) = 30k — 2) + o(x,)

where the constants af = a%(x,) depend only on =,

(1.2) M(®, %) = @(®) = No(w, ) for wel,
(L3) los@) || = (S latf) S K for el

The definition of a BSC occurs in [4] and is used in [9],[2], [5].
The name “bounded slope condition” was introduced in [9]. This
paper is concerned with characterizations and properties of functions
o satisfying a BSC. Section 4 dealing with the smoothness of ¢ uses
generalized convex functions of Beckenbach [1].

It has been pointed out to me by Professor Nirenberg that if
n =2, a BSC is equivalent to a “3-point condition” occurring in the
calculus of variations and the theory of elliptic partial differential
equations; ef. [7, 49-51 and 62-63] for references to Hilbert, Lebesgue,
Haar, Rado and von Neumann. In Section 3, an “(n + 1)-point con-
dition” will be defined and shown to be equivalent to a BSC. This
fact will be used in Section 4 on smoothness properties of @.

Note that, whether or not 2 is convex, any linear function
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(1.4) p(x) =ax +c= }i a*xk + ¢ for xel”
k=1

satisfies a BSC (with the choices A.(x,%,) = a.(x — z,) + p(x) = a.x + ¢).
If however o(x) satisfies a BSC and is not the restriction of a linear
function to I”, then 2 is convex. For, in this case, the linear functions
©Mi(x, %) of © are not identical and (1.1), (1.3) imply that

(ar —a ) (x—a)=0 for xel,

hence for v € 2. Thus, through every boundary point ®, of 2, there
is a supporting plane 0 z (o, — a_)-(x — %) = 0.

In what follows, it will be assumed that Q is convex. It should
be remarked that, even if £ is uniformly convex, it does not follow
that a. can be chosen so that a.-(x — x,) = 0 [and/or a_-(x — x,] = 0]
for € I’. For example, let n = 2, 2 be the disk (z')* + (2* — 1)’ <1
and p(x) = ' for (¢, 2% el :(2')’+ (¢* —1)°=1. By the remark con-
cerning (1.4), p(x) = «' satisfies a BSC. The unique supporting line of
Q through the origin is x* = @¢. But it is clear that no choice of the
constant o satisfies a’z® = p(x) = o' = £[22° — 2(«*)*]* for all (x',2*) e I
(e.g., for small z* > 0 and a' = [2z* — 2(z*)*]"* > 0).

2. Characterizations of ¢@(v). Let 2*eQ and z* be a real
number. Let C(x*, 2*) denote the conical surface consisting of the
set of points (x, z) € R+ of the form

2.1)  C*,2%): o=a*+ t(x, — %), 2 = 2" + t{p(x) — 2*],

t =0 and @,€ 7, so that C(x*, 2z*) is the union of the sets of points on
the half-lines from (2%, z*) directed towards (x,, ¢(x,)), x, € .

THEOREM 2.1. Let Qe R", n = 2, be a bounded open convex set,
I' =02, x* e Q (fixed), and p(x) a function defined for xel'. Then
o(x) satisfies a BSC if and only if the comical surface C(x*,z*)
bounds a convex set Q(x*,z*)c R"™ for large |2*| (say, for |2*| = N;
in which case, N can be chosen independent of x*).

It will be clear from the proof that o(x) satisfies a BSC if and
only if there exists a convex function p_(x) and a concave function
©.(x) defined for all e R" such that the restrictions of p.(x) to
I' = 02 are identical with o(x).

Proof. <If”. Let z* > 0 be so large that |p(x,) | < z* for x,e
and that C(z*, +-2*) bound convex sets Q(z*, +2*). Let z = \.(, x,) be
a supporting hyperplane of Q(x*,2z*) at the point (x,, p(2,)) € C(x*, £2*),
corresponding to ¢ =1 in (2.1). It is clear that A.(z, @,) are of the
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form (1.1) and satisfy (1.2). The conical surfaces C(x*, +2*) have
representations of the form

z=r7c.(x) and z=7_(x)

defined for all ze R™ such that —7.(x), 7_(x) are convex functions.
In particular, 7.(z) are uniformly Lipschitz continuous on compacts,
say, on QU I'. It follows that there exists a constant K satisfying

(1.3).

