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FRACTIONAL POWERS OF OPERATORS

HikoSABURO KOMATSU

A definition of fractional (or complex) powers A% ac C, is
given for closed linear operators A in a Banach space X with
the resolvent set containing the negative real ray (—, 0) and
such that {121+ A)™!; 0 < 1< <o} is bounded; fundamental pro-
perties such as additivity (A®Af = A%*6), coincidence with the
iterations A® = A" for integers a = n, and analytic dependence
on a are discussed. Since the fractional powers A® are
generally unbounded in both of the cases Re a > 0 and Re a < 0,
attention is paid to the domains D(A%), which are related to
the spaces D and R® of xc€X defined by the regularity of
(A+ A)"'xz at o and 0. When —A generates a bounded con-
tinuous semi-group or a bounded analytic semi-group, more
detailed results are obtained.

The study of fractional powers of operators has a long history,
which may go back to Abel’s work on the tautochrone, the Riemann-
Liouville integral, and its generalizations by M. Riesz. However, it
is only recently that the general theory was developed. When A is
the negative of the infinitesimal generator of a bounded semi-group
of operators, Hille [6] and Phillips [16] showed that fractional powers
could be treated in the framework of an operational calculus which they
originated. This program was carried out thoroughly by Balakrishnan
[1]. Later Balakrishnan [2] gave a new definition and extended his
theory to a wider class of operators. About the same time two different
definitions were introduced by Krasnosel’skii-Sobolevskii [13] and Kato
[10]; further results were obtained by them, Yosida [22], Kato [11]
and Watanabe [20]. These theories, with the exception of [11], as
well as some classical results on the Riemann-Liouville integral (Hardy-
Littlewood [5], Love-Young [14]), will be reconstructed from a unified
point of view.

Our definition of fractional powers is essentially the same as
Balakrishnan’s second definition and if, in particular, Re «a > 0, they
are identical, In order to see that this definition is a natural one, let
us consider the case in which A4 is bounded and the resolvent set o(A4)
contains the negative real axis (—oo, 0]. The most natural definition
of A* for such an operator A is given by the Dunford integral

(L.1) ar= 1| - ayag,
Ty Jr

where the path I" encircles the spectrum g(A) counterclockwise avoiding
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the negative real axis and {* takes the principal branch. It is then
quite easy to see that A* is a bounded operator which is an entire
function of «, satisfying A* = A" if « is an integer n, and A*AP = A**F
for all a, BeC.

Now we notice that the integration path I" may be considered to
encircle the negative real axis clockwise, Thus we can write the
integral as

Ac=_L_ S [ + i0)* — (C — 10)<]( — A)~dC
271 J—e
(1.2)

— Snma S“v(x + A)-dn
0

in the sense of Fantappié and Sato [17]. The last integral loses its
ordinary meaning at - if Rea=0 and at 0 if Rea < —1. However,
we have a convergent expression valid for —(m + 1) < Rea <n + 1:

A = —SREETT (_ymuesn(y 4 Ay A
T 0

(L.3) . N (e

+ Z (____1)k+1 Ak + S (_1)%+1)\la—n—1()\, + A)—lA’n+1d)\l] ,

k=—m a—k N

where N is an arbitrary fixed positive real number. This may be proved
directly from (1.1). Another proof is obtained from (1.2) by expanding
(A + A)™* into a Taylor series around « and 0 and applying the formula

NB+
B+1’

which holds for every 8 # —1 in the sense of Fantappié-Sato,

Throughout this paper we will assume that A is a closed linear
operator such that the resolvent set contains (— oo, 0) and the resolvent
satisfies

(1.4) SNxf’dx = _rxﬁdx -
0 N

(1.5) IMA + A7 =M, >0,

with a constant M independent of A, The bounded operator A considered
above and the negatives of infinitesimal generators of bounded semi-
groups satisfy these conditions, We remark that the operator
An + A7 =1 — A\ + A)™ is also uniformly bounded. The bound is
denoted L:

(1.6) AN+ A || S L, A>0.

The constants M and L will have the same meanings throughout this
paper,
Our definition is based on the formula (1.2) or (1.3). But we
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cannot expect that (A + A)™ has a Taylor expansion at « or 0, nor
that A*x is defined for all #. In place of a Taylor expansion we use
the asymptotic expansion of (A + A)~'2 which depends on x., Thus,
our study begins with the regularities of (A + 4)™z at « and 0. If
x satisfies

W+ A e =N — AT, e (=), + OV

as v — oo, where n <o <n+1(Gf » =0, O0""") must be replaced
by o(A"")), then z is said to belong to the space D°. Similarly the
space R’ is defined by the regularity at 0. The spaces D° and R’ are
shown to be closely related to the domain D(A") and the range R(A"),
and give a kind of interpolation spaces (Sections 2, 3).

If Reaw >0 and if ¢ > Rea, then A*x for xe D’ is defined by
(1.2) or its justification as (1.3). It will be proved that the operator
A? thus defined has the smallest closed extension A% independent of
o, which we define to be the fractional power. In the same way A%,
Rea < 0, and A% acC, are defined by their restrictions to R’ and
D°NR*, respectively (Section 4),

A%, A* and Af are closed linear operators with dense domains in
D(A), R(A) and D(A)NR(A), respectively, and dense ranges in
D(A)NR(A). When P is an operator (or a relation) in a space X, and
Y is a subspace of X, let us call the operator @ in Y defined by
D) ={yeDP)NY;Pyec Y} and Qy = Py,y<c D(Q), the maximal
restriction of Pin Y. Then Af for Rea > 0 (Re a < 0) is the maximal
restriction of A% (4%) in D(A)NR(4). When « is an integer n, A%, A~
and A? coincide with the maximal restrictions of A" in D(4), R(4) and
D(A)NR(A) respectively (Section 4).

More precisely the domain D((¢£ + A)3) does not depend on ¢ =0
and coincides with the range R((¢# + A);®), 1 > 0, while R((# + A)=*)
is contained in D®™< unless Re ¢ is an integer and in D®*® for any
¢ > 0 if Re a is an integer. In particular, it follows that D(A%) c D(A4%)
if Rea > ReB. Since D™t D(A%), ¢ > 0, D®= is almost equal to
D(A%). Similarly, if ¢ >0, we have D(A) = D((A(p + A)™)*) =
R((A(¢ + A)M)7*)c R~®*~¢ or R~ according as Re« is an integer
or not (Section 6).

A2 maps D°N D(A%) into D™= if & — Re « is positive and not an
integer,

If Rea-ReB >0, then A%A% = A%*® holds in the sense of the
product of two operators, where the subscripts are assumed to be the
same. For every a and B the smallest closed extension of AZAf is
the same as A, If xe D(AS)ND(A;*F), then Afxe D(A?) and
AsAfr = Af*Bx, Thus the additivity holds fairly completely (Section 7).

If xe D(A%2) N D(A%), Rea > Re B, then x belongs to D(AY) for all
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Rea > Rev > ReB. Moreover, A%lx is analytic in v and converges
strongly to A%x(A48%x) as v tends to a(B) in such a way that
larg(@ — M| =0 < 7/2 (larg(vy — B)| = 0 < w/2). Alx satisfies the
convexity inequality

(1.7) | Az || = Cf| Ak []° || AL ||

where 6 = Re (v — B)/Re (@ — ) and the constant C depends on v only
in terms of |arg (¢ — v)| and |arg (v — B)| (Section 8).

Therefore if B is a closed linear operator such that D(B) D D(A4Y),
we have

(1.8) |Be|l = CllAse | [le[~*,  weD(A),

where Rea > Rev > 0 and ¢ = Rev/Rea. Conversely if (1.8) holds,
then D(B) D D(A%) for every v with Rev > 60 Rea (Section 9).

Now we have to specify the operator A more strictly., An operator
A is said to be of type (@, M(6)),0 = w < x, if the domain D(A4) is
dense, the resolvent set of —A contains the sector |arg\| <7 — @
and (1.5) holds on each ray M =17r¢¥ 0 < r < oo, |0| <7 — , with
M = M(6). Every operator A with a dense domain which satisfies (1.5)
is of type (w, M(0)) for some w < m. If —A is the generator of a
bounded semi-group, then A is of type (7/2, M sec ). Further it is
known that A is of type (w, M(6)) with w < n/2 if and only if —A
generates a semi-group 7', which has an analytic extension to the
sector |argt| < m/2 — w such that the extension is uniformly bounded
on each smaller sector |argt| = 7/2 — @ —¢, ¢ > 0. Let us call such
a semi-group an analytic semi-group.

If A is of type (w, M(0)) and if 0 < @ < 7/w, then A% is of type
(aw, M,(0)), where M,0) is bounded by 3M((6 + (¢ — )7w)*/a). In
particular —A% generates an analytic semi-group exp(—tA4%) if
0 < a < 7/2w). The semi-group exp (—tA%) is continuous in the uni-
form operator topology in ¢ and « in the domain |argit| < 7/2 — aw,
0 < a < /(2w). For every « € R(A), exp(—tA%)x converges to exp(—t)x
as « tends to 0. If A is of type (w, M(0)) and if 0 < a < w/w and
Re 8 > 0, then the multiplicativity (A4%)8 = A% holds (Section 10).

In case A is the generator of a bounded semi-group T,, the value
of the fractional power A%x may be related to the Riemann-Liouville
integral of T,x., Let C° o =0, be the set of elements x such that
T.x is n = [o] times continuously differentiable and the n-th derivative
is uniformly Holder continuous with exponent 0 = ¢ — n. Then we
have D> C° > D(A%) for Rea =0, If 0 >Rea >0, Az, xe D, is
expressed as the fractional derivative of T« at 0. If X is sequentially
weakly complete, it follows that x e D(A%) if and only if <T,x, y'>e
D((—d/ds)}) for all y’'e€ X', As in the case of D°, A% maps C’N D(A%)
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into C°~®* if ¢ — Re ¢ is positive and not an integer, The semi-group
exp (—tA%) generated by —A%, 0 < a <1, is uniformly bounded in
t = 0 and converges strongly to 7, as « tends to 1 (Section 11).

Let —A be the generator of a bounded semi-group T,. Then A is
of type (w, M(0)) with an w < x/2, or T, is analytic, if and only if
there exists a constant C such that

I|AST, || = Ct7™.

If this is the case, and if ¢ is not an integer, it follows that C° = D-,
and that xe C’ if only if || A% Tz || = O(t*"**) as t—0 for Rea > ¢
(Section 12),

Section 13 deals with the cases where A is a normal operator in
a Hilbert space, a restriction, an adjoint operator or a continuous
image of another operator which satisfies (1.5). As an application we
will prove that the convolution of a C% function and a Cf function
belongs to Cy*P—¢ for any ¢ > 0, where C§ denotes the class of uniformly
Holder continuous functions with exponent « and with compact supports
in (—oo, o). Another application to a nonlinear partial differential
equation will also be given., The rest of the section is concerned with
the fractional differentiation of functions on the unit circle,

We collect several counterexamples in Section 14, among which
there is a simple example of an operator of type (7/2, 2secd) which
does not generate any semi-group of type (A4).

The author failed to give an example of operator A such that — A4
generates a bounded semi-group but for which D° = C°,

2. Regularity of (A + A)™'z at infinity. If x€ D(A") for a non-
negative integer n, (A + A)~'z has the expression

@.1) (v A= — NTAT e + (= 1)IrATYy
+ Rn—l()‘! x)

for e p(—A), » # 0, where

(2.2) Ru(h, @) = (— LA + A" At
= (=1 — (A + A) ) AR .
Because of (1.5) we have the order estimate R,_(\, ) = O(A~""") as A

tends to infinity along the real axis. If X is reflexive, the converse
is also true.

THEOREM 2.1. In order that there exist y,€ X, k=0,1,---,n,
such that

2.3) (v + A7 = ATy — N e+ (=D, + o)
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as N— oo, it is mecessary and suficient that x € D(A™), A"z e D(A)
and y, = A*x, k= 0,1, ---, n. Here the convergence can be either in
the weak or strong semse and N may increase, taking only values of
a sequence \;— oo,

Moreover, let X be reflexive. Then it follows that if (A + A)7'x
satisfies

(2-4) n + A)_lx =AY — ATy, F e (_1)7¢—17\J—nyn_1 4 O()\:_"_l)

as M = \;— oo, there exists a y,<€ X such that (2.3) holds. Thus (2.4)
18 a mecessary and suffictent condition in order that xe D(A™). In
particular we have D(A) = X, since (2.4) for m =0 holds for all
re X.

Proof. In case m = 0 this is precisely an ergodic theorem due to
Hille [6], Kato [9] and Yosida [23]. We shall, however, reproduce
the proof for the sake of convenience. If xe D(A), then we have by
2.1) W+ A7z — A =0\ = oM7Y, Since M(M + A)7P— N7 is
uniformly bounded by assumption (1.5), it follows from the Banach-
Steinhaus theorem that MM + A) — M x— 0 strongly for every
v e D(A).

Conversely, let the set {\;(\; + A)~'2} have an accumulation point
Yy, relative to the weak topology, where \;— . We note that this
is the case if M;(A; + A)~'x converges weakly to y,, or if X is reflexive.
Clearly y,e D(4), so that we have \;(A; + A)'y,— ¥,. Thus 0 is a
weak accumulation point of {\;(\; + A)~'(x — y,)}. On the other hand
we have for any pe po(—A)

(¢ + AN+ A) e — yo)
= N0y + A7+ A7 (@ — y) = (e + A7 — ) .

Hence (¢ + A)*x —y,) is the only accumulation point of
{(e + A)~"N;(\; + A)~(@ — y,)}. Since (¢ + A)™ is weakly continuous,
this implies (¢ + A)™ (¢ — y,) = 0. Thus we have 2 = y,.

Next let » > 0, and assume that the theorem has been proved for
smaller =,

If zeD(A") and A"xe D(A), then in (2.1) A*"R,_(\, 2) =
(—1)"™(x + A)"'A™x converges strongly to (—1)"A"xz as A — o, This
proves (2.3).

Conversely let (2.4) hold., Then by the induction hypotheses we
have x € D(A™™), A"'we D(A) and y, = A%; for k < n — 1. Thus the
remainder term in (2.4) is equal to (—1)"\v™"(1 -— MM\ + A)™HA" 'z =
R, .(\n, ). If Xisreflexive or if (2.3) holds when \;— co, (A¥HR, _,(\;, 2)}
has a weak accumulation point (—1)"y,. Since A*~'x € D(A)and (A + A)™!
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maps D(A) into D(4), y, belongs to D(A). We have (—1)"\7"R,_(\;, €)=
AN;(n; + A)PAM e, and N (0 + A)T'AM e — A" ', Therefore the pair
(A" 'z, y,) belongs to the graph of A, This proves A" 'ze D(A) and
Y, = A"z,

DEFINITION OF THE SPACE D°. Let ¢ =0 and o =n + o where
n=0,1,2---and 0 < p< 1. o, nand p will have the same meanings
in the following unless the contrary is explicitly stated. We define
D° as the set of all xe X such that xe D(A") and the remainder
R,(\, x) in

2.5) W+ A) e =N — NPAx + oo + ()" A + RN, @)
satisfies the order estimate

o(A"""") in case =0

2.6 R,(\, ) = .
(2:6) , @) ON\=""") in case p>0.

Theorem 2.1 shows that xe D" if and only if xe D(A") and
A"z e D(A).

Clearly D’ is a vector space. We introduce in it the following
topology: By definition a net (directed sequence) x,€ D° converges to
xe D’ if (i) A*x, — A*x strongly for k=0, .-+, n, and in case 0 >0
if (i)

@D <R 2,0 > dm ()= [T <R @), v > dmy
1 1

for every y' ¢ X’ and every measure m on [1, o) of finite variation.
When we consider only a (countable) sequence z;, the requirement
(ii) is simplified as follows.

PROPOSITION 2.2. A sequence z;€ D° converges to x€ D° if and
only if (i) A*x;— A*x for k=0, ---, n and (ii) MM R,(\, x;) is uni-
formly bounded in A =1 and j.

Proof. If (i) holds, then R,(\, ;) converges strongly to E,(\, x)
for every . Thus the sufficiency easily follows from Lebesgue’s
theorem. To prove the necessity let z;— z, in D° and {\*"'R,(\, 2;)}
be unbounded. Then there is a sequence A, = 1 and a %’ € X’ such that
{< MR, (M, 25), ¥’ >} is unbounded. On the other hand it follows from
the hypothesis that the sequence ¢; = (<NTR,(\, 2;), ¥’ >) in the
space m of bounded sequences in k converges to & in the weak*
topology on m induced by I'. Hence {¢;} is bounded in m contrary to
the above. This completes the proof.

Since A is closed we see easily that D™ is a Banach space with
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the norm ||a|| + || Az|| + -+ + ||A™z]||. When p >0, D’ is a locally
convex space but it is not generally metrizable. There is, however, a
semi-norm in D’ which will be used as a substitute for a norm.

Set for every xe D°

(2.8) %(x) = sup M [| R,(\, @) || .
0<A<oo

This defines a semi-norm in D° because by the definition
Supas; M| R,(N, ) || is finite, and if 0 < A < 1, we have

MR, (N, @) || = 7" | A + A7 A || = L A |,

proving that q,(x) is finite for every x € D°. The semi-norm property
is clear.

THEOREM 2.3. There exists a constant C(o) depending only on
o, M and L such that
(2.9) [ A%z || = C(0)go(2)*” || 2 ||“"~"1

for xeD’ and k=0,1,---,n. A set B in D’ is bounded if and
only if sup,ez || x| and sup.esq.(®) are finite.

Proof. First we will prove, by induction on %, that
(2.10) | A% || = QUML) || A [0 [ |10
If xe D(A?), we have

Ar = (N + A7 A% + MNAN + )7,
so that
| Az|| = VM || A% || + ML |2 ||

for any » > 0. Taking the minimum of the right-hand side, we obtain
(2.10) for » = 1. Let (2.10) have been proved for n. Then the proof
for » + 1 is obtained by combining (2.10) for » with

| A2 || = 2(ML || A" || || A" [))"* .
Similarly from
Are = AN + A)7'A"e + NAL + AT AT
and (2.8) we get
1A% (| = (1 + )™ 1og, @) (L || A~ [P/
Thus the combination with (2.10) for » — 1 gives
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A% || = C(e)go(@)" [ |,

where C(o) = [(1 + p)'t°o~*(2(ML)"*)~="rLr]*?,  Now wWe can prove
(2.9) for smaller k& step by step using the inequality (2.10).

To prove the second part let B be a bounded set in D°, Then in
particular sup ||« || and sup || A"x|| are finite, By the same method as
in the proof of Proposition 2.2 we can easily show that

sup A || B,(x, ) ||
21

is finite. Since sup,cac; V|| R, (N, ®) || = L || A"z ||, we conclude that
sup q,(x) is finite.

Conversely let sup,ez |/ || and sup,ezq.(x) be finite, Then by (2.9)
sup || A*z || is finite for £k = 0,1, --+, n. Furthermore,

sup

ZEB 1 £

[, <R 2),9 > dm| S supau(@) 11| m]

is finite. Thus B is bounded in D°. The proof is completed.

The space D° is quasi-complete. Although we do not use this
fact, we briefly sketch its proof. Let x, be a bounded Cauchy net in
D°, Then x, converges to an « in D™ relative to the topology of D™,
Since X is metrizable and since the mapping which maps A"z, € X into
< AHR, (N, %), ¥y > € C™™ is continuous, Lebesgue’s theorem proves
that

[T < a0, ), o > dm(n) — S‘” <NFR,, @), ¢ > dm()) .
1 1

We have introduced a sophisticated topology in D°. The reason
will be explained in the following lemma and theorem.

LeMMA 2.4, If p > 0, then p(pe + A)™" is a one-to-one continuous
mapping from D’ onto D°**, Moreover, for every x <€ D°

(2.11) pe+ A e —a (D) as p— oo,

Proof. Let a* = pu(p + A)y~x for xe D°. Then we have
(N + A7k = NTYE = MY e ()Y A+ RN a)
where
yi = Afat = p(p + Ay At
and

(2.12) R,(\, o) = p(pe + A)7'R, (N, @)
= (— 1)\t ArHgE — pA(p + AR, @)



294 HIKOSABURO KOMATSU

Here we have used the fact that p(y + A)™ maps D(A") into D(A™),
The last equality shows that & € D°*', and the first equality in (2.12) with
(1.6) proves that A""'R,(\, «*) is uniformly bounded. By definition
Atz e D(A) for k= 0,1, -+, n, so that A*z* converges to A*z, ¢t — oo,
Hence it follows from Proposition 2.2 that z* converges to x in the
topology of D°, We note, however, that x* does not necessarily converge
to x in the norm ||z || + g,().

The operator p(x¢ + A)™ is, of course, one-to-one, and, as is clearly
seen from (2.12), maps D’ continuously into D°**, If ze D°*, it is easily
shown that g~ (¢ + A)x € D°. Thus p(¢ + A)~' is a mapping onto D°**,

THEOREM 2.5. If ¢’ > 0, then D” C D°, D” is dense in D°, and
the embedding mapping @I : D” — D’ is continuous.

Proof. The fact that D” < D’ and the continuity of @3 are
obvious from the definition of D’ and its topology. The above lemma
proves that D°** is dense in D° so that D’*™ is dense in D’ for
every nonnegative integer m. For a given ¢’ > ¢, take an m such
that ¢ + m > ¢’. Since D” D D°*™ D" is dense in D°. This completes
the proof. D” is not necessarily dense in D° with the norm topology
defined by ||z || + g.().

We can introduced a topology in D(A™) by the norm

N lpum = @]l + o0 + ][ A" ] .

(Note that this norm is equivalent to ||| + [|A"z| because of
Theorem 2.3.) From the closedness of A it easily follows that D(A")
forms a Banach space with this norm. D(A") contains D™ as a closed
subspace. If X is reflexive, they are identical. But this is not
necessarily the case otherwise. Moreover, it is easily shown that
D(A" < D, for all ¢ < m, that the embedding is continuous, and that
it has a dense range. Thus we have the following inclusion relation:

X>D@) = D' >DP5D(A) DD D DH o ... .

In case D(A) is not dense in X, the spaces D° for A are virtually
determined by a restriction of A.

THEOREM 2.6. Let A, be the restriction of A to the domain
D(4,) = {x e D(A); Ax € D(A)}. Then A,, considered as a closed operator
in D(A), satisfies (1.5) and has a dense domain, Moreover, the spaces
D°(Ap) corresponding to A, are the same as D’(A) corresponding to
A. In particular we have D"(A) = D(Az) for every integer n = 0,

Proof. It is easily shown that A, has a resolvent (A + A,)~* which
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is equal to the restriction (A -+ A)' |3z of (M + A)™* to D(A) for
ae p(—A). Thus (A + A,)" satisfies (1.5). From Theorem 2.1 it follows
that for every @ € D(A), MM + Ap) ¢ — & as A — co. This shows that
D(A,) is dense in D(A). The identity of the spaces D°(4) and D’(4,)
follows easily from Theorem 2.1,

3. Regularity of (A + A)™'2 at zero. A discussion parallel to
Section 2 is possible concerning the regularity of (A + A)™'x at zero.
Suppose that = belongs to the range R(A") and x = A"y. Then we
have

B (v AT = ATy NATY e (=D
+ (=)0 + A7y

for any ne€ o(—A). Hence we have the asymptotic relation
(B.2) WA+ AW =y, — MY+ e F (D) + OV
as v -— 0, where y_, = A~ *y. The counterpart of Theorem 2.1 is the
following theorem.
THEOREM 3.1. In order that (» + A)™'z satisfy
B3 M+ A=y, — et e (=D)AL, + o)

as v — 0 with y_,e X, it is necessary and sufficient that there exists
o y_,€ D(ANNR(A) such that v = Ay_, and y_, = A%y_,. The
remainder term is them given by

(3.4) E_.(n, @) = (=" + A) Ty,

For the necessity it is suffictent that (3.3) holds for a sequence ); — 0

relative to the weak topology.
Furthermore, let X be reflexive. Then for every x€ X there is

an x,€ N(A) = {y; Ay = 0} such that
(3.5) N+ A =N"2, F o), as A—0,

and x — x,€ R(A). The expression x = x, + (x — %) with x, € N(4)
and © — x, € R(A) is unique, so that X is decomposed directly:

(3.6) X = N(A) + R(4)  (direct) .

In case X is reflexive and n > 0 it follows that if (3.2) is satisfied
as ) tends to 0 taking values of a sequence \; — 0, then there exists
Y_, such that (3.3) holds. Thus (3.2) holds if and only if x € R(A"),

Proof. We prove the theorem by induction on %n. Let ze R(A4)
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and * = Ay. Then
ML+ A = NAN A+ Ay —0 as A—0.

Thus by the Banach-Steinhaus theorem we have M\ + A)™x — 0 for
every o€ R(A). Conversely let \;(\; + A)~'xz converge weakly to 0 as
N;— 0. Then using & = N;(\; + A7 + A(\; + A)7'c we see that «
is the limit point of A(\; + A)™'x € R(A).

In case X is reflexive, choose a sequence N;— 0 and let z, be a.
weak accumulation point of {\;(A; + A)~'z}. Since AN;(\; + A)7'x — O
as A;— 0 and A is closed, it follows that z,e D(4) and Ax,=0. 0
is then a weak accumulation point of {N\;(\; + A)7(x — )} =
;v + Ay ' — x,}.  Hence we obtain « — x, € R(A) as above, Clearly
the decomposition is unique.

Let » > 0. If y_,e D(A*)NR(A) and x = A™y_,, then (3.3) follows.
from (3.1) and the theorem for n = 0. Conversely let (3.2) be true.
Then by the induction hypothesis it follows that y_,., e D(A™") N R(4)
and y_, = A" *'y_,.,. The remainder in (3.2) is equal to R_,,,(\, ) =
(=1)""N"' N + AW _pre Now let (—1)""\;""R_,.,(\;, ¥) converge:
weakly to y_, as A;— 0. Since A is closed and

A()’J + ‘4')_1y—ﬂ+1 = y—-n-H - )\’j()'j + A)_Ly—n+1——) y-—-n+1 )

it follows that y_,€ D(A) and y_,,, = Ay_,. Noticing that (A + A)™
maps R(A) into R(A) we have also y_, € R(4).

DEFINITION OF THE SPACE R’. Let o,n and p be as in the pre-

vious section. The space R° is by definition the set of all x € R(A™) N R(A)
such that the remainder R_,(\, z) in (3.3) satisfies

o(A\""") incase p=0

(3.7) R—n(xy x) = O()\Ja—l) in case p > 0 .

Note that x e R* if and only if there is a y_, e D(A") N R(A) such that.
x= A"y_,.

We introduce a locally convex topology in R° in the same way as.
in D° by the following family of semi-norms:

(1) |yl for k=1, ---,n,

(if) ]S <NTER_(, ), > dm()

for all '€ X’ and all measure m of finite variation on (0, 1].
The following theorem which is analogous to Theorem 2.5 permits.
us to reduce most of the discussion about R’ to the case of D-.

THEOREM 3.2. Let Ay be the restriction of Ato D(Ag)= D(A)NR(A).
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Then Ay satisfies the assumption (1.5) in R(A), is one-to-one and has
a dense range there. The spaces R’(A) corresponding to A are the
same as R(Ag) corresponding to Az. y_, in (3.3) is precisely Az*x
and the remainder is given by

E_,(\ @) = (—1)"\"(M + Ap) AR .
Furthermore, the inverse Az' has the resolvent
(3.8) WF AT =NTTANT 4 A7 e

which satisfies (1.5); and R°(A) is the same as and s isomorphic to
D*(Az").

Proof. First we prove that Ay is one-to-one, This is a consequence
of Theorem 3.1. In fact, if x € D(Az) and Azx = 0, then

@ =MA 4+ A 4+ (v A A —0 as A— 0,

so that « must be 0.

The range R(A;) is dense in R(A) because if xe R(A), then, by
Theorem 3.1, A\ + A)x — 2 as x— 0 and (A + 4)~* maps R(4) into
R(A). As is easily shown, (A + Az)™* coincides with the restriction of
(» 4+ A to R(A):

(3.9) N+ A =0+ A mm .

‘Thus A, satisfies (1.5).

Now it is easy to see that R’(A) coincides with R°(4z). In par-
ticular we have R" = R(Ap) for every integer n = 0. ‘

Since M +Az' = (MAr + I)Az", and since Az and NA; + I, V7' € p(— A),
are one-to-one, (3.8) follows from (3.9).

It remains to prove that D?(Az') = R(4). If ¢ is an integer =,
then we have D"(A3") = D(Az") = R(A%) = R*(A). Further, it follows
from (3.8) that

(3'10) )"Rn(AEIy )"y x) = —)'_IR——n(ARy )"—Iy ﬂ’/')

for every x e D*(Az") = R"(Az). Now it readily follows that D°(43) =
R°(Az) = R°(A) and that the topologies of the two spaces are identical,
This completes the proof. ‘

The results in § 2 may be translated in terms of R°. We just state
two of them.,

LeEmMmA 3.3. If >0, then A(p + A)™ is a one-to-one continuous
mapping from R° onto R°*, We have also

A+ Ay v —a (R) as p—0



298 HIKOSABURO KOMATSU
for every x e R°.

THEOREM 3.4. If ¢’ > o, then R” C R°, R’ is dense in R’ and the
embedding map 3 : R” — R’ 18 continuous.