Proof. “Only if”. Let p(x) satisfy a BSC. For fixed z,e I, let
Me(2, 2,) be the linear functions of x in (1.1)—(1.3). Then

Ne@, @) | = Ko — 2ol + [o@) | = K] + K.\
where K, is a constant independent of x € R* and x,€I". Thus
(2.2) o_(x) = sup rM_(z, %) , o+ (x) = inf N (2, z,) for x,eI”
exist (finite) for all ¢ and satisfy
(2.3) lo(x)| = Kl|lz]|| + K, for xe R™,

(2.4) 0:(,) = () for xz,e ",

and Fp.(xr) are convex functions of x. Since p_(x) — p.(2) is a
convex function and vanishes on 7.

(2.4) o_(x) = p.(x) for xe Q.

The convexity of Fo.(x) and (2.3) imply that o.(x) are uniformly
Lipschitz continuous with a Lipschitz constant K on R™".
Let Q% e R™"* denote the convex sets

={@ 22> 0 (), 2F={@2:2<p(x)}.
For x,€ I, let the linear function A *(x, x,) of «,
(2.5) AE(@, @) = aF (@) (2 — o) + p(2o)

be chosen so that z = M*(x, x,) is a supporting plane of QF at the
boundary point (x, 2) = (%, @(x,)). In particular,

(2.6) lla*(@) || = K,
2.7 (@, @) = plx) = N(x, x,) for verl .

Let Nz, 2,) = a(x,)-(x — x,) be a linear function of « such that
M2, 2,) = 0 is a supporting plane for 2 R with the normalization

(2.8) Mz, x) > 0 for e, |lalx)]] =1.
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In view of (2.5) and (2.6), there exists numbers N > 0 such that
M5z, )| = N for zeQ, z,el’. Let z* = N and choose numbers
1E(x,) = 0 with the property that the linear functions

0(%, %,) = N5, x,) = ﬂi(xo))\,(x, )

of x satisfy o.(x*, 2,) = +2*. It is clear that |p*(z,)M(x*, z,)| and
1/|Mx*, x,) | are bounded for all z,€ " (and xz* € 2 fixed). Thus if
o.(x, x,) is written in the form

0:(, 2)) = 0(20) - (& — ) + () ,
there is a constant K, = K (z*) such that

0%, || = K,  for a,el.
Also,
o_(z, ) = px) <o.(x,x) for el .

Thus, o.(x, x,) satisfy conditions analogous to (1.1) (1.3) with \.,a* K
replaced by o., b=, K,. Corresponding to (2.2), put

(2.9) T_(x) =supo_(x, x,), 7.(x)=info (z,x,) for x,e .

The functions F7.(x) are convex. Since .(x,) = p(x,) for x, e I', T, (%)=
+z* and for © = a* + t(x — x,), t = 0,

o(%, ) = —2" + tlp(x,) + 2*],
o(x,x) = 2%+ tlp(w) — 2*],

it follows that
T.(x) = 2* + t[p(x,) F 2*] for ©x = x* + t(x, — «*) ,

t =2 0. Thus 2z =r7.(x) are the conical surfaces C(x*, +2*). Since
these surfaces are convex, Theorem 2.1 is proved.

For applications, it will be convenient to reformulate Theorem 2.1
in different terms. Let z*e 2 be fixed and x,, x,€I". Suppose that
the half-lines

(2.10) x* +tx, and aF +tx, for t =0

in R" are not on the same line and so determine a 2-dimensional plane
y(2,, ) € R” and a convex sector S(x,, x,) of m,(x,, ©,) with vertex at
x*, Let I'y, be the 2-dimensional plane convex curve Iy, = mo(x,, z.) N 1.
By a point x,; of I" between x, and x, is meant a point z, of the arc
I(x,, 2) = S(x,, ©) N Iy, Introduce rectangular coordinates (£, 7)) in
the plane 7, (x,, #;) with «* as origin such that the &-axis, 7-axis, and
the half-line (x, 2) = (x*,t), t = 0, form a right-hand system. It will
be supposed that the enumeration of x,, x, is chosen so that the arc
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(%, ;) In m(w,, ;) IS positively orienkied in going from =z, to x,. Let
(&0, 70), (&1, 1), Eny Mo € the (&, )-coordinates of x,, a,, %, respectively.

When the half-lines (2.10) are on the same line in R", the notion
of a point =, between z, and «, wiil not be defined.