Before leaving R°, let us investigate the relation between R° and
R(A™. As we have shown above, B" = R(A%). Therefore, R" C R(4").
If X is reflexive, they coincide with each other because of (3.6). We:

define a norm in R(A") by

[| @ [[ream = Ai?i ([ Y [[pan «

Since the set {y; A"y = 0} is closed in D(A"), R(A") becomes a Banach
space with this norm. The topology of R" is defined by the same
norm, so that R" is a closed subspace of R(A"). If o <, we have
R° D R(A™). Therefore, there is the following inclusion relation:

R(A)=RODR DRA) DR DR >-..,
THE SPACE D°NR°. Let o0 and 7 = 0. We introduce in the set
DN R* the weakest topology that makes both the embedding mappings.

into D° and into R°® continuous. Since D° and R* are quasi-complete,
it follows that D°NR" is quasi-complete.

LEMMA 3.5, Let 1t > 0. Then p(pe + Ay~ (Al + A)™) is a one-
to-one continuous mapping from D°NR® onto D*NR* (D°NR™,
respectively). We have also

ppe+ Ay e —a (D°NR°) as p— oo
A+ A a—2x (D°NR) as p—0)

jor every xe€ D°NR",

Proof. It is enough to prove that pu(y + A)~'zec R*, that
pp+ A 'c—a (RY) as pr— oo,

and the corresponding facts for A(p + A)~ and D°. If (M + A7«
satisfies (3.3) with the remainder R_,(\, %) = (—1)"A"(A+ 4) " 'y_, =0\,
then o = p(p + A)™'x satisfies

(v + Ay ok = g, — Mty e (DTN, R0 0

where y*, = p(pt + A"y, and R_,(\, 2*) = pu(e + A)'R_,(\, x) =
(=)™ "\ + 4)*y*,.. Thus z* belongs to R*. Since y_, € D(A*)c D(4),
it follows from Lemma 2.4 that y*,—y_, as g — o, which proves
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2*—x (R7). The statements about A(yz + A)™' are proved similarly.
Hence it follows that:

THEOREM 3.6. If ¢'=o0 and 7/ =7, then D" NR” s densely
contained in D°NR°, and the embedding map is continuous.

THEOREM 3.7. Let Ap= A,NAg, or the restriction of A to
D(A,) = {xec D(A)NR(A), Axe D(A)}. Then A, is one-to-one, the
domain D(Az) and the range R(Az) are both dense in D(A) N R(A), and
A, and Az both satisfy assumption (1.5) in D(A)NR(A). Moreover,
the spaces D°NR° corresponding to A remain unchanged if A 1s
replaced by Aj.

4, Definition of fractional powers of operators. In this
section we give the definition of the fractional power A* of an operator
A which satisfies the assumption (1.5), separating « into three cases:
(i) Rea >0, (ii) Rea < 0, and (iii) Rea = 0. Let us begin with

THE CASE Rea > 0, First, we take a number ¢ > Re «, and define
Az, xe D°, by

Alx = Az if a is an integer and

@y A= -SRI [Nt Ay ad
T 0

a—k

+ g“vRﬂ(x, D)dn 4+ 3 (— 1)k _N_——] . otherwise.

N F=0 o k

Here N is an arbitrary fixed positive number and A\* = exp (a log \).

Clearly the integrals converge and the right-hand side represents a

continuous linear operator from D° into X = X, equipped with the

weak topology. By a simple computation it is seen that A%x does not
depend on N and that if ¢ < ¢/, then A%x = A%x for every xe D,

If n <Rea < o, we may let N— 0 and obtain

(4.2) Asg = (—1yrSIDLTX rx"—"~1A(x + Ayt Argd
T 0
This expression was used by Balakrishnan [2] to define A=,

PROPOSITION 4.1. (Balakrishnan [2]). AZ has a closed extension
as an operator in X, and its smallest closed extension does not depend
on o > Rea.

Proof. Since A and (A + A)~* are commutative with (u(p + A)™),
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1=1,2, .-+, £ >0, it is easily shown that
(4.3) As(pe(pe + A))'w = (p(pe + A)7)'Azw, we D°

(u(pe + A)™")' maps X continuously onto D(A') and, hence, into D'~
¢ > 0. Thus, the left-hand side of (4.3) represents a continuous linear
operator in X, if [ > o.

In order to prove that A% has a closed extension, let x;€ D’ be a
sequence such that x;— 0 and A%z, —y in X. Replacing x in (4.3)
by z;, and taking the limits of both sides, we have

0= (et + A7)y .

This proves y = 0.

Let 0 < ¢’. It follows from Theorem 2.5 and the continuity of
Az that the closure of the graph G(A4%) = {(x, A%x); x€ D"} in D° x X,
is identical with G(A%). Since the closure of G(4%) in X, X X, is
equal to the closure of its closure in D’ x X,, we have the statement.
This completes the proof.

The smallest closed extension of A2, whose existence and uniqueness
have been proved above, is defined to be the fractional power of A and
denoted by A%, or A* if there will be no confusion.

PrOPOSITION 4.2. The fractional power A% coincides with the
fractional power A%, of the operator A,. Furthermore, if « is an
integer =, then A% is equal to A%, the » times iteration of 4,. In
particular we have D(A%) = D(Az) = D=,

Proof. In view of Theorem 2.6 we see that A% is the same as
A%,. Thus the former part follows.

Now let x € D". For every >0 we have (¢ + A)~ v e D"*'C D(A%)
and

Al + Ay = Ap(p + Ay e
= l,!(ﬂ —+ A)—‘AZO(} .

Here let ¢ tend to infinity, Then we obtain p(y + 4)~'x — and
vy + A)y"Ape — Azx by Lemma 2.4, Hence xe D(A7%) and A%rx coin-
cides with Azx. Conversely if € D° with ¢ > %, then by definition
we have A"x = A"x = A%x.

Since A, has a nonvoid resolvent set in D(A), A3 is closed in D(A)
(cf. Theorem 6.1 of Taylor [18]), and hence in X, Thus A4} is an
extension of Az,

PROPOSITION 4.3. The domain D(A%) is contained and dense in
D(A), while the range R(A%) is contained in D(A)N R(4).
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Proof. Since D°, @ > Re «, is contained and dense in D(A4), the
former part is clear. To prove the latter part it suffices to show
R(4%) c D(A)NR(A) for a 6. As we have seen above A2 is an operator
in D(A). Thus the range is contained in D(4). We remark that
R,(n, z) and A*x for k=1, .--, n are elements in R(4). Now let N
in (4.1) tend to zero. Then the first term and the term N°x/a tend
to zero. Therefore, A%z is a limit point of elements in R(A).

Later we will prove that the range R(A%) is dense in D(4) N R(A).

PROPOSITION 4.4, A% commutes with (¢(¢ + A)~™)' and (A(z + 4)7)?,
whenever ¢ >0 and [ =1,2 ..., Namely, if xeD(A%), then
(u(pe + Az and (A(¢ + A)~")'z belong to D(A%) and

(4.4) Ax(p(p + A = (e + A A
(4.5) AL(A(e + A = (Alp + A dsw .

Proof. (4.4) follows easily from (4.3). (4.5) is proved similarly.

PRrOPOSITION 4.5. If ze D(A%), then for every 1 =1,2, .-
A (pe(pe + A)7)'w— Ale as p— oo,

Conversely if y; = A%(p;(¢; + A))'w exist for an xe D(A), and if
y; converges weakly to an element ye X as p;— oo, then xe D(4%)
and A%x = .

Especially let X be reflexive. Then x belongs to D(A%) if and
only if {A%(¢;(¢; + A)™)'x} is bounded for an ! and a sequence g; — oo,

Proof. The first statement is an immediate consequence of Pro-
position 4.4, The second and third statements follow easily from the
closedness of A%.

Lemma A5 in Kato [11] holds without the reflexivity of X.
PrOPOSITION 4.6, Let n <Rea <n + 1 and wxe D", If

(4.6) (—1)" E“nﬂ S:v’v-”-lA(x + Ay Arad

converges weakly to a ye€ X as N; — oo, then x € D(A4%) and Ajx = y.
In case X is reflexive, 2 € D(A%) with n <Rea < n + 1 if (4.6)

is uniformly bounded for a sequence N;— co.

Proof. Since the integrand belongs to D(A), we have ye D(4).
If ¢ >0, then pu(e + A~z e D™, so that A%(u(¢ + A)™x is defined
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by (4.2). Therefore,

As(p(pe + A
— (——1)” sSin T S‘”Nx—n_lA()\’ + A)—IA”[J(],! + A)_lwd)\,
T 0
= w—lim (——1)”‘ §1_r_1_7t_a SNij—n—dA()\l + A)“IA”;L(# + A)“xd)»
T 0

J—oo

= p(p + A)~'w—Ilim (—1) sinwa SNj ANTPTAN 4 A)TTAedN
; T Jo

J—oo

=up+ A7y .
This shows, by Proposition 4.5, that € D(A4%) and y = A%x.

ProrosiTION 4.7. If € D°, then A%x is an analytic function of
a on the strip 0 < Rea < 0. Moreover,

| As@ || = Cla, a)gs(a)e” || a || et

holds for every x e D° with a constant C(o, @) depending only on o
and «.

Proof. It is clear by (4.1) that A%z is analytic in « unless « is
an integer n. But @ = n is not a singularity because A%x — A"x as
a tends to n. Estimating each term in (4.1) we obtain

NRea-—k
|l — k|

sin T

| A% || = || A ||

NRea n
M
[Rw ol + 3

Rea—oa
+ gt

|sinwe |/|a — k| is bounded by conste¢®™* and we have by Theorem
2.3 the estimates

| Az || = C(o)(N*q,(x) + N*||«|]), k=0, +--,m,0< N .
Hence it follows that

@) |4z = Co)eme | LN o 4 L= Nremeg )]

with a constant C,(¢) depending only on ¢. Taking the minimum of
the right-hand side we obtain the desired inequality.

PrROPOSITION 4.8. Let Rea >0 andm=1,2,8,---, If o >m +
Re «, then
(4.8) AnA%y = AT Ay = AT, xeD’,
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Proof. By definition x € D if and only if x € D(A%) and Azx e D*—™,
Thus A% belongs to D(A%). Making use of expansion (3.1), we have

SNv(x + Ayt Azzdy = (—1)» SNmﬂ(x + Az
0 0

Na+m—k

S S— |
a+m—£k ¢

+ 3 (e
k=0

In view of definition (4.1), this proves that
Ar_Arx = Artew xeD’,

Notice that the integrals defining A*x converge in the sense of Riemann
and that the integrands are commutative with A%. Then the former
part of (4.8) follows easily from the closedness of AZ.

ProposiTION 4.9. Let Rea, Re 8 > 0, and ¢ be sufficiently large.
Then we have

(4.9) A APy = A%ty ge D,

Proof. Combining Proposition 4.7 with Proposition 4.8 we see that
if m is an integer such that 0 < m < o, then for every xe D°, Afx
is a D™ valued analytic function of « on the strip 0 < ReB < ¢ — m.
If Rea < m, A% is a continuous operator from D™ into X. Thus
A% APy is analytic in 8 in the domain defined by 0 < Rea < m and
0<Repf<o—m.

From Proposition 4.7 it follows that A%*Afx is analytic in « in
the same domain. Therefore, it is analytic in « and 8. Similarly
APy ig analytic in « and B.

Thus in order to prove (4.9) in general it is enough to prove it for
0< Rea + RepB <1 and say for all x€ D(4%. We have by (4.2)

A% Ay — Sinna sinzf S”E”wws—l(x + A (e + A Awdndr
0

T T Jo
_ sinza sin 7B S‘”rv_lz_s—l MY A+ A — @+ A7 dr
T T 0Jo 7\: — T

Since the integrand is analytic, we may take for the path of inte-
gration of A a line parallel to and slightly above the real axis and
for ¢ a line slightly under the real axis. Splitting the integrand into
two terms, we obtain

At Afy — —SinTa sinz@ [rv(x + A)‘led)»rz'ﬁ“l(f — e
T T 0 0
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+ S:fﬁ(z‘ + A)‘ledz'S: AN — z‘)"‘d)»]
- 512;_“ S:v(x + A Az(— — $0)F-d
+ ﬂ’%ﬁ S:‘L'B(T + Ay An(—7 + $0)*de
_ _S%L@_ S:’ws—l(x + Ay Avdn = Aoy
THE CASE Rea < 0. Similarly as in the case Re a > 0, we define
A%,z for e R° and for —0 < Rea < 0 by

A*,x =y, if a is an integer or

(4.10) — _Sinra [SNMRm,,(x, )dn
T 0

Na+k
a+k

+ kil(—l)"“ Y + S:N’(x + A)“lxdx] otherwise,
where R_,(\, 2) and y_, are as in (3.3) and (3.4) and N is an arbitrary
fixed positive number. A%,z does not depend on N and ¢ as far as it
has a meaning.

Now we might pursue the analogy of the case Re @ > 0 and could
prove that A%, has the smallest closed extension independent of o,
ete. We remark, however, that A%, defined above is the same as
(AzY7°. For, the domains R°(4) and D’(Az") are one and the same as
was shown in Theorem 3.2, and it is easily proved by (3.10) that the
expression (4.10) is identical with the expression (4.1) for Az'.

Consequently we have the following proposition as a corollary of
Propositions 4.1-4.9.

PropPOSITION 4.10. Let Rea < 0 and A%, be defined by (4.10).
Then A%, has the smallest closed extension A« in X which is independent
of . A~ is identical with A%_ = (Az"):* defined by A, and if especially
« is a negative integer —n, A% coincides with Az" in the usual sense.
The domain D(A®) is contained and dense in R(A), and the range R(A%)
is contained D(A)NR(A). A* is commutative with bounded operators
(e(pe + A7) and (A(e + A7), £ >0,1=1,2,+--.

For every x e R’, A*x is analytic in « on the strip —¢ < Rea < 0.
If Rea,ReB < 0, then there is a ¢ = 0 such that

A2 APy = APy

holds for every xe R°.
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THE CASE Rea = 0. If Re « = 0, the integral (1.2) becomes singular
both at infinity and at zero. Therefore, first we restrict the domain
to D°NR°, where 0 =n + p and v = m + & are positive. A%x for
xe D°N R is defined by

Ax =2 if «a =0 or

(4.11) — - Sinﬁ’f“ [S”xaR_m(x, )
0

n

+O3 (=1 ZNL%Agx + S”an(x, x)dx], otherwise.
-— N

k=—m

As before N is an arbitrary fixed positive number, and it has nothing
to do with the value of A%.x.

The right-hand side of (4.12) expresses an analytic function of «
on the strip —7 < Rea < ¢ and it coincides with A%« and A%z in
the subdomain —7 < Rea < 0 and 0 < Rea < o, respectively, Thus
it is possible to give another definition of fractional powers by means
of the operator A2, even in the case Rea % 0.

ProrosiTION 4.11. For every complex number «, A%. has the
smallest closed extension A% independent of ¢ and 7 such that
—7 < Rea<o.

Proof. This may be proved in the same way as Proposition 4.1
by making use of operators (u(p + A7) (A + A)™)* in place of
(e + A7)

PROPOSITION 4.12. Aj coincides with the fractional power (A4,);
of the operator A;. If « is an integer m, A% is equal to AZ%.

In case Rea > 0 (Rea < 0), A is the restriction of A%(A%) to the
domain D(AY) = D(A%)NRE(A) (D(A%) N D(A), respectively).