COROLLARY 2.1, Let QC R™ be a bounded open convex set, p(x)
a function defined for wel =00, and x*€ 2, Then p(x) satisfies a
BSC if and only if there exists a number N such that, for \z*)|= N,
the inequality

& T @(xo) —z*
(2-11) z* I/ @(Woi\} —2"1=0
& @(371) - #*

holds for all points x,, x, €I and points x, € 1" between them.

See Lemma 3.1 and part (b) of the pract of Theorem 3.1 for
analogous necessary and sufficient conditions,

Proof, It has to be verified that 42.11) is equivalent to the
“convexity” of the cones (2.1), As the case 2* < 0 is similar to
that of z* > 0, consider only the latter, For z* > Q, it will be
shown that (2.11) is equivalent to the concavity of z in (2.1) as a
function of wx.

To verify that z is concave (i,e., that —z ig convex), it suffices to
consider the situation when x varies along a line in R*. If 2 varies
along a line which passes through a*, the concavity of the function
z is clear, Consider a line L in R" whieh Goes not pass through z*.
After a suitable trapslation and rotation of coordinates in the x-space,
it can be supposed that x* = 0 and that the line I and the point
x* = ( are in the (x', 2*)-plane, o = -+. =2*= 0, We now ignore the
trivial coordinates 2° = ... =2'= 0 and write (&,7) in place of (&',a?).

It can be supposed that L is the line L: &= ¢> 0, Consider two
points 7, = (¢, ), . = (¢, w)) on L, u, < u,, and the condition

(2.12) #(7n) = O2(my) + (1 — Oalm.)

for z to be a concave function of 7w, = (e, Ue), %y = Ou, + (L — G)u,,
0 <0 <1,
Let the half-line from «* toward 7, 7, 7, meet I at @, = (&, 7)),

@, = (8,70, T = (&u1, 7r), Tespectively, and let 4, ¢,, ¢, denote the unigque
positive numbers such that

(2.13) ;= b, Le., (¢, ;) = t,(&;, 7;), for j=0,1, and 01 .
Correspondingly,
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(2.14) 2(w;) = 2% + tlp(x;) — 2*] for 7 =0,1, and 01 .
From (2.13), ¢, = ¢/&;, so that, by (2.14), (2.12) is equivalent to
@2.15)  [p@a) — 2*)ew = Olpx) — 271/5% + (L = Oip(w) — 271/4,
Also, u; = tm; = en;/&; and w,, = O(u, — %.) + u,, so that

0 = (ﬁl/& - 7701/501)/(7)1/51 - 770/50) y
1—-/0= (3%1/{301 - @0/50)/(371/5 - %/&) o

Since &, — &1, > 0, (2.15) is equivalent to

gy — 51”0)[@(”10) — 2*]
= (Ea — Emulp(ay) — 2% — (Eu?py — Epu)p() — 2%]

which, in turn, is equivalent to (2.11) when z* > 0. This completes
the proof.

3. The (n + 1)-point condition. Let n =2 and £@C R” be a
bounded open convex set and o(x) a function defined for xel” = 00,

DEFINITION (I). (%= 4 1)-potnt condition. o(z) is said to satisfy
an (n -+ 1)-point condition [with constant K| if, for every set of n+1
points %, ---, x, of 77, there is a hyperplane

(3.1) z:a-m+c:§n]a"x"+c
h=1

in B~ which passes through the points (z,2) = (z;, @(x;) for j =
0,1, ---,n and satisfies

(3.2) lall=(Sla* "= K.

In deciding whether or not ¢ satisfies an (n + 1)-point condition,
continuity considerations show that it suffices to consider only sets of
n+1 points x,, ---, x, of I" such that (x,2) = (x;, p(x;)), 7 =0, .-+, n,
determine a unique hyperplane in R, In particular, if z, ---, 2,
are on an (n — 1)-dimensional plane 7, _, C R", then the restriction of
p(x) to I'Nm,_, is the restriction of a linear function of x.

THEOREM 3.1. Let 2 C R"* be a bounded open convex set and o(x)
a function defined for xel = 02. Then o(x) satisfies o BSC if
and only if @ satisfies an (n + 1)-point condition.

In the proof, it will be convenient to have the following auxiliary
definition.
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DEFINITION (II). Let » =2, 2C R™ a bounded, open convex set,
I' =092, p(x) a function on /", and 2 = m = n. The function ¢ is said
to satisfy an (m + 1)-point condition with constant K if, for every
m-~-dimensional plane w, C R® containing an interior point of £, the
restriction of @(x) to the boundary of 2N, satisfies an (m + 1)-point
condition with a constant K (in the sense of Definition (I) where n = m).

The proof of Theorem 3.1 will be given in several steps: (a),
Lemma 3.1, (b), (¢}, (d), in which £, I", » are as in Theorem 3.1,

(a) o(x) satisfies an (n + 1)-point condition if and only if there
exists a number N with the property that, for every set of n -+ 1
points x,, +--, %, of [I', there is a hyperplane (3.1) passing through
(x, 2) = (x;, p(x;)) for 7 =0, .-+, n and satisfying

(3.3) lax+c¢c| =N for xe Q.

In fact, if (3.1) is the hyperplane satisfying (3.1) and (3.2), then,
for xe 2,

la-x 4+ cl=la-(x — %) + o) | = K diam 2 + const .

Conversely, if (38.1) is a hyperplane satisfying (3.3) and @ # 0 then
there is a number ¢, > 0 (independent of a) and a pair of points
Yo, ¥ € 2 such that

Yh—y=ta/llall, t=0c¢>0.
Thus, from
a (Y — %) = (@Y + ¢) — (@-y: + ¢)
and (3.3), |a-(¥, — ¥.) | = 2N, and so ||a]|| = 2N/c,.

LemmA 3.1, Let 2,I',p be as in Theorem 3.1. Let x;=
@y, coe,a}) for j=0,1,---,n be n + 1 points of I,

€Ly e zr 1
R |

(3.4) Uy ey ) = | oo
X S
2t x® oz 1
x5 zy @w) 1

(3.5) A, 2) = ot -+ 2F @p(x) 1.
, ay @p(@,) 1




502 PHILIP HARTMAN

Then @ satisfies an (n + 1)-point condition if and only if there
exists a number N such that

(3.6) (—D)zd(@, 2)dol@o, + -+, @) 20 for [z] = N,

x €2, and all sets of n+1 points x,, «-+, 2, of I

In fact, if there is a unique hyperplane of the form (3.1) passing
through (x;, o(z,)) for 7 =0,1, ---, n, then

A(SY/', Z) - (__1)7%0(%’ Tty wn)[z - (a°x + C)] .

Thus (3.6) for |z| = N, xe 2, is equivalent to (3.3).

(b) Letm, 2 <m = n, be fixed, If p(x) satisfies an (n + 1)-point
condition with constant K in the sense of Definition (I), then it
satisfies an (m -+ 1)-point condition with constant K in the sense of
Definition (II).

This is clear. Theorem 3.1 and its proof will show that the
converse is correct.

(¢) BSC= (n + 1)-point condition.

Let o(x) satisfy a BSC and let x,, ---, 2, be n + 1 points of I”
such that there is a unique hyperplane passing through the points
(2;, p(x;)) for j=0,..+,n. This hyperplane necessarily has an equation
of the form (3.1). It will be shown that there exists a number N
satisfying (3.3).

Let N be so large that the conical surfaces C(x*, 2*) in Theorem
2.1 bound open convex sets Q2(z*, z*) for every x*e€ £ and |2*| = N.
It will be shown that (8.3) holds for the arbitrary (but fixed) point
x = x*e 0*,

Suppose first that #* is in the convex closure of the set of points
%o, +++, %,. Consider a supporting hyperplane 7*:2z = a -2 + ¢, of the
convex set 2(x*, N) through the boundary point (x,, @(2,)) € C(z*, N).
Then (x, 2) € C(z*, N) implies that z =< a_-x + ¢. Hence

3.7 ax+cec=a.-x+c,

holds for « = x,, ---, ©, and hence for all ¥ in the convex closure of
the set of point x,,---,2,. In particular, a-z* +c¢=<a,-2* + ¢, = N.
Similarly, a¢-z* + ¢ = —N.

Consider now the case where x* is not in the convex closure of
the set of points x,, ---,2,. Let B denote the convex closure of 2*
and 2, -, ®,, so that B is bounded by a polyhedron. Since %,,---, 2,
are not contained in an (» — 1)-dimensional plane =,_;, the set Bc R"
has interior points. Thus there are n edges on the boundary of B
terminating at *. Suppose that the enumeration of =z, ---,x, is
such that the line segments [z*x,], where j=1,...,n, are on the
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boundary of B. Thus B contains the closed “simplex” B* with
vertices o*, x,, «++, X,.