Proof. In view of Theorem 3.7, the first statement is clear. The
second statement follows from the third statement and Proposition 4.2
and 4.10.

To prove the third statement, let Rea > 0. Obviously A% is a
restriction of A% and we have D(A3) c D(A%)NR(A). Conversely let
¢ e D(A%)NR(A). If | is sufficiently large, z# = (pe(st + A)") Ay + A)~'w
belongs to D' N R C D(A45), and it follows from Proposition 4.4 and
Theorem 3.5 that #* — « and Ajx* — A%x as ¢ — o and vy — 0. Thus
we have x € D(A43). The proof in the case Rea < 0 is similar.

Analogously to Proposition 4.9 we have
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ProPOSITION 4.13. Let « and 8 be complex numbers. If o and
7 are sufficiently large, we have

AsAfy = AsvPz | ze D°NE".

Proof. We omit the details of the proof which is essentially the
same as that of Proposition 4.9. We note only that if an integer m
satisfies —7 < m <o, then A% maps D°NRK* onto D ™NOR*™
homeomorphically and that if, in addition, the real parts of a complex
number a and a + m satisfy the same condition, then we have

A%Ary = ATA%w = A", zeD'NR".

5. The case where A" is bounded. In this section we confine
our attention to the class of operators A which has a bounded inverse
A~' and satisfies (1.5). g + A satisfies these conditions if ¢ > 0 and
A satisfies (1.5).

The distinctive feature of this case is that (» + A)™* is regular at
zero. In fact, (3.3) is satisfied for every % by setting y_, = A~ "z,
k=1,.--,n Thus it follows that R°= X and, as is easily seen,
these spaces are isomorphic. (Conversely, we can prove that if B° = X
for a ¢ > 0, then A has a bounded inverse.)

In particular, A%z is defined everywhere and analytic in « if
Rea < 0. Furthermore, if xe D’ then A°x is analytic in the half-
plane Rea < o.

The following proposition gives a useful representation of A*. This
was used by Krasnosel’skii-Sobolevskii [13] to define A* and A~=.

PropPOSITION 5.1. Let A have a continuous inverse and = be a
positive integer. Then for every a with —(z + 1) < Re ¢ < 0 we have

5.1 Af_:: ﬁSinTC(X n! SWA:(H-”N“]‘ A)"td
. T (@41 (a+mn)h ( ) ’

where the integral converges in the uniform operator topology.

Proof. It is evident that the integral (5.1) converges in the uni-
form operator topology and represents an analytic function of a for
—(n + 1) < Rea < 0. Integrating (5.1) by parts, we see that the
integral does not depend on n. When n = 0, (5.1) coincides with (4.10).
Thus it follows from the unique continuation property of analytic
functions that (5.1) holds for —(n + 1) < Rea < 0.

We remark that Aj = A% for Rea >0, while A7 = A% |55 for
Rea < 0 and that the latter operator is bounded in D(A).
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PropPOSITION 5.2. If Rea < 0 (Rea > 0) and x € D(Af) (¢ € D(A5*¥)),
then e D(A;*F) (x € D(Af), APxe D(A]), respectively) and

(5.2) AsAby = APy,
In particular, D(A3) < D(A5) if Rea > Reg.

Proof. Let Rea < 0. By Proposition 4.13, (5.2) holds for all
xe D’ if o is sufficiently large. If xe D(Af), it can be approximated
by a sequence z;€ D° in such a way that x;— o and Afx; — Afx.
Since Aj is bounded, AjAfz; = Aj*Px; converges to AjASx. This proves
by the closedness of Aj;*# that xe D(A;*F) and Af*Px = A%APx. The
proof in the case Rea > 0 is similar,

COROLLARY 5.3. If Rea >0, then A% = Af is the tnverse of
A7* = AZ® |35, In particular the domain D(A%) is contained in the
range R(AZ%).

PrROPOSITION 5.4. Let Rea > 0. If Rea is not an integer, then
the range R(AZ") is contained in D™* and there exists a constant K(«)
depending only on M, L and « such that

(5.3) Irea(AZ°0) = K(a) [[2 ][, 2eX.

If « is an integer n, then A—* = A", so that R(A4-*) = D(4"). Finally,
if Rea is an integer » and a # m, then R(A=*) C D(A"") and there
exists a constant K (a) depending only on M, L,||A™"|| and @ such
that
(5.4) A" (v + A)7A™ 2 || = K@ log (M + 2) ||z ],

zeX, 0< A< o,
Consequently R(AZ*) is contained continuously in D®e—t for every
£>0.

Proof. Let ¢ =n+ B, where n=10,1,2,-.- and 0 < RepB = 1.
In view of Proposition 4.10, we can show that
Azr = A"AZP
similarly to Proposition 5.2. Hence we have R(AZ*) C D(A™) and
A"Az*x = AzFx | re X.

Thus the problem may be reduced to the case # = 0. The statement
is obvious in the case 8 =1. Let 8+# 1. Then we have by Propo-
sition 5.1
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75(_-% — B) AN+ A)TAPe = S”T PANN 4+ AT + A)ede
sin 78 0

We split the integral into two parts and estimate each of them as
follows:

A, + A)‘lr'cl“ﬂ(z' + Aytwde ||
A
< LMzrz'l’Re"'c‘zdr IEX
A
= LM*Re B)"N"™ ||x ||,

1o+ 7] (A + A7) + Ay wde |

< MrlLMS%l—Reﬁrldr EX
0

< LM*(1 — RepB)"\v™f|lz| if ReB<1.
In case Re 8 = 1, the last integral becomes infinity. We note, how-
ever, that there is a constant K such that ||(z + 4)7'|| = KA + 7o),
0 <7< o, Thus the last integral may be replaced by

MN—ILKS*(l + o) de || |
0
= MLEKN " log (1 +N) ||| .

ProposITION 5.5 (Krasnosel’skii-Sobolevskii [13]). Let a, 8 and
be complex numbers such that Rea > Rev > ReB. Then we have

(5.5) || Adx|| = Cla, B,7) || A5 ||°|| AB=||°,  xe D49,
where
(5.6) 6 = Re (v — B)/Re (@ — B)

in case Re (o — B) is not an integer or « — 8 is an integer, and an
arbitrary number greater than the right-hand side of (5.6) otherwise.
The constant C(«, B, v) depends only on «, 8,7 and 4.

Proof. In view of Proposition 5.2 we may assume that B = 0.
Then the statement is an immediate consequence of Propositions 5.4 and
4.17.

6. Domain D(4%). We examine the domain D(A4%) (D(A%)) in
connection with D?(A4) and D((¢ + A)%), ¢t > 0 (R°(4) and D((A(gt+ A)™)2),
¢ > 0, respectively). First we note

PrOPOSITION 6.1. D°(¢ + A) is identical with and isomorphic to
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Dre(A) for every o = 0 and every ¢ = 0.
We omit the proof which is straightforward.

ProposITION 6.2. Let £ > 0 and v = 0. Then the bounded operator
v + A) (¢ + A)~* satisfies (1.5). If Rea > 0, then its fractional power
(v + A)(¢ + A% is bounded and expressed as

6.1 (@ + A+ A7 = 1= ZEEE[ o uye(u—n)=ut A)dn
where the integral is taken in the sense of Sato. In terms of the

convergent integral this is equal to

(6.2) 14 a—p(pe+ A+ .-
+a¢(oz—1)..;21(a-n+1)(

— EREE [ — w)e(pe — N A+ Ay

v— e+ A

where n is an integer such that n + 1 > Rea.

Proof. It is easy to see that if » > 0, then (A + (v + A)(¢e + 4)™")
is one-to-one and the inverse is given by

(6.3) AM+1)7A+ (2 —2)N+ 1)t — )N+ 1)+ v+ A7,

Thus (v + A)(re + A)~* satisfies condition (1.5). Since (v + A)(x + A)™"is
bounded, it follows that D°((v + A)(¢ + A)™") = X for all ¢ = 0 and that
they are isomorphic to each other. Therefore, ((v + A)(# + 4)™)* is
bounded for Rea > 0 and analytic in @. On the other hand, an easy
calculation shows that expression (6.2) does not depend on % as far as
0 < Rea < n+1 and represents a bounded operator valued analytic
function of a for Rea > 0. Thus it is enough to prove that (6.1) is
true for 0 < @ < 1. This can be done by expressing ((v + A)(¢# + 4)™)%
as integral (4.2) in terms of (6.3) and then by changing the variable
as = (A + L)/(M + 1).

ProrosiTiON 6.3. Let Reaw >0, £ >0 and v=0. If xe D(4),
then (¢ + A);*xe D((v + A)%) and

(6.4) © + Ay(¢ + Ao = (v + A) (e + A,
If z¢ D((l) + A)’f"_)’ then

(6.5) (1 + Ay + Qe = (v + Ai(px + A
= (v + A+ A7) .



310 HIKOSABURO KOMATSU

Proof. First we prove that (6.5) is valid for every xe D’ if o is
sufficiently large. In view of Proposition 5.1, we see easily that
(¢ + A)=® maps D’ into D’ for every ¢ and that it commutes with A*
and (A + A)~*, Therefore, we have

(¢t + Az + Ao = (v + Al + A=

for every xe D’ if 0 > Rea.

Let e D°, ¢ > 0. Then it follows that (¢ + A)z*(» + A)ix is
analytic for 0 < Rea < ¢ since (¢ + A)=* is analytic for Rea > 0 and
(v + A)ix is analytic for 0 < Rea < 0. ((v + A) (¢ + 4)™)zx is also
analytic for Rea > 0, and expressed by integral (6.1). Therefore, to
prove (6.4) for € D°, it is sufficient to show that (v + A)*(¢ + A)~*x
is equal to the integral (6.1) for 0 < @ < 1 and all xe D(A4). By (4.2)
and (5.1) for n = 0 we have

v+ Ai(p + A
- (—Si“f“ﬂ“(x - v>"‘1d’“§:<f — 7O+ A7+ AT + A)wde

_ (sin 7z:cu>2S°“()V _ v)a—ldkgw(f e s A7 =0+ A7 Ayade .
T v “w A—T

Now by a similar computation as in the proof of Proposition 4.9 we
obtain

® + A + A
- Sinﬂ”“ [0 =) = x = 020+ 9 + Ay

¥ S:(T — U)yp — T+ 10)*(c + A)( + A_)xdx]

_ sinﬂﬂa S“(x — V)= (g — AT (N + ATV + A)zdr

= o — SRE {0 — w)e(e — )0+ A)ad
T v

Thus we have proved that (6.5) holds for every x e D° when ¢ is large
enough.

Hence the statements of the theorem follow by the same arguments
as in the proof of Proposition 5.2,

THEOREM 6.4. If Rea >0, the domain D((v + A)3) does not depend
on v = 0 and coincides with the range R((¢ + A)7*) = R((¢ + A)=* |5m)
for >0,

Proof. It follows from Proposition 6.3 and Corollary 5.3 that if
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#>0and vy =0,
D((¢ + A)3) = R((¢r + A7) € D(v + 4)3) .

Thus if g and v are positive, then we have D((¢t + A)%) = D((v + A)%)
and D((¢ + A)2) is contained in D(A4%).

To prove that D(A%) c D((¢ + A)3), we show that the restriction
of A% to D((¢r + A)%) is closed in X, Proposition 6.3 gives

(A% — (4 AN + A e = a(—pm)(¢ + A7z + .-

_I_a(a—— 1) -.;@'(a——n+ 1)(~ﬂ)"(y+A)‘”x

. sin Ta S"'Nz(ﬂ . )\J)—tx+n()\‘ + A)-—-l(# + A)*”:)CCZ)\,
T 0

for every x € D(A). We notice that the right-hand side remains bounded
if we operate /¢ + A on both sides. Therefore, there is a constant C
such that

(e + A)A% — (1 + Az|| = Cll (1 + Awll,  zeD((e + 4)%).

Let © = (¢ + A) 'y with ye D((¢ + A)3) and use Propositions 4.4,
5.2 and 5.5. Then we obtain the estimate

(A% — (2 + Ayl = Cll (¢ + ATy ||
=2+ awl Gyl
‘with a constant C, independent of ye D((¢t + A)%). Hence it follows
that
(e + Aol = 2| Atz + 2C, ([=]], xeD((¢+ A)).
Now it is easy to see that A% restricted to D((¢t + A)3) is closed.

THEOREM 6.5. Let Rea > 0. If a is real or Rea is mot an
4nteger, then D(A3) is contained in the space D®*. There is a
constant K(a) depending only on M, L and o such that

(6.6) Trea(®) = K(@) [[ A% ][,  @weD(AT).

Thus the embedding map is continuous. FEven when Rea is an
integer, D(A%) 1s contained in every D®*~: for ¢ > 0 continuously.
In particular, we have D(A%)c D(48) if 0 < ReB < Rea.

Proof. The statements except (6.6) are immediate consequences of
‘Theorem 6.4 and Proposition 5,4, Let Rea=n+ p, 0 < 0 <1, Then
{6.6) is equivalent to
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6.7) [|A™(\+ A)7w]|] = Kl@n7 || Afz]l, 2>0, xzeD(A43).
It follows from Proposition 5.4 that if v > 0,
I+ A+ v+ A7z = K@n™ || + A)iz]

for every ze D(A%), where K(a) does not depend on v. Lety tend to
0 with ) fixed. Then clearly the left-hand side converges to that of
(6.7). Further, it follows from Propositions 6.2 and 6.3 that
v + A)3(¢ + A)=* converges to A%(¢ + A)=* in the uniform operator
topology of D(A). Thus we have (v + A)ix — A%z for every e D(A%).
This proves (6.7) and the proof is completed.

In view of Theorem 3.2 and in particular identity (3.8) the dis-
cussions concerning the domain D(A4%) may be reduced to the case:
considered above. We summarize the results in the following propo-
sitions and theorems.

PROPOSITION 6.6. R°(A) is identical with and isomorphic to
R(A(p + A)™) for every ¢ = 0 and every g > 0.

PrOPOSITION 6.7. Let Rea <0 and g >0. If ze R(A), then
(A(¢ + A)™M;*we D(A%) and we have
AZ(A(p + A w = (12 + A
If xe D(A%), then it follows that
A (A(pe + A)7)ee = (A(pe + A)7)iAZe = (¢ + A .
THEOREM 6.8, If Rea < 0 and ¢ > 0, we have
D(A2) = D((A( + A)7)2) = R((A(e + A)7)3" lzw) -

THEOREM 6.9. If Rea < 0 and if a is real or Rea is mot anm.
integer, then we have D(A*) C R, and the embedding map is con-
tinuous., When Re a is an integer, D(A%) is not necessarily contained
wm R~", but it is contained in R~ for any € >0 and the em-

bedding map 1is continuous. Thus we have D(A%)cC D(A%) if
Rea < RepB.