Suppose, if possible, that x,€ B*., Let =,_, be a supporting
(n — 1)-dimensional plane (in R") of £ through the point %,, Then
the face «,, -, x, of B* is not on x,_, (for otherwise z,, ---, 2, € 7,_,).
Also, x* ¢ m,_, since x*e Q. Thus no face of B* is on x,_, and, since
2, is not a vertex of B*, m,., is not a supporting plane of B*,
Hence 7,_, separates at least one pair of vertices of B*, But this is
impossible since 7,_, supports 2. Hence z,¢ B*.

Consequently, B is the union of two simplices, B* with vertices
x*, x, -+, x, and B, with vertices «,, #;, --+, %,, with the common
face «,,+ -+, x,. Thus the diagonal [z,x*] of B meets the face =, ---, z,
of B at some point., Consequently, x* is in the convex closure of
the set of points on the » half-lines x, + t(x; — x,), where ¢ = 0 and
j=1,+-+,n. Let n*:2=a,.-2 + ¢, be a supporting hyperplane of
Qx*, N) through the boundary point (x,, p(x,)) € C(z*, N). Then (3.7)
holds for x = ,, - - -, z,, hence on the half-lines © = x, + #(x; — x,), t = 0
and j=1, ---,n, and consequently for all points (including xz = 2*)
in the convex closure of the set of points on these half-lines. Thus,
as before, a-2* +c=a,-2* +¢. = N. Similarly a-2* +¢ = —N.
By (a), this proves that ¢ satisfies an (n + 1)-point condition.

(d) (n + 1)-point condition = BSC,

Let o(x) satisfy an (n + 1)-point condition with a constant K,
Then @(x) satisfies a 3-point condition with constant K by (b). Let
7, C R" be a 2-dimensional plane containing an interior point x* € 2,
and (&, n) rectangular coordinates on m,. Let (&, %), (&, 71, (Cu, Do) be
the (&, n)-coordinates of points x,, @, ®, of I'Nm,,

& 7o
(3.8) 0o(@oy ®ary 1) = | 0 N 1i,
& o1

S0 —& N — 7 p(@) —2
(3.9) (g, 7, 2) =&y — & N — 7 §D(x01) — 2.
& —& o —7n o) —z

Then, by Lemma 3.1, there exists a constant N such that
(3.10) 20(o, Tory %1)0(E, 7, 2)=0

for |z| = N and all points (¢, 7)€2Nm,. It follows from Corollary
2.1 that o(x) satisfies a BSC (for if the origin of the (&,7)-coordinate
system is chosen at a*e QN m,, then (2.11) and (3.10) with (&, 7) =0
are equivalent), This completes the proof.
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4. Smoothness of ¢(x). It will be shown that if ¢ satisfies a
BSC, then its smoothness (in some sense) is similar to that of a
convex function.

COROLLARY 4,1, Let 2C R™ be a bounded open convex set and p(x)
a function on I = 0RQ satisfying a BSC. Let m, be a 2-dimensional
plane in R™ containing an intertor point of 2, 'y =w. NI, and

(4.1) Iy = x(s)
an arclength parametrization of Iy, Then

(4.2) P (s) = p(a(s))

has a derivative dy/ds except on a set of s-values which is at most
countable.

It turns out that when one imposes additional smoothness con-
ditions on I", the required smoothness on a function ¢ satisfying a
BSC is correspondingly increased.

COROLLARY 4.2, Let 2C R™ be a bounded open convex set and
(%) a function on I = 02 satisfying o BSC.

(i) If I'eC", then @(x)eC".