7. Additivity and range.

THEOREM 7.1. If Rea-ReB > 0, then we have
(1.1) A2 AR = ATAE = A%tP

in the sense of the product of operators.
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Proof. It is sufficient to consider the case Rea > 0 and Re 8 > 0.
‘The case Rea < 0 may be reduced to this case. We know that if ¢
is sufficiently large,

(1.2) A APy = A%+Py

holds for every xe€ D°. Theorem 6.5 shows D(A%f)c D(A4%). Thus
there is a constant C such that

(7.2) Az || = C(| AT P || + |l ]l),  @e D(ATP).

Now let @ e D(A5*#). Then there exists a sequence z;€ D° such
that z; — 2 and A%*Px; — A%Y™Px. Hence we have, by (7.2) and (7.3),
Afx;— APx and A5ARx; — A%Px. This proves Afxe D(A%) and
A2 ARz = APy, Since APwe R(A), it follows that ALAPx = AtAPw.

Conversely let x e D(A%A48), If 1 is a sufficiently large integer, we
have a* = (u(pe + A)y")'e D’ and 2*— 2 as p— . From (7.2) for
2 € D’ and Proposition 4.4 it follows that

APk = ATAR (p(pe + A)7)'w
= (g + A7) A5 AR
— ATA% v as p— o .

Hence we have x e D(A%™?) and AxPx = A% Afx.
If we use (p(pt + A)~)(A(y + A)™)* instead of (u(y¢ + A)~")}, we can
prove that

AjAf C AGtP

for all @ and B. On the other hand, we hnow that if ¢ and 7 are
large enough, D°N R is contained both in D(AjA$) and in D(A7+F),
and A +P is the smallest closed extension of its restriction to D°NER".
‘Thus we obtain the following theorem.

THEOREM 7.2. For arbitrary o and B we have
(7.4) [A5A48], = A5*#,

where [AAS), denotes the smallest closed extension of AfAS.
More precisely the following theorem holds.
THEOREM 7.8. If x € D(Af) N D(AL*F), then Afx e D(AS) and satisfies

(7.5) AjAfe = A3*Pe

In particular, A% is one-to-ome for every o and the inverse is the
same as Ay*©.
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Proof. Let a* = (u(pt + A))AWY + A)~")* with [ and £ sufficiently
large. Then it follows that a* — x, Afx* — Afx and AftPxr = A3.
Abx — APy as p— o and v — 0, Since Aj is closed, we have thus.
the statement of the theorem.

COROLLARY 7.4, If A has a bounded inverse and if Rea >0,
then

(7.6) ASAS = AR,
Proof. By Proposition 5.2, D(A5) N D(A;™?) = D(A5*P).
The results obtained above give us information about the ranges

of operators A% and Aj restriction to certain subspaces. We give here
only one proposition as an illustration.

ProrosiTION 7.5. Let Rea > Ref8 > 0. Then
(7.7) AR(D(A3)) C D(4AY)
if y=a— 8 or —ReB < Rev < Re(a — B).

Proof. It follows from Theorem 7.1 that
A = AFPAR
This proves the proposition for vy = & — B. Similarly we have
Af = AFTAEYY

for 0 > Rev > —Re 8. Hence Theorem 7.3 shows that R(Af) c D(A).
Now the proposition for a general v follows from Proposition 4.12 and
Theorem 6.5.

In this connection the following theorem will be interesting.

THEOREM 7.6. (i) Let ¢ > Rea > 0 and let ¢ — Rea be not an
integer. Then A5 maps D° into D° %=, (i) Similarly let ¢ =0,
Rea <0 and let 0 —Rea be mot an integer. Then A* maps
D°ND(A%) into DB,

Proof. (i) We may assume that 0 < Rea < 1 without loss of
generality., First we consider the case Rea < p. It is clear from the
foregoing discussion that A%xe D(A"). Using (4.2) and the com-
mutativity of operators, 4, A% and (A + A)~!, we obtain

A0 + A Aty = Sinﬂ”“ S:za—lA(x + A A(c + A Arwds

= sin wra/n(I, + L) ,
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where I, and I, denote the integrals over (0, \) and (\, «), respectively.

Since

(7.8) |AM + A)7A(T + )74 || = [ A + A)7H] || AP + A) 7' ]
= Lg.(@)\™,

we have

1L ]| = Lgo(x)(Re )7\,

In the same way we have

(1.9 1L = L] |7 g (@)erde
= Lg,(x)(Re @ — p)~"\Fee—e |
Thus A%x belongs to Do Fee,
In the case Rea > p, it is enough to make use of the estimates

| A(n + A AT + Ay Az || < Mg, (@)n-c

(7.10) | AQv + A7 Az + Ay Az || = Mg, (@

for I, and I,, respectively.

(i) We may restrict ourselves to the case 0 > Rea > —1 as above,
First, let p — Rea < 1. Since D°ND(A®) is contained in D(A) NR(4),
Ay = A% and A"x = A% hold for x€ D°ND(A*). Hence we have by
Theorem 7.3 A*x e D™ and

(T.11) A"\ + A7 A% = A7 (v + A7 A%
_ sin T« S”z_aA()\l + Az + A)Arzdr .
T 0

In a similar way to (i), employing inequalities (7.10), we obtain
A"\ + AT A% = O(WFeeP) A — oo,

If o—Rea >1, we can apply A to (7.11) under the integral sign,
obtaining

Ame(y + A) Aty — —Mrrm@ + A A + A Arads
T 0

From (7.8) and a similar inequality it follows that

AN + A)TTA% e = O(\Reaett) | A— o,
8. Convexity and continuity in a.

THEOREM 8.1, Let Rea > Rev > ReB. Then there is a constant
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C(a, B, ) depending only on M, L, a, B, arg (@ — v), and arg (v — B),
such that

@.1) [[Ae] = Cle, 8,7 [ A ||| ALe|=*,  @eD(A5)ND(AL),

where 8 = Re (v — B)/Re (@ — B). Subscripts for A%, AL and A% are
assumed to be the same.

Proof. If Rea-ReB < 0, A may be replaced by A; so that we
have Aix = A;PAPx, and Alx = Ay FABx. If ReB >0, then by
Theorem 7.1 we have also Ajx = AfPA%x and A%x = Ay FA%x, Lastly
the case Rea < 0 is reduced to the above case by considering Az!
instead of A. Thus we may assume that 8 =0 and A = A, without
loss of generality.

If Rea is not an integer, then it follows from Theorem 6.5 and
(4.7) that

41| S C@ LL ™ o + O o=y || Asa] ]
Revy Re (a — 7)

for all N > 0. Thus taking the minimum of the right-hand side, we
obtain (8.1) with C(a, 8, v) depending also on Re (@ — 7). We may,
however, change the roles of &« and 8 by Theorem 7.3. Therefore,
taking min {C(«, 8, 7), C(B, a, 7)} for C(«, B, v), we have the assertion.

If Re « is an integer, choose 4, and d, such that 0 < 6, < 6, < Rea
and that any one of 0, d,, Rea — 4, and Rea — 4, is not an integer.
Applying the same method as in the proof of Theorem 2.3, we obtain
(8.1) for v = 0, and d,. If we use these inequalities and (8.1) for a = 0,
or for 8 = 4,, we can similarly prove the statement of the theorem.

THEOREM 8.2. Let xe D(A2)ND(A4E), Rea > Re B, Then ALx is
analytic in the strip Re B < Rev < Rea, and it converges to Aix
(Afx) as v temds to a (B) in a Stolz region arg (¢ —v) < 6 < w/2
(arg (v — B) = 0 < 7/2, respectively).

Proof. The analyticity is already known. Theorem 8.1 implies that
the operator A% from the space D(A%)ND(AL) normed with ||z|| +
|| A% || + |] A% || into X is uniformly bounded if v is in a fixed Stolz
region. If e D’ with ¢ sufficiently large (or D°NR° or R’ according
asReB >0 or Rea-ReB8 =0 or Rea < 0), then A%x is analytic at «
and B. Since D° (or D°NR° or R°) is dense in D(A%)N D(A%), the
statement follows from the Banach-Steinhaus theorem.

ProrosiTiON 8.3. Let e D(A4%) for an . Then A%x converges
to ¢ as v— 0 in a Stolz region if and only if e R(A).
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Proof. If xze R(A), then it follows that xe D(4))ND(A%). Thus
AYx converges to ¢ as v— 0. Conversely if A%z — x, then « belongs
to R(A) as the limit of elements in R(A).

ProposiTION 8.4. Let Rea > 0 and v; be a sequence such that
v;— @ in a Stolz region arg (& — v,) = 0 < n/2. Then x < D(A%) if and
only if x e D(A%) for all § and A¥x converges (weakly).

Proof. Necessity is clear from Theorem 8.2. Let A’z converge
weakly to an element y. Since xe D™ for ¢ >0, we have
(e + Ay Naxe D(AY), 12> 0. Thus it follows from the necessity part
and Proposition 4.4 that

Af(p(pe + Az = lim AU (pu(pe + A7
= w—lim (x(pe + A)) A%z
= (e + A7y .

Let pt— . Then the right-hand side tends to y because y is in D(A).
Therefore, we have by Proposition 4.5 € D(4%) and A%x = y.

9. Domination. The results of this section have been announced
by Krasnosel’skii-Sobolevskii [13].

ProrosITION 9.1. If B is a closed linear operator from X to an-
other Banach space Y such that the domain D(B) contains D(A?%), then
for any B with Re 8 > Re «, there is a constant C such that

(9.1) | Bz|| = C(|| A&« || + =)’ [l«|[=*, «eD(4%),
where 6 = Re a/Re 8.

Proof. It follows from the closed graph theorem that there is a
constant C, such that

9.2) I|Bx|| = C(ll Atz || + |l2]), «eD(43).
(9.1) is an easy consequence of this inequality and (8.1).
THEOREM 9.2. If a closed linear operator B satisfies (9.1) for a

B, Re>0, and a 6, 0< 0 <1, then D(B) contains D(A%) for
every a with Rea > 0 Re 5.

Proof. We are concerned only with the domain D(A4%), so that we
may replace A by A 4+ 1 and assume that A has a bounded inverse
without loss of generality. Then || A%z || gives an equivalent norm to
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[|A%2 || + ||«]|| in D(A%). Further we may assume that 5 in (9.1) is a
positive integer m, because if (9.1) is valid for a B, then it follows
from Theorem 8.1 that (9.1) holds for every @ with a greater real part
without changing the value 6 Re 3.

It is plain from (1.5) and (1.6) that

| B + Ay "x || < CL™M™=0(\ + 1)="¢=9 || z||,  weD(A).

This implies by Proposition 5.1 that for any Rea > m@ there is a
constant C, such that

|BAz*x|| = C,[|z], «eD(4).
Since A7 is equal to (A=%)""|p,, We have (9.2), proving that D(B)>D(4%).

ProrosiTION 9.3. Let A and B be operators satisfying (1.5) and
let D(B%) > D(A%) for an a and a B. Then we have D(B3) > D(A?)
and

|Biw| = C(l Az || + |l=), xeD(AY)
for any v and 0 such that 0 < Red < Re 8 and Re d/Re 8 < Rev/Rea.

Proof. It follows from Theorem 8.1 that

|1 Bia || S C | Bl |[ooms | [-resnes
< Gl e | + | s || |[=mesnes

Now the statement follows from Theorem 9.2.

10. Resolvent and multiplicativity. This section is devoted to
the resolvent of A%. We note that A% is an operator in D(4), and
hence the resolvent is considered only in D(A). It has been shown,
however, that A% is determined by its restriction 4, which has a dense
domain in D(A). Therefore, we may assume that D(A) is dense in X.
Further we shall restrict ourselves to the case a > 0, because this is
the only case important in application. For the general spectral mapping
theorem the reader is referred to Balakrishnan [2].

First we need a specification of the operator A. From the as-
sumption (1.5) and the resolvent equation it follows easily that (» + A4)™*
exists at least for M in the sector |arg\| < arcsin (M~") and that
MM+ A)7t is uniformly bounded on each ray in the sector. Write

M) = sup [[ MM + A7, 6z0.
argyi=

Then by the Phragmén-Lindelof theorem M(6) is an increasing function
of 6 and satisfies some convexity property.
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Modifying the definition of Kato [10], we call an operator A of
type (@, (M@©)), 0=w <= if A is a densely defined closed linear
operator such that the resolvent set of —A contains the sector
|argn| < ¢ — @, and

(10.1) Sup (MM + A7l = M) < o

holds for 0 =< 0 < @ — w. An operator A is of type (w, M(#)) for an
w < /2 if and only if —A generates a semi-group 7, which has an
analytic extension to the sector |argt¢| < n/2 — w such that the ex-
tended 7, is uniformly bounded on each smaller sector |arg¢| < 7/2 —
w — ¢, (Kato [10], Komatsu [12]).

THEOREM 10.1. If A is of type (@, M(0)) and if |arge| < 7w — w,
then cA satisfies (1.5) and we have

(10.2) (cA): = c*A% for all «a .

Proof. Since (M + cA)™ = ¢'(¢™"\ + A)™Y, the former statement is
evident. To prove (10.2) it is enough to show that (cA)ix = c*A%x
holds for all x€ D’ with ¢ sufficiently large (or D’NR’ or R°). This
is proved by rotating the integration path in (4.1) (or (4.11) or (4.10))
since the remainders R, ,(\, ) are estimated uniformly on each smaller
sector.

ProposITION 10.2, If A is of type (w, M(#)) and if 0 < & < 7/w,
then every A > 0 belongs to the resolvent set of — A% and the resolvent
is expressed by

v+ A7) = 3 (@) (=8 + A
(10.3) .

+ Sinwa S‘” 2 (¢ + A)y'de
T o A+ 2M\T* cos . + T

where (;’s are all roots of A + {* = 0 satisfying —z <arg{ =z, and

the integral term disappears when « is an integer.

REMARK. The number % of {;is 0 when 0 < « < 1, 1 when a = 1,
2when 1l < a < 3, 3 when a = 3, etc. This formula was used by Kato
[10] to define A* for 0 < @« < 1. A different proof is given by
Balakrishnan [2] for sufficiently small complex «.

Proof. Let us denote the right-hand side of (10.3) by I(\, ). It
is clear that the integral converges in the uniform operator topology,
and hence I(\, @) is a bounded linear operator. If we prove that
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(10.4) N+ ADI, @)x = Iy, @) + A% = @

holds for every x e D° with sufficiently large o, then the proposition
follows easily as the limits of both sides.

Since the integrand in (10.3) commutes with A and (A + A)™, the
commutativity is easy to see. Now we note that

I\, a) = SnTa X < (z + A)de
T o\ 4+ 2AT* cos T + T
(10.5) 1
= | P+ A,
271, Jre

where ¢ is a small positive number and the integration path I", runs
from ooei@t?) to —e + 40 and from —e — 10 to ocoe¥@t®, This is
proved by the standard technique of shift of integration path. Hence
it follows that I(\, @) is analytic in ac (0, 7/w). If xe D°, (A + A%)x
is analytic in a € (0, o), so that I(\, @)(» + A%)x is an analytic function
of a in the interval 0 < @ < min (7/w, ¢). Thus it is sufficient to
prove (10.4) only for 0 < @ < 1. Let x€ D(A). Then in a similar way

to Proposition 4.9 we obtain

I, ) dse = SUEA[7___ T Ay Awd
(\, a) At - ox+(—r+i0)a(r+ )"t Axdz

o a rN)a—1
+ S (=7 — 10) (r + A)“ledZ']
o A2 + 2\7? cos T + T

M ) a—1
= Bn mg AT (L — 7(c + A ade .
T oAE + 2NT* cos T + T

Now it is easy to see that this is equal to x — NI\, a)x.

THEOREM 10.3 (Kato [10]). If A is of type (w, M(0)) and if
0 < a< /o, then A% is of type (aw, M,(0)), where

(10.6) M“(ﬁ)é<%+ll—%l>M(<21?0+ a;-lﬂ)’r),

with h as in Proposition 10,2, and the resolvent (A + A*)™" is analytic

m a and N in the domain 0 < a < w/w, |arg\| < T — aw,

Proof. When arg § = 0, this is an easy consequence of the re-
presentation (10.3), since we have

Sinﬂ:a S“ Ta—l dT:(l__]’_L_)l._
T o\t 4+ 2NT* cos T + T al \

The case arg 6 = 0 can be reduced to this case because of Theorem 10.1.
The analyticity follows from (10.5).
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ProrosiTION 10.4. If € R(A), then (M + A%)~'w converges strongly
to W+ 1)@ as a@ > 0 tends to O.

Proof. We may consider only the case A > 0. Since (M + 4%)™*

is bounded uniformly in « and D(A)NR(A) is dense in R(4), it is
enough to show that

N+ A e — (W + 1), xe D(AYNR(4) .
We have
N+ A — (W + D7
_ sin T« r T
T oA+ 2NT* cos Ta -+ T

((z + A" — (z + 1) adz .

If « is sufficiently small, zo(\* + 2\t cos rar + 72%)~' is uniformly
bounded. Further, from the assumption that « € D(A) N R(A4) it follows
that

e+ A7 —@@+D)2l =+ +A4)7"QA-Az|[=C+1)7".

Thus we have

Wiy (1 1)1 Ssinnar C, -
v+ A — (4 D] = - O(Z_+1)2dr 0.

THEOREM 10.5 (Yosida [22], Kato [10], Watanabe [20]). If A is
an operator of type (w, M(0)) and 0 < aw < w/2, then — A% is the
generator of strongly continuous semi-group exp(—tA%) which is
analytic in the sector |argt| < w/2 — aw and uniformly bounded on
each smaller sector |argt| = /2 — aw — ¢, e > 0. exp(—tA%) is con-
tinuous in t and « in the uniform operator topology in the domain
largt| < 7/2 — aw, 0< a < rn/(2w). Moreover, if xzecR(A), then
exp (—tA%)x converges strongly to exp (—t) x uniformly on every com-
pact set of the half plane Ret >0 as a > 0 tends to 0.

Proof. The first and the second statements are direct consequences
of Theorem 10.3. The third statement follows from Proposition 10.4
and Theorem 3.2 by Trotter’s theorem (Trotter [19]).

THEOREM 10.6 (Watanabe [20]). Let A be of type (0, M(6)). Then
(10.7) (A3)f = AP
if 0 < a<7zwand ReB > 0.

Proof. (A%)8 and Af are defined to be the smallest closed exten-
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sions of their restrictions to D°(A%) and D*(A), respectively, where ¢
and 7 are sufficiently large. On the other hand, since (A4%)" = A% for
positive integer n by Theorem 7.1, it follows from Theorem 6.5 that
D°(A%) = D((A%)°) = D(A¥)c D*~%(A)C D(A%°~1) = D*'(A%) for positive
integer ¢. Thus we have only to prove that

(10.8) (A%)8x = A%, x € D (A)

holds if 7 is sufficiently large. We may assume that 7z = a(c — 1/2)
with a positive integer ¢. Then, both sides of (10.8) are analytic in
B in the domain 0 < Re 8 < ¢ — 1. Thus it is enough to show (10.8)
for 0 < B8 < min {1, 1/a}, and, say, for xe D(A).

By an easy computation it follows from (10.5) that

AL A+ ANt = —%i_gmc“(x + )= L + A)AwrdC

for A >0 and 2e D(A), where I'y is composed of two rays re®,
oo >1r =0, and re™® 0 < r < o, and ¢ must satisfy = > af > aw.
Therefore we have

(A%)q = S_iP_”érv—lAf;(x + A%)"'xd)
T 0
_ __ITS (= + A)-ledc.Sm—”@S”v*ca(x + £9)~dn
271 Jre T 0

- ~—1—.S LeB1(—C + AyAndl,  ze D(4).
211 Jrg

We may let & = & in the last integral without changing the value and

obtain

(A%)og = ii“z_“ﬁ_ S:T"f’“l(r + A)Avdr = A%

11. The case where —A generates a bounded semi-group.
Throughout this section we assume that —A is the infinitesimal
generator of a strongly continuous semi-group T, which is uniformly
bounded in ¢:

(11.1) IT =M, 0=<t<oc.

A closed linear operator A satisfies this condition if and only if the
domain D(A) is dense, the negative real axis is contained in the re-
solvent set p(4) and

11.2) [0+ A ™| =M, 0< A< oo, m=12 .,
A typical example is the differential operator p = —d/ds in the
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space BJ[0, ) of all bounded uniformly continuous functions z(s) on
[0, ). The corresponding semi-group 7T, is given by
(11.3) Ty(s) = x(s + 1), 2(s) € B[O, =) .

It is well-known that the half-plane Re ) > 0 is contained in the
resolvent set o(—A) and the resolvent is expressible as the Laplace
transform of the semi-group T:

(11.4) O+ Ay = S“e—m Tadt, Rern>0.
0
Thus T, is commutative with (A + A)~'. We note that hence it follows
that T,A"c A*T,, n=1,2, ---, T\A* Cc A5 T,, Rea > 0, and T, A5cC A5T,,
«a arbitrary. A%, Rea <0, coincides with Af since D(A) is dense.
(11.4) implies also that A is of type (x/2, M sec 9).
ProposiTION 11.1., Let Rear < 0 and g« > 0. Then

AL5) (¢ + Ayw = ?(%&;S:t‘“‘le‘“‘ Tadt, weX.

Proof. If 0 < —a <1, then we have by Proposition 5.1 and (11.4)

[ r— 1 “ — 1 ® —At
(1 + Ao = SM(” 1) dxso e T,adt

1 Soo —a—1,—ut
= t “Tadt .
I'(—a) Jo ¢

Since both sides of (11.5) are analytic in «, the equality holds for all
Rea <0,

DEFINITION, Let 0 =% 4+ p = 0 as before. C° = C°(A) is defined
to be the set of e X such that

(i) weD(A"),
and, in case o > 0,

(i) T,A"x — A"z = O(t°) as t — 0.

Let

(11.6) (@) = {IIA%H p=0

" |suptr|| T A" — Ax|| p>0.
t

Then C° becomes a normed space by the norm

|2 + p.(2) .
When A = —d/ds in B0, «), C° is the set of all n-times con-
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tinuously differentiable functions (s) on [0, <) such that the n-th
derivative ¢™(s) is uniformly Holder continuous with exponent p or
simply uniformly continuous when o = 0.

PropoSITION 11.2. C° is a Banach space and contained in D’ con-
tinuously.

Proof. If ¢ =mn, then C° = D° and these spaces are isomorphic.
As we have seen in the proof of Proposition 4.2, the operator A" is
closed. Thus C" = D(A") is complete,

Next let p > 0. We have

(L.7) %,(x) = K(o)p,(v), weC,

with a constant K(¢) depending only on ¢. In fact, it follows from
(11.4) that

[[ A+ A7 || = |[(L —MN + A)7)A ||
< rM‘” | T, A% — Az || dt
< I'(L+ oN"p (@)

Hence we have C°c D°. (11.7) implies also that the embedding is
continuous.

To prove the completeness of C°, let z,;€ C° be a Cauchy sequence.
By (11.7) and Proposition 4.7, ; forms a Cauchy sequence in C*. Thus
there is an ¢ e C" such that #; —« and A"w;— A"r in X, It is easy
to see that

Po(®; — @) = sup lim ¢ [ (T, — DA(@; — @) | = 0.

THEOREM 11.3. Let Rea > 0. If a is real or Rea is nmot an
integer, then D(A%) s contained in CF=,

Proof. Since D(A) is dense, D(A") coincides with D(A4A") = C~.
Suppose that Rea is not an integer. By Theorem 7.1, xe D(A%) if
and only if xe D(A") and A xe D(A5™). On the other hand, xzeC°
if and only if xe D(A") and A"ze C°", Therefore we may assume
that 0 < Rear <1 without loss of generality., If x e D(A%) = D((¢+ A)3),
¢ > 0, then there is a y e X such that ¢ = (¢ + A);*y. Thus we have

Tyw — @ = —r(la) [Tt = oo — ooy Tyat

— S" pa—tgnt T,ydt] .
0
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Clearly the norm of the latter integral is bounded by Mo~'4° || v || with
0 = Rea. The former integral is estimated as follows:

M || y || S: | (t — h)a"‘le“'#(t—h) — ta——le—-p,t I dt
b ur St 1—0 g—1,—us
= Mllyll-g——|,d H(- - +#>8 —

‘1—_01 4
éth [yl .

ProrosiTiON 11.4 (Balakrishnan [1]). Let ¢ > Rea > 0. Then
for every xe D’

a _— 1 * —a—1
(11.8) At = o Sot Tdt

in the sense of Sato or

« 1 N —a—1 tn n
Ay = t Y (T —x — tAx — «+. — Z_A"x)dt
I'(—a) Ll n!
(11'8), n Nk a oo
+ 3 N g g S t—"‘—thmdt] ,
=k — « N

where 0 < N < oo. In particular, if 0 < Rea < 1 and ¢ > Re a, then

(11.9) A — F(ia) S:t—““l(Ttx —2)dt, weDe.

Proof. If xe D’ it follows from Theorem 11,3 that x e C°—¢ for
¢ > 0. Thus the integrals of (11.8)" converge absolutely, Further, it
is easy to see that the right-hand side of (11.8)' represents an analytic
function of a for 0 < Rea < ¢ independent of N. Incase 0 < Rea <
g <1, we can make N tend to infinity and obtain (11.9). Since A%x
is also analytic in a and (11.8) does not depend on ¢ > Rea, it is
enough to prove equality (11.9). By (4.2) and (11.4) we have

Ay = ——%ﬂrvdxre‘“(ﬂx — )t
0 0

1 S""__
_ te (T — x)dt ,
[,( )0 (t )

completing the proof.

THEOREM 11.5. Let p = —d/ds in B0, <) and Rea > 0. Then
x € D(A%) iof and only if
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(11.10) T,y >e D% for all y'eX’', and
there is a function f(s)e X independent of y' such that
(11.11) pKTew, y'> =< f8), > .

If X is sequentially weakly complete, the second condition may be
omitted,

Proof. First we remark that {T,y, y'> e B[0, =) for all yc X and
y' e X', In view of Proposition 11.1 we have

(T o+ A5, 07> = s |6 — 9= Ty, '

= (¢t + p)i<Ty, ¥
for £ >0. Let xe€D(A%). Then there is a ye X such that
¢ = (¢ + A)y*y. Thus we have by (11.12)

KT,y = (¢ + p)y <Ly, y>e D(p%) .
Similarly it is shown by Propositions 6.2 and 6.3 that
(11.13) piKTy, y> =<T,A%x,y">, weD(AY).

This proves (11.11) with f(s) = T, A%,

To prove the converse, first let @ be an integer %. Since as-
sumptions (11.10) and (11.11) show that T,x is » times weakly differ-
entiable at s = 0, it follows that x e D(A) (see Komatsu [12]), and we
have by (11.13)

(11.14) KT,y =T Az, y'>

Assume that the theorem is true for smaller integers. Then it follows
from (11.14) that Ax e D(A™"'). Hence we have x e D(A").

Next if a is not an integer, take an integer n such that n + 1 > Re .
(11.12) with Theorem 7.1 gives

(11.12)

{T(p + A)iPo, y"> = (1t + p)iX T, y> e D((¢ + p)**') = D(»"*) ,

if =m+1—a and g > 0. Moreover, we have by Propositions 6.2
and 6.3

p" KT (¢ + AP, ¥
= pi(e + p)iPpi T2, ¥
= (p(t + p)™)iKf(s), ¥

= <F6), vy = ERIB [ \o(r — nyan[Teenc £ ), uat
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Since f(s) is uniformly bounded and weakly continuous, it can be shown

that the integral SMV(# — ,\)‘ﬁdxre“’*“‘”f (t)dt converges weakly (see
Q s

Komatsu [12]). Thus there exists a function g(s) e X such that

p KT + A)Po, y'> =<9(s), ">,  yeX'.

Applying the theorem in the case of integer = -+ 1, we obtain
(¢ + A);Px e D(A™). Since D(A) is dense, it follows from Theorem 7.1
that x e D((¢r + A)3) = D(A%).

Lastly let us prove that if X is sequentially weakly complete, the
existence of f(s)e X satisfying (11.11) follows from (11.10). Let =z
satisfy (11.10). In view of Theorem 11.3 we have (T.x, y">< C’(p) for
any ¢ < Rea, i.e., 2(s) = T,x is n times scalarly differentiable and the
n-th derivative is scalarly uniformly Holder continuous with exponent
0,0="n+ 0.

If o> 0, we can replace the word “scalarly” by “strongly”. It is
evident that x(s) is » times weakly* continuously differentiable in X"
and {(z™(s) — " (¢))/|t — s|°} is weakly* bounded in X”. Since a
weakly* bounded set is strongly bounded, x*(s) is strongly uniformly
Holder continuous in X”. Hence it is easily proved that z"(s),
k=1,2 -.., n, is strongly continuous in X"”. In particular the differ-
ence quotient

o(s + h) — a(s) L[,
! ‘%Ss &' (t)dt

converges strongly to 2’(s) in X” as h— 0. This proves that x(s) is
strongly differentiable, Repeating the same argument, we see that x(s)
is m times strongly differentiable and the n-th derivative is strongly
uniformly Holder continuous with exponent p.

As we have shown above, it then follows that xze D(A") and
(—d/ds)"T,x = T,A"x. Therefore x belongs to C’(4). In particular we
have x e D(A%) for Re 8 < Rea and

P T,y =< TAlx, y>, y'eX'.

When g tends to a in a Stolz region, the left-hand side converges to
pi{Tx, y'>. Since X is sequentially weakly complete, there exists the
limit
f(s) = w—limT,Axe X |
B—-a

which satisfies (11.11).

Incidentally, we have proved that if x satisfies (11.10), then
xe€ D(AE) for Re8 < Rea in any case,

Similarly to Theorem 7.6 the following theorem holds.
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THEOREM 11.6 (Hardy-Littlewood [6]). (i) Let ¢ > Rea > 0. If
o — Rea is not an integer, then A%(C°) is contained tn C°%=, (ii)
If Rea <0 and if 0 — Rea is not an integer, then AYC’° N D(A3)) is
contained im CoFee,

Proof. (i) We may assume that 0 < Rea <1 without loss of
generality. First let Rea < p. (11.9) gives

(T, — 1) A" A% = F(ia) S:t'“‘l(Th —1)(T, — 1)A"edt .