(ii) If I"eC"*, then p(x)c C*,

A function on an open set AC R” is said to be of class C"* if
it has continuous, first order, partial derivatives which are uniformly
Holder [or Lipschitz] continuous of order », 0 <X <1 for » =1] on
closed spheres in A. The definition of a hypersurface I" < B"** of
class C** or of a function ¢(x) on I" of class C"* is analogous,

REMARK. Let o(x) satisfy a BSC and let the conical surfaces
C(x*, 2*), 2* = £ N, have the equations

C(x*, £N): z=17.(%) for all «

[cf. the proof of Theorem 2.1]; so that z.(x) = @(x) for xe ", Then,
in case (i) of Corollary 4.2, 7.(x) has continuous partial derivatives
except at « = x*; in case (ii), these partial derivatives are uniformly
Holder continuous of order X\ on compacts not containing x = x*,
Thus suitable modifications of 7.(x) near x = x* give functions on R"
which are respectively of class C',C'* and which are identical with
@ on I,

The arguments in [5] show that if 2 is uniformly convex (whether
or not "€ C*") and if @ is the restriction to I of a function on R"
of class C"!, then ¢ satisfies a BSC; cf. [8, 625-628] and [2], where
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I' and ¢ are of class C*. Conversely, if I"e C"* (whether or not 2
is uniformly convex), then, by Corollary 4.2 (ii), a necessary condition
for @ to satisfy a BSC in that e C"'. Thus we have

COROLLARY 4.3. Let Q¢ R"™ be a bounded, open set with «a
uniformly convex boundary I' = 02 of class C*'. Then a necessary
and sufficient condition for a function o(x), xel’, to satisfy a BSC
18 that o(x)e C**,

I is called uniformly convex if there is a constant ¢ > 0 such
that through every «,e€ ", there is a hyperplane w, , C R" satisfying
dest (@, 7w, ) = cllx — x> for we .

The “sufficiency” does not hold if 2 is not uniformly convex, but
is only strictly convex. For example, let n = 2 and let the “lower”
portion of I" be on the curve x*= (2')* near the origin and let
@(x) = () for (x',2*)eI’. Then there is no choice of constants a', a
such that a'a' + a*¢* = (2')* for small |«'| and (2')* = |2*|"* = 0.

The following remark will not be used below but it may be of
interest to note that if I"e C*, pe C* and if I'y;: & = &(s), n = n(s) and
r(s) are is in the proof of Corollary 4.1 below, then condition (2.11)
is equivalent to

P(s) — 2" &(s) n(s)
25| '(s) () 7'(5)|=0
P"(s) §'(s) 7"(s)

for all 2-dimensional plane sections 7, of I". This fact makes it clear,
for example, that if I"e C*, pe C* and 2 is uniformly convex, than ¢
satisfies a BSC.

Proof of Corollary 4.1. Choose a coordinate system in R"™ such
that z, is the plane #*= -.. = " = 0 and with the origin at a point
z* in m, N Q. Write (§,7) in place of (2, 2*). Let &= &(s), n = 5(s),
where 0 < s < s,, be an arclength parametrization of 7.

Choose an s-interval, say 0 < s < a <s,, such that the radius
vector [the line from the origin to (&(s), 7(s))] moves through an angle
less than 7 as s varies from 0 to a. Then, if & » is a pair of
arbitrary numbers and 0 < s, < s, =< «, the linear equations

c&(s) +ep(s) = &, (s + em(sy) =9

have a unique solution for ¢, c,. In the terminology of Beckenbach
[1], this means that the linear family F' of functions ¢,&(s) + c.(s) is
a 2-parameter family on the interval 0 < s = «a.,
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Let +(s) be defined by (4.2), i.e.,

¥(s) = @(&(s), 7(s), 0, -+, 0) .

Then (2.11) implies that 4r(s) — 2* is F-concave and +(s) + z* is F-
convex, where z* = N > 0. In other words, if

(4-3) ft(s) - 01-4;5(3) + cziv(s)

is a linear combination of &(s), 7(s) such that f.(s) = 4(s) F 2* at
s =s,8 where 0 =<s,<s, =< a, then f.(s) = ¥ (s) — 2%, f_(s) = (s) + 2*
for s; = s = s,; c¢f. the proof of Corollary 4.2, » > 2, below.

Let 0 <s,<a. By [6], there exist elements (4.3) of F' which
support +(s) F z* in the sense that

4.9 Fi(80) = Yr(s0)) F 2%,
(4.5) F(8) —2* = Y(s) S fu(s) +2¢ for 0<s=a;

see also [3] for generalizations and references to Bonsall, J. W. Green
and Reid.

Since I, is a (plane) convex curve, &(s) and 7(s) are differentiable
except possibly on a countable set of s-values. Choose s = s, so that
¢ = d&/ds, y' = dp/ds exist at s =s,. Note that

[fi(s) + 2*] — [f(s) — 2¥]

is nonnegative for 0 < s < « and vanishes at s = s,. Hence fi(s,) =
fl(s). Consequently (4.5) implies that '(s,) exists (and is fi(s,) =
fL(sy)). This proves Corollary 4.1.

Proof of Corollary 4.2, n=2. It is clear from the proof of
Corollary 4.1 that if I"eC', then +'(s) exists for all s. It is also

clear that the coefficients ¢,., ¢,. in (4.3)-(4.5) are determined by the
linear equations

c.:€ (s)) + Cox?) (50) = 4 (s0) F 2%,
¢.:€'(s)) + c2i77'(80) = '(s,) .

The determinant &(so)7’(s)) — &'(so)n(s,) is bounded away from zero for
0=s, = a. Also (s)) F 2*,4'(s,) are bounded (in fact, the boundedness
of +'(s,) follows from the fact that o(x) is uniformly Lipschitz con-
tinuous). Thus there exists a constant M such that the functions
||, | 2| Of s, are majorized by M.

For ¢ > 0, let

w(9) = sup (|&'(s) — &(s) | + [7(s) — 7'(s) ])

for |s —5|=0,0=s<s =a. Thus
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[fi(s) — fils)) | = Ma(]s — s]) .
Consequently, by (4.5),

[9r(8) — 4r(8)) — ¥/ (so)(s — 80) | = Ma([s — 8 [) [s — 8o .
Interchanging s, s, and adding gives

i“/’,(s) - 1#'(80) i = 2M0)(1 § — 8 D .
This proves Corollary 4.2 if n = 2,

Proof of Corollary 4.2, n > 2. When % > 2, it is necessary to
estimate the degree of continuity of the directional derivatives of
@ not only in the direction of the derivative but also in directions
orthogonal to it,

It suffices to deal with o(x) in a neighborhood of a given point
of I". Choose a coordinate system in R" with the origin at such a
point and such that £ is in the half-space 2" = 0. Then, in the
neighborhood of the origin, /" has a parametrization of the form

(4-6) xn:C(xl,"'yngl) for Ixj[§_€,j:1,"‘,’n—‘1,

where ( is of class C' or C** in case (i) or (ii).

Write & for (&%, ---, &), where &' =2 for 1 =1,.--,7 —1 and
(&) = p(x) = (&, {(&)) for xel’. It has to be shown that + is
correspondingly of clagss C' or C**, The proof of Corollary 4.1 shows

that +; = oy/0¢', e =1, ---, n — 1, exist at every point.
Let v > 0 be chosen so that
(4.7) x*=(0,.--,0,7)e Q.

Let T; = (Ejy C(EJ)) = (xﬁy ) W?), where .7 = Oy 1; (2 be 7 +1 pOintS
of I'. The analogue of (3.4) is

T — Xy cee TP — 2P

et IV
xL — ) T — xy

and that of (3.5) is
ThX e P ol — vy T

(4.9) A*, ) = (—1)m+ g e @ ar—v (@) — 2

x, w, oeee At owr— v p(x,) — 2

where 7 = ¢(2,) — 2z and 2* = (0, ---,0,v). Thus (3.6) holds for z =
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+N, |z Z¢ and j,k=0,1,.-+,m — 1.

In (4.8) and (4.9), consider v,z,x,, -+, 2, as fixed for the moment
and z, (or rather &, = (&, ---, &%) as variable. In (4.9), let ¢ be
replaced by

(4.10) Fule) = S0t + e,lC) — 1,

where ¢4, -+, ¢,. are chosen, if possible, so that
(4.11) fe@) =p(x;) —2, 2= %N, j=1,---,m.

Then the analogue of the determinant (4.9) vanishes and so, 4(x*, z)
is not changed if the last column is replaced by = — f.(&), 0, «-+, 0.
In this case, we conclude from (3.6) that 7 = @(x,) = N satisfies

FNA(@o, @y ++, @) Ao, @y v 0,y xn)[(@(xo) FN)—fu(6)]=0.

Thus according as

(4.12) Aoy, Tyy oo 0, ) do(X, gy o0+, 2,) >0 or <0,
we have
(4.13) P(x) — N = fi(&) or o) — N = f.(&)
and
(4.14) ) + N= (&) or o)+ N=f().
If the points x,, ---, 2, are not in an (n — 2)-dimensional plane
T, s, then A(z* x,---,2,) =0, It will be supposed that z, ---, x,

are enumerated so that
(4~15) Ao(x*, Lyy o0y xn) > 0.