Hence, using the estimate
(T — I(T, — DA || = (M + 1)p,(x) min {h*, ¢},

we obtain

1Ty — Dardse | = PEDR) (L y L Yjoonee

| (—a)| 0—Rea Rea
In case p < Rea, we employ the identity
k t
(T, — 1) A* A% — F(ia) [S t‘““ldtSOTs(Th — 1) Areds

+ rt‘“‘ldtgh T(T, — 1)A”xds] ,
h 0
which follows from (11.9) and Theorem 11.5. From the estimate
HYTS(T,L — l)A”ocdsH < Mp,(z)th?

and the one with ¢ and % interchanged, it is concluded that
(T, — 1)A'A%x = O(h*~=+) | as h—O0.

(ii) The proof of (ii) in Theorem 7.6 can be modified to this case with
no difficulty.

THEOREM 11.7. If 0<a <1l,Ax>0and n=1,2, .., then there

is an analytic function o™a, \, s) > 0 defined on (0, ), independent
of A, such that

(11.15) (v + A%)"w = x-ng"lpn(a, N, 5)T.ads .
o™, N\, s) satisfies

(11.16) rq;n(a, N, s)ds =1,
0
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In particular we have

(11.17) OO+ A =M, n=12---

Proof. Combining (11.4) and (10.3), we have

11.18) (n + A7) — SR 7 S“’ cdt S” ~ T
( ) A T o N2 + 2\TY eos T + T 0 M0
- x—lr(pl(a, N, ) Toads |

0

where

P, s) =

\ sin o S“’ T~
T oA+ 2AT% cos T + T2

It is easy to see that @'(a, \, s) is positive and analytic for 0 < s < oo
and satisfies (11.16). Let us define o"(«, \, s) for n > 1 recursively by

" (@, N, 8) = p"(@, N, s)xpl(a, N, 3)

= | o s = g, n, tyat .
0

(11.15) for general n is proved by induction.
Other properties of o™(«, A, s) are clear by the definition.

THEOREM 11.8 (Phillips [16], Yosida [22]). If 0<a <1, then
there exists a positive analytic function (e, t, ) on (0, oo)* such that

(11.19) S:Qp(a, t,s)ds =1,

and the analytic semi-group exp (—tA%) gemerated by — A% has the
representation

(11.20) exp (—tA%)x = Sma,lr(oz, t,s)Txds .
0

exp (—tA%) is untformly bounded:
(11.21) llexp(—tA) || =M, 0 <t <o, 0<a<l,

and converges strongly to T, = exp (—tA) as a tends to 1. The con-
vergence is uniform on every compact set inm (0, o).

Proof. Let

T, t, 5) = Y(pn(a, nlt, r)dr .
0
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Then we have by (11.15)

(11.22) (1+ E‘%)“”x - S:Tsxdqf”(a, ts)

and in particular

<1 + to )‘"x — S“’wde(a, ts), a>0.
n 0

Since {¥"} is a uniformly bounded sequence of increasing functions,
there is a subsequence which converges to an increasing function Z(«, ¢, s)
except for a countable set. Now it is easy to see that

|[emaria,t,5) = lim ["ewar(a, 1, 9)
0 n’—oo J0O

(11.23)
= exp (—ta”) , a>0.

Letting a — 0, we have also
S:diﬂ'(a, ts)=1.
Thus it follows that
S:f(s)dlﬂ(a, t,5) = lim S: F(5)d¥™(a, ¢, 5)

for every bounded continuous function f(s). In particular (1+ tA4%/n')""2

converges weakly to S”Tswdyf(a, t, s). On the other hand, (1 4 t4%/n)""x
0

converges strongly to exp (—tA%)x (Hille-Phillips [7]), so that we have

exp (—tA%) = g:Tsxdilf(a, ts).
(11.23) shows that exp (—\®) is the Laplace transform of d¥ («, t, s).
It is not difficult to derive from this fact that d¥(e,t, s) has an
analytic density +(«, ¢, s).

According to Trotter [19], a sequence of semi-groups 77 converges
strongly to a semi-group 7, if T is uniformly bounded and the resolvent
converges at a point A > 0. This is surely the case with T = exp (—tA®)
by (11.21) and Theorem 10.3.

12. The case where —A generates an analytic semi-group.

THEOREM 12.1. Let A be an operator of type (w, M(0)) with
o < /2, and let T, be the analytic semi-group generated by —A. If
largt| < 7w/2 — w, t # 0, then T.xe D(AL) for any = and Rea >0,
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and we have

(12.1) AT = LS (—0)%e™(n + A)-zdn

21 Jr
where the path I’ consists of two rays from coe=* to 0 and from 0
to woe® with /2 < 0 < n/2 + |argt|. There is a constant C depending
only on a,e > 0 and A such that

(12.2) |AST, || S Clt| ™, |argt| = n/2 —w —¢.

Proof. Since T,x is analytic in the sector |argt| < 7/2 — w,
Twwe D(A%) for any Rea > 0 and A% T,x is analytic in «. The right-
hand side of (12.1) expresses also an analytic function of @. Thus it
is enough to prove (12.1) for 0 <a < 1. If xe D(A), we have the
integral representation

(12.3) T = _1-S oM + A)wdr
271 Jr

(Hille-Phillips [6]), so that we obtain by (11.9)

AiTw = r(ia) S:’S“a—lds 'zilt—igr(e” — 1)e™(n + A)~'xd)
_ 1 A - 1 S“’ e
= ——\ (M + 4)"xd: a—i(gsh _ ]
27 Spe (v AyTmdh ey ), e = Lds
= o | (=N + A
2w Jr

Since both sides of (12.1) represent bounded operators, (12.1) holds for
every x. (12.2) follows easily from (12,1). Conversely,

THEOREM 12.2. Let T, be a bounded semi-group and —A be its
generator. If there is a complex number o with Rea > 0 such that
(12.4) AST, || = Ce™, t>0,
with a constant C, then A is of type (w, M(0)) for an w < /2.

Proof. Since A% commutes with T,, A1T,x = T,,A% T, is still in
D(A%) and we have (A%)*Tw = A¥Tw = (A% T,,)*x. Similarly we have

Txwe D(A™) and AT = (A1T,,)"x for any integer n > 0. Thus it
follows from (12.4) that

| AT, || < (Crymect=rme >0,

Taking an % such that Re na > 1 and applying Theorem 8.1, we obtain
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the estimate
AT, || = Ct™, t>0,

which is a necessary and sufficient condition that A is of type (w, M(6))
with @ < 7/2 (Yosida [21], Komatsu [12]).

REMARK. If condition (12.4) is satisfied only for small ¢, it follows
that for every ¢ > 0, A + ¢ is of type (0, M(0)) with @ < 7/2 because
the same calculation leads to

(A +ee =T, || =Ct™, t>0.

THEOREM 12.3. Let A and T, be as in Theorem 12.1 and let ¢ > 0
be not an integer. Then the following conditions for & are equivalent.

(i) For each € > 0, there is a constant C independent of t in
the sector |argt| = w/2 — w — ¢ such that

(12.5) | T, A" — A" || = C|t].
(i) wecC.
(i) «e D,

(iv) For each Rea > o and € > 0 there is a constant C such that
(12.6) AL T|l = Clel~™,
for |argt| = w/2-- w — &,

(v) (12.6) holds for an a, Rea > o, and sufficiently small t > 0.

Proof. Implication (i) = (ii) = (iii) and (iv) = (v) are immediate.
(iii) = (iv). We may assume that 0 < ¢ < 1 without loss of generality.
If x€ D°, then the estimate

12.7) IO+ Az — Nz || < C[n |~

holds uniformly on each sector |arg\|=7—®w —¢, ¢>0. In fact,
the resolvent equation gives

MO+ A)™ = N = (L4 (it — MO + A+ A — )z

If ) is in the sector |arg\| =7 — @ — ¢, we can choose a ¢ > 0 such
that C,|\| = ¢ = C,| M| with constants C; independent of A. Thus we
have

1Oy + 7w =22l = 1 4 (G + DM(w — @ — €)Cr° [N [ g, (x) .

Since SP(—N)“e“rldx = 0, it follows from Theorem 12.1 that
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| A% Ty || = HLS (—N)%e™(h 4+ A) — x‘l)acdxH
2w Jr

< CSSwTRea—a—le—cltlrd,r
0
— 04 } t Ja—-Rea .

(v) = (ii). First we note that if (12.6) holds for an «, then it holds
for every a with a greater real part. For, if Re 8 > 0, then

| AT || < || ATy || || AL Ty || = Ctometethy
Therefore we have
(12.8) [(=A)"Tx| = Ct"™, 0<t<t,

for an integer m > 0. Since (—A)"T,x is the mth derivative of T,x,
it follows that

| (=A™ T — (— AT,z || =

Y(—A)mnxdr H
(12.9) s
éC|0.__.m+ ll—l.|to—-m+1_so—-m+1]’ t,Se(O,to).

If m — ¢ > 1, we have (12.8) with m replaced by m — 1. If m — o < 1,

then (12.9) shows that (—A)™'T,x converges as t— 0, so that = be-
longs to D(A™"). Letting s— 0 in (12.9), we obtain also

I T(— 4" — (— A"z || = C|o — m + L[~

This proves x e C°,

The implication (iv) = (i) is proved similarly,

Even when ¢ is an integer > 0, the equivalence of (iv) and (v) is
proved in the same way.

DEFINITION. When — A generates an analytic semi-group, let us
denote by B°, 0 >0, the set of all x such that (v) (or (iv)) of Theorem
12,3 is satisfied.

Then Theorems 7.6 and 11.6 are unified in the following way.

THEOREM 12.4. Let A be as above. If 0 > Rea > 0, then A%
maps B° into B°**, If o > 0and Rea < 0, then AY maps B° N D(A?)
into B~"*, Note that ¢ — Rea can be an integer.

Proof. Let xeB°ND(A*). If ReB >0 — Rea, we have by
Theorems 7.1 or 7.3
| AET A%z || = || ARAS T ||
= || AT T ||
= C|t|oRetath) |
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13. Miscellaneous results. In this section we give a few results
and applications related to the fractional powers of operators with and
without proofs.

THEOREM 13.1. Let X DY be two Banach spaces such that the
topology of Y s stronger than that of X. (By the closed graph
theorem it is enmough to assume that if z;— x in X and ¢; —y in Y,
then @ =y.) If a closed linear operator A im X and its maximal
restriction B in Y (see Section 1) satisfy assumption (1.5) in X and
Y respectively, and if D(B) ts dense in Y, then B% is the maximal
restriction of A% in Y. If in particular Y is a closed subspace of
X, then the maximal restriction is the simple restriction to Y,

Proof. It follows from the assumptions that (A + 4)~%, A > 0,
maps Y into Y and

(13.1) N+ B)t=0N+ A1y, A>0.,
Hence we have
(13.2)  BIN(M A+ B)" = AN+ A7y, n > Rea.
Let ye D(B%). Then Proposition 4.5 shows
Bia*(M+ B)y™y—Biy in Y ag A — oo,
so that we have
AN (v + A"y —Bly in X,

Since y € D(B) < D(A), this proves that y e D(A%) and A%y = B%y.
Conversely let ye D(A%2)NY and A%y Y. We have

BiI\'(M + B)™"y = A{A(M + A7y
= A"+ A)" A%y
=\"(M + B)"A%y .

Since D(B) is dense in Y, it follows that
(13.3) B:\"(M + B)™y— A%y in Y as A — oo,

Therefore we have y € D(B%) and B%y = A%y.
If Y is a closed subspace, (13.3) holds without the assumption that
A%y e Y., Thus the simple restriction gives the maximal restriction.
The assumptions of Theorem 18.1 are satisfied if —A is the
infinitesimal generator of a bounded semi-group T, in X, Y is invariant
under T, and the restriction S, = T, |, forms a bounded semi-group in
Y. In this case —B coincides with the infinitesimal generator of S,.



FRACTIONAL POWERS OF OPERATORS 335

Let us denote by ¢,(Z) the space of all sequences © = (£,), k = 0,
+1, +2 ..., suchthat&,— 0 as |k |— c and normed by || || = sup| & |.
Then each of L?(T), 1 = p < «, and C(T) on the unit circle T is
embedded in ¢,(Z) by the Fourier transformation. The translation semi-
group S,:

(13.4) S,x(e”) = w(e?*™")
becomes the restriction of the semi-group T, defined by
(13.5) Tu(&) = (7)), (&) €clZ) .

We denote by —A and —d/ds the infinitesimal generators of T, and S,
respectively. By a simple computation it is shown that

Ai(&) = ((Wk)*s)
D(A%) = {(¢x) € e Z); ((1k)*E) € c(Z) .
Thus we have:

ProposITION 13.2. Let X be any one of L?(T), 1 < p < o, and
C(T). Then a function

w(e®) ~ 3 et e X

k=—co

belongs to D((d/ds)%) if and only if the formal sum

(%)a x(e*) ~ k;%::“m c(tk) et

represents a function in X,
The following two theorems may be proved in the same way as
Theorem 13.1,

THEOREM 13.3. Let X and Y bz Banach spacss, and T be a con-
tinuous linear mapping from X to Y. If closed limear operators A
and B satisfy

(13.6) BTx = TAx , x e D(A)

and assumption (1.5) in X and in Y, respectively, then we have
(13.7) BiTx = TAx , xe D(AL) ,

where A% has the same subscript as BX.

THEOREM 13.4 (Love-Young [14]). Let X be a Banach space and
let X' be its dual space. If an operator A in X satisfies (1.5) and
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has a dense domain, then its transposed operator B = A’ also satisfies
(1.5) and B% is the maximal restriction of (A%Y in D(B). If, more-
over, R(A) is dense, then B~ and B} are the maximal restrictions of
(Az) in R(B) and D(B) N R(B), respectively.

Let us apply Theorem 13.3 to the regularity of the convolution of
functions. Let A be the negative of the generator of translation semi-
group

T,x(s) = a(s — t)

in B(— o0, o), and let B be the corresponding operator in L'(— oo, o).

PropPoSITION 13.5. If x(s)e D(A%) and y(s) € D(B?), then the con-
volution xx*y(s) € D(A%F).

Proof. The mapping T: B(— oo, c0) X L(— o0, c0) — B(— o0, o) de-
fined by T(x,y) = x+y is a continuous bilinear mapping, and we have

A(x*y) = Aw*yy xeD(A)’ yeLl(——oo, oo) ’
A(x+y) = 2% By, x€ B(— o, ), ye D(B) .

Therefore it follows from Theorem 13.3 that if xe€ D(A%) and
y€ LY(— o0, ), then xxye D(A%) and A%(x*y) = (A%x)xy. If, more-
over, y€ D(B%), then we have (A%x)xyec D(A%) and AS((4A%x)*y) =
(A3w)«(Bfy), so that xxy belongs to D(A%*).

COROLLARY 13.6. Let x(s)€ B(— oo, ) be uniformly Holder con-
tinuwous with exponent 0 < a <1 and let y(s) € Cy(— oo, o) be uniformly
Holder continuwous with exponent 0 < B <1, If a+ B>1, then
xxy(s) s differentiable and the derivative is uniformly Holder con-
tinuwous with exponent a + B8 — 1 —¢, for an arbitrary ¢ > 0. If
o+ B =1, then xxy(s) is uniformly Holder continuous with exponent
a+pL—e¢g >0,

THEOREM 13.7. Let

A= gcmmo

be a mormal operator in a Hilbert space X. Then A is of type
(w, M(0)) if and only if the spectrum o(A) is contained in the sector
larg N | = . If this is the case, M(6) satisfies

1 0<n/2—
M(49)§{ ’ =m2—o
cosec (® + 0) , 0>7nl2—w.
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In particular, a normal operator is the negative of the generator of
a bounded semi-group if and only if A is of type (72, M(6)).

In order that an element x belong to D° it is mecessary and
sufficient that

0.0y = sup | [ L [ | B Qe | < e

When — A generates a semi-group, D° coincides with C°.
The fractional power A* is given by

45 = | B @),
C
Az = S CdE() .
C—{0}
The domatn D(A%) consists of the elements & such that
5ol = [ lcr ) BQe P < e .

If Rea = Re B, then || Aix|| is equivalent to || ASx|| and D(A%) = D(AR).
However, D(A%) does not coincide with D¥* if A is unbounded and
Rea is mot an integer.

Proof. We prove only the last statement. We have
MINF PP =0, V>0, |argl| S @
with a constant C depending only on 0 <o <1 and w. Thus if
xe D(A%) for a ¢ =n + p > 0, we have
qn, @) = SV" IN+ PP d [ EQe | = Ol At .

Further it follows from Lebesgue’s theorem that
gn, ) —0 as A—0,

If A is unbounded, however, it is not difficult to construct an element
2 or a measure d || E({)x | such that

gv, x) = C and g(n, 2) 0,

This completes the proof,

Let us denote by H the space of functions x(z) which are con-
tinuous on the unit disk |z| =< 1 and analytic in the open disk |z| < 1,
and by H?, 1 = p < oo, the Hardy space C L?(T) (Hoffman [6]). Then
the translation (or rotation) group S, restricted to H or H? becomes
the boundary group of the analytic semi-group
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(13.8) Sua(ei) = z(e™tei—"t)  Imt =0,

—1id/ds, which is the negative of the infinitesimal generator of S, in
the direction of the negative imaginary axis, satisfies the conditions of
Section 12, so that if ¢ > 0 is not an integer we have

1d 1d 1d
Do — ) = of ~- N\ — Ba = 2.
(ids> C<ids> (ids)
On the other hand, we have shown in the proof of Theorem 12.3 that

D°(—1d/ds) = D°(d/ds). C°(—id/ds) coincides with C°(d/ds) because of
the identity

S2h — 1= (S(l—i)h — 1) - S2h(S(—1—-i)h - 1)

and the equivalence of (i) and (ii) in Theorem 12,3, Further it follows
from the identity

1 d . is — isi is
7_%@(7'6 ) =re dzx(w )
that || —idx/ds|| is equivalent to ||dx/dz|| if r is near 1, Thus we

have proved the following theorem.

THEOREM 13.8 (Hardy-Littlewood [5]). Let X be H or H?,
1=p< oo, and let 0 <o <1. Then the following conditions for
xe X are equivalent.

(i)Hfmwwwww—xwmwuzouﬂ,»am.

(i) [[a(e™™) — 2(e”) || = O(h"), h—0.
(iii) [[@(re’) — a(e”) || = O(A — 7)), r— L.

(iv) H%x(reﬂ) =0 — 7)), r—1,

1d
D{__.
(v) =ze 7 ds>
If 1 <p < o, M. Riesz’s theorem (Zygmund [24], Hoffman [6])
states that the natural projection P from L*(T) to H? is continuous.
Since P is commutative with (A + d/ds)™, we obtain the following
theorem.

THEOREM 13.9 (Hardy-Littlewood [5]). If1<p < o and 0 <o <1,
then the following are equivalent for xe L*(T).

(i) xeD(d/ds).

(ii) =«e C(d/ds).

(ili) « = x, + Z,, where x;€ H? satisfy one of the conditions of
Theorem 13.8.
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Similarly Privalov’s theorem (Zygmund [24]) proves the following
theorem.,

THEOREM 13.10. A function x(e*)e C(T) is uniformly Holder
continuous with exponent 0 < o <1 if and only if there are two
functions x*e H satisfying the conditions of Theorem 13.8 such that

w(e’) = w,(e*) + ,(e”) .

Theorem 9.2 may be applied to the theory of partial differential
equations,

Let A(x, 0/ox) be a strongly elliptic linear partial differential
operator of order 2 in a domain 2 C R" and let B(z, 0/0x) be a linear
partial differential operator on 02. It is known that if A(x, d/0x),
B(x, 0/0x) and the domain 2 satisfy certain conditions, then the smallest
closed extension A in L?(Q), 1 < p < «, of the operator A(x, d/ox)
restricted to the space {u e C=(2); Bu = 0} satisfies:

D)W@),
3.9 IVl + lule, = Clldull,, weDA),

and —A generates an analytic semi-group.

Let us prove that if n/p < 3, there are constants 0 < @« < 1 and
C > 0 such that

(13.10) I Vu-ullz, = Cll Afullz,,  weD(A3),

(18.11) [[Vu-u — Voo, = C(| A%ullz, + [ A%v|lz,) [| A% — ) [z, ,
u, ve D(A%) .

Obviously we have

| Vurwllz, = [| Vil [, ,
| Vuru — Vool = || Vull, |w — vl + | Ve — Vol |l v, ,

where pt =7t + s, r,s =1, Let

1/n 1
— — (= 1), —
! max{4<p + ) 2}
and choose suitable » and s, Then it follows from the Sobolev-
Gagliardo-Nirenberg inequality (Nirenberg [15]) that

17w lls, = CUI* N, + I z,) w15
sy = CUVPulls, + lwlls,) 15 -

Combining these inequalities with (13.9) and applying Theorem 9.2, we
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obtain (13.10) and (13.11).
Once inequalities (13.10) and (13.11) are established, the local
existence theorem for the Cauchy problem of the nonlinear equation:

3 B 9 : o
2 ut, ) = A(w, at)u tab@giu,  we0,
0 _

B(m, %)u(t, ©) =0, wzecoR,

u(0, ) = u,(x) € D(47) ,
is proved by the method of Fujita (Fujita-Kato [3], Ito [8]).
14. Counterexamples. This section is devoted to various counter-
examples which show that the statements of some theorems cannot be

improved in general,
1. If X is not reflexive,

(14.1) O + Az — A = OOF)

does not necessarily imply that xe D(A4). Let A = —d/ds in B|0, o).
If xe B[0, ) is uniformly Lipschitz continuous, then we have

(O A7 =) | = ([ e als + 1) — a(e)at
< CS:te‘Mdt — Cr@N.

Thus « satisfies (14.1), but it is not always differentiable.
On the other hand, by the same computation, we obtain the following
theorem as a corollary of Theorem 2.1.

THEOREM 14.1. Let X be a reflexive Banach space and let — A be
the generator of a bounded semi-group T, in X. Then xzc D(A) if
and only if

(14.2) T —x=0(@) as t—0.

In particular a Lipschitz continuous function in L?(a, b), 1 <p < o,
is differentiable in L”(a, b) (Hardy-Littlewood [5]).

2. The domain D(A) is not necessarily dense even if A satisfies
(1.5). In the space m of all bounded sequences, the operator A,

A& = (k&), D(A) = {zem; Avem},

gives such an operator, D(A) coincides with c¢,.
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3. (3.6) is not true in general. Let A = —d/ds in B[0, =),
Evidently the null space N(A) is composed of all constant functions,
Whereas for any constant e,

x(s) =sin1s +e¢

does not satisfy
(14.3) sup S "Nz dE—0 as A—0
820 8

so that sin1”s does not belong to N(4) + R(A).
It should be remarked that by a Tauberian theorem (14.3) is
equivalent to

(14.4) S’”x(t)dtj — o(N) as N— oo .

4., The Weierstrass-Hardy function
(14.5) (e'r) = ,,2 beke® b =28 ..., 0< 0 <1,

belongs to C°(d/ds) in H and hence in any one of C(T'), H? and L*(T),
1 =< p < o« (Hardy [4]), but its formal fractional derivative

is not even in L'(T), so that x does not belong to D((d/ds)?.) in any
of the spaces H, C(T), H? and L?(T). Since

1d 1d s ek

‘ i ds( tT i ds> “H_ =i+ b

=, po-o 1 1\
R e :(1—b-v )N

eibks

A

the first statement follows from Theorem 13.8.

5. If o is an integer, B° may be wider than D°. The function
(1 — 2)(log (1 — 2) — 1) belongs to B'(—id/ds) in H, but clearly it does
not belong to D'(—id/ds).

6. Contrary to the case of normal operators, D(A%) may be different
from D(A%) even if Rea = Re g,
Let S be the shift operator in ¢,

(14.6) S(&, §oy &g oo ') = (0) £, &y o ') ’
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and let

=(1l—8)"=1+8+8+8+
A(En 52, &s "') = (51: &+ Ez, &+ E2+$3y "’) .

The domain D(A) is the set of all sequences (&,) such that 35, &, = 0,
which forms a dense subspace. The resolvent is given by

’

14.7)

- 1 1 had Y h=t
14.8) (A 4 A~ = — S% Rex> 0.
(14.8) ( =T (x+1)ﬁz§1(x+1> >
Since the norm of an operator P of the form
P: icksk
k=0
with a dense domain is given by

(14.9) 1Pl = Sl

the resolvent is estimated by

v+ A7 = A+ (x+ 1= 2D

|x+1]

(14.10) .
< il
:z(ReH 2) . Rer>0.

Therefore A is an operator of type (7/2, 2 sec 6).
By an easy calculation it is proved that

(14.11) A* =1+ aS + %;_1)52 L alo 13)‘(cv +2) go

for every complex number a.

Since A~ is bounded, A* is bounded for Rea < 0, and clearly
A’ =1 is bounded. However, the pure imaginary power A* is un-
bounded for any ¢ == 0, because we have

”Azt”_l_l_|,Ltl_|_"Lt(’bt-l—l)’_I_'?/t(%t—Fl)(?/t—l—z) Foeen

3!
=1 —|t —|t cee = oo,
= +|t|+2l[+3|1+
More generally let us prove that
(14.12) D(A™)y = D(A%, ¢ >0, t >0,

If D(A°+%) > D(A°), there would be a constant C such that
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(14.13) A e || = C(| A% || + [[@]), ve D(A’) .

Since A~ is bounded and D(A) is dense, it follows from Corollary 5.3
that D(A°) = R(A~’) and that there is a constant C, such that

(14.14) A+ [le]l = Cillyll, for @=A"y.
Let y, be a sequence in D(A") such that
(14.15) ly;ll =1, [[A%;llz7d,i=1,2,---.

Theorem 7.3 proves that A=y, e D(A°"*) and A"*"*A~y, = A"y;. Thus
we have by (14.13) and (14.14)

| Ay | = [| A"t A7y, || = CCilly;ll

which contradicts (14.15).

7. In the statement of Theorem 9.2 “Rea > 6§ Re 8” cannot be
replaced by “Rea = 6§ Re 8”. In view of Theorem 8.1 we have

| At || = C |l w7 || @[, e D(4), 0 <o <1.

But (14.13) does not necessarily hold.

8. Although the operator A in 6 is of type (7/2, 2sec), —A is
not an infinitesimal generator of any semi-group of class (4).
If —A generates a semi-group exp (—tA), then we have

—7i00

exp (—tA)x = 51_'(0, 1)—§i°° M\ + A)wdn, we D(A) .
T 2

(See Hille-Phillips [7].) Since D(A? is dense, and (A + A)~' has ex-
pansion (14.8), it follows that exp (—tA) must have the form

exp (—~t4) = exp (1) + 3 fi()S",
where

£ty = 27 o 1y
TV J—iee
th+1

»_kgl h+1 E—1 .
= St ) hgrem o

If exp (—tA) is bounded, 37, |f.(¢)| is finite, so that the function
P(R) = i, fi(t)2F must be continuous on the disk [z| = 1. We have,

however,
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oo Bl th+1 oo E—1
vo =50 aigren o 5 (T )

th+1

= fv-‘<1—z>h+l A

= (exp < ]j—ftz ) — 1) exp (—t) .

This shows that 4(2) is discontinuous at z = 1.

An example of operators of this kind has been given by Phillips
(Hille-Phillips [6]), but this example is more interesting because
—A™' = —1 + S generates a continuous contraction semi-group

o AY
exp (—tA~) = 310" oy ()¢,
= k!
llexp (—tA™) || = exp(|t| — Re?) .
9. Even if —A generates a contraction semi-group,

Atz ] = || Az | [le [, 0 <7 <1, xe D(4)

does not necessarily hold. Let A=1—S,y=1/2and2=(1,2,1,0,0,--+).
Then we have

Ax = (1’ 1y ’—13 '—1, Oy Oy "') )
At = (1,3/2, —1/8, -+-) .

Thus
| A || = 3/2 > || Aw || ||z | =12 .

10. If X is not sequentially weakly complete, Theorem 11.5 may
be false without assumption (11.11), The semi-group

Ty(&r) = (67784, (En) €

has the infinitesimal generator
—A(E) = (—ké&), D(A) = {(&) € co; A(Er) € 0o} .
The element « = (1, 1/2,1/3, -++) does not belong to D(A4), but

(T, o'y = 3 e nfk
is differentiable for every y' = (1) € l' and

~ LT,y = S e e BIO, =) .
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REMARKS ADDED ON REVISION., Suppose ¢ > 0 is not an integer.
Let us denote by Dg (C%) the set of all xze D?(C°) which satisfies
stricter estimate

Rn(kﬁ x) = 0(7"—0—1), A— o0
(T, A"x — A™x = o(t°), t —0) .

Then we have
D> D(A%Y), Rea =0
and, if —A generates a bounded semi-group,
Dz 5C% > D(AY), Rea =0,

The inclusion DZ o Cg is proved in the same way as in the proof
of Proposition 11.2. Since Dg (C%) is a closed subspace of D’ (C°) with
the norm ||% || + g.(*) (||| + p.(x)) and contains every D7 (C?) with
T > o, the other inclusions follow from the estimates

el + g@) = C(l || + [ As@ ) ,
]l + po(x) = C(|@]] + [[ AT ()

and the definition of A%,
D+ = G = D(4%)

holds for the operator A of Example 10 of Section 14.

In the space Dy the approximation theorem (Lemma 2.4) holds in
the norm topology. Thus if we used D7 instead of D’ we could avoid
the strange topology of D°.
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