Then the coefficients ¢,. of (4.10) can be uniquely determined so that
(4.11) holds. The alternative (4.12) is now equivalent to

(4.16) A(@y, @1y »o+, ) >0 or <0,
This, in turn, is equivalent to
the line segment [x*x,] does not or does meet the
(4.17) T, determined by x, ---, x,; i.e., @, is or is not
on the same side of m,_, as x*.
Let @, = (&, {(¢)) be fixed and & >0 small. Choose &; = he;_’+ &,
for j=2,---,n, where ¢; = (0,---,0,1,0,---,0) and the 1 is in the

J-th place. Correspondingly, z; = (£;,{(£;)). Then (4.15) holds (e.g.,
if ©, = 0, then 4(z*, z,, ---, x,) reduces to v2** > 0). The equations
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(4.11) for ¢,. are equivalent to

S onedt + 0,ul0E) — Y = y(E) F N,
¢ieh + €861 — L&) = ¥(&s0n) — ¥(&)

for 7=1,-.--,n — 1. For these choices of ¢,., the first inequality
in both (4.13), (4.14) hold if the segment [x*x,) does not meet =,
containing x, +- -, x,.

If the last » — 1 equations of (4.18) are divided by % and %~ — 0,
it follows that the solutions ¢, ---, ¢,. of (4.18) tend to the unique
solutions of the equations

(4.18)

Sheudt + cllE) — N = $E) F N,
Cix + €axli{8) = ¥ i(&0)

for j=1,---,n—1, where {; =0d(/0&’. Also, the =, , containing
Z, -+-, 2, tends to the tangent plane of I" at =«,.

Thus, if ¢4, -+, ¢, are chosen as the solution of (4.19), then, in
addition, to (4.19),

(4.20) JA) = N=vy@)=rfu§) + N

for all &, |&7| < e. Actually, one first obtains (4.20) for all & such
that x = (&, {(&)) is not on the tangent plane =,_, to I” at x,. By
continuity considerations, (4.20) holds also for the limits of such points.
On the other hand, if z,_,N I contains interior points, then @(x) is
a linear function of xex,_, NI and (4.20) is trivial for those ¢ for
which = = (¢, {(&))en, N T.

Let w(6) be a monotone majorant for the degree of continuity of
{;=0C/05;,5=1,---,n — 1, Then arguing as at the end of the proof
of the case m = 2, it is seen that there is a constant M such that
the degree of continuity of the partial derivatives of f.(§) — N is
majorized by Mw(d). (For in the matrix of coefficients of (4.19), the
first row is the vector x, — 2* from the point x* to the point 2, €I,
the second row is the vector (1,0, ---,0,{(&)) which is a tangent
vector to I' at =z, ete., so that the determinant of this matrix is
bounded away from zero). Thus,

(4.19)

(4.21) WE) = ¥(E) — Svue)E* — )| = M),
where
(422)  o=max( & =gl |& - &, e e —a).

As in the proof in the case n = 2, this implies that
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S0 — I — )| = 2Mw()0 .
In particular,
(4.23) [ (&) — Y& + dey) | = 2Mw(0) .
The relations (4.19), (4.20) show that

(4.24) ILf:(8) + N —[fA(&) — N1| = 2Mw(d)d .
Let k£ ++ j and let

£, & =& + dej, & = & + Oe; + Oey, & = &, + Oe,
be the vertices of a square. By (4.20), the quantity
VED + (&) — (&) — $(E) = 3 (~D" (&)
is bounded from above by
[fe(&) + N1+ [fi(&) + N1 — [f(&) — N] — [f_(6) — N]

and there is an analogous bound from below. Hence, by (4.24),

S (=1 (e

= |5 (D A ) + N1+ M)

Since (4.23) implies that
[ Y(€0) — P(&) — dy(8)) | = 2Mw(0)0
[9(&s) — P(61) — 09i(8e) | = 2Mw(0)0

and similar relations hold if +r is replaced by f., it follows that

O [Pu(E) — ¥u(€e) | = 0 [f1ul&) — Fin(E) | + 16Mw(20)0 .

Consequently
[pu(6) — vulé + dey) | = 18Mw(20)  k#7.
This, together with (4.23), proves Corollary 4.2 for n > 2,
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