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A NOTE ON TOPOLOGICAL TRANSFORMATION
GROUPS WITH A FIXED END POINT

WILLIAM J. GRAY

Let (X, T, IT) be a topological transformation group, where
X is a nontrivial Hausdorff continuum, and 7' is a topological
group which leaves an endpoint ¢ of X fixed. Wallace showed
that if X is locally connected and 7' is cyclic, T' has another
fixed point. In a later paper, Wallace asked the following
question: if X is a peano continuum and T is compact or
abelian, does 7' have another fixed point?

In 1952, Wang showed that if X is arcwise connected and
T is compact, T has another fixed peint; Chu has recently
extended this result by showing 7 has infinitely many fixed
points. Gray has shown that in the abelian case, the answer
to Wallace’s question is ‘‘no>’ (in general). However, if T is
a generative group, and if X is arcwise connected, 7' has
another fixed point. In this paper we will generalize the last
result. In fact, we show that if X is arcwise connected or
locally connected, and 7 is a group of the form AH, where
H is a connected subgroup, and A is an abelian group
generated by a compact subset, and A lies in the center of
T, then T has another fixed point. We will generalize several
known theorems by studying ordered spaces similar to those
introduced by Wallace in 1945; in particular, we will obtain
a generalized solution of the compact group problem (Theorem
2).

2. In this section, X will denote a compact Hausdorff space
consisting of more than two points on which a reflexive, transitive,
and antisymmetric order < is defined; if ze X, let

Lz) = {m; 2 < o}, M(z) = {m; 2 < 2}, N2) = {; 2 = a} .

We assume that < satisfies the following conditions:

(a) The set M(z) is closed.

(b) The set L(z) is open, and N(z) is closed.

(€) X has a least element ¢ under =.

(d) Each set M(2) is a chain, i.e. M(2) is simply ordered by =.

(e) X is directed by < in the following sense: if », ye X and
T # e, Y # e, then there exists z+#¢ such that z < 2 and z < ».

Wallace, 6], has proved:

(f) Each nonvoid closed subset of X contains a maximal element
under =.

We show:

(g) If Cis a closed nonvoid subset of X with ¢ ¢ C, we have
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ze X,z # ¢, for which z < ¢ for every ceC,

Proof. If for some z¢C,z < ¢ for every ceC, we are finished.
Otherwise, if #, y e C and x # y, choose z,, # ¢ satisfying (e): z,, = @
and z,, < y. We show that the collection {L(z,,);», yeC, z # y} is
an open cover of C, If xeC, we have yeC for which « £y; it
follows that z,, < #, and hence « ¢ L(z,,). Since X is compact and C
is closed in X, there is a finite subset {z;, - - -, 2,} of the set {z,,; ¢, y€ C,
x # y} for which C < U {L(z;), 1 £ j < n}; since z; # e for every j, by
(e) we have ze X for which 2 ¢ and 2 <z, for j =1, ---,n. 2z is
the desired element of X.

By an order isomorphism: X-— X, we mean a homeomorphism
which preserves <. If (X, 7, II) is a transformation group, we will
assume that for each ¢e T the t-transition of (X, T, II) is an order
isomorphism.

If Ac X and BC X, we write A < B[A < B] if, givenae A4 and
be B, we have a < b [a < b].

LEMMA 2.1. Let (X, T, Il) be a topological transformation group.
If there is a closed monempty T-invariant subset AC X such that
e¢ A, then T has a fized point other than e.

Proof. Let A+ @ be any closed subset of X such that e¢ A.
Define

M(4) = N{M(a); a c A} .

M(4) is a closed chain, and M(A) = {z; 2z = A}. By (g), M(A) does not
consist of ¢ alone. By (f), M(A) contains a maximal element 7 (4).
Since M(A) is a chain, _# (A4) is the largest element of M(A). If
t: X— X is an order isomorphism, then t_#(4) = _# (tA). Then if
A is T-invariant, _ (A) is fixed under T. It is clear that 7 (A) # e,
so that the proof is complete.

LEmmA 2.2, Let (X, T, II) be a transformation group. If there
18 @ T-invariant chain BcC X which is not empty and does mnot
consist of e alone, then T has a fixed point other then e.

Proof. The collection of closed sets {N(b); be B} has the finite
intersection property since B is a chain. Hence the intersection, N(B),
of the N(b) is not empty and is T-invariant since B is. Because

¢¢ N(B), N(B) satisfies the hypothesis of Lemma 2.1, and the proof
is complete.
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LEMMA 2.3, Let t, ---,t, be commuting order isomorphisms:
X — X, Then the t; have a fixed point other than e im common.

Proof. Let z, be a maximal element of X, If A = {z, t;'%;1=
1, ---,n}, then e¢ A. By (e) we have z #¢,2 < A. For each 1,
{z, t;z}C M(z,). We let T; be the cyclic group generated by t; and
T=TT,---T, Then for each 7, T;2, is a chain.

(1) If seT and te T such that sz, and ¢z, both compare to z,
then sz, and ¢z, compare.

For if sz, <z, and ¢z, < z,, the result follows from (d). If sz, = 2,
and tz, = 2, apply the last case to s™'2, and ¢z, and use the fact
that T is abelian. The final case follows by transitivity of =.

(2) Each element of T%, compares to z,.

Let tf1 ... thng e T2, where the K, are integers. Then tf1z, com-
pares to 2. We proceed by induction, If ¢ ... tKiz, compares to z,
where 1 =< J < n — 1, then since ¢/7;'2, compares to z, also, {1 -«- t7i{%2,
compares to z,; the desired result follows.

From (1) and (2) it follows that 7%, is a chain. Now e¢ Tz So
that Lemma 2.2 applies. The proof is complete.

A group T is generative if T is abelian and is generated by a
compact neighborhood of the identity of T.

THEOREM 1. Let (X, T, II) be a transformation group, where
T acts as a generative group of order isomorphisms on X. Then
T has o fized point other than e.

Proof. Since T is generative, it is known that T has the form
KZ"R" where Z and R denote the integers and reals, respectively,
with the usual topology, and m and 7= are nonnegative integers,
Thus T may be written in the form CA, where C is compact and A
is a finitely generated abelian group. If x is a fixed point of X under
A, with @ # e, then Tx = Cx is closed, T-invariant, and does not
contain e. Hence Lemma 2.1 applies, and the proof is complete.

NoOTE. Actually, in Theorem 1, we need only assume that the
group T is abelian and is generated by a compact set. For if then
C is a compact symmetric set which contains the identity of T and
generates T, let 2 be a maximal element of X and let z < C 'z,
where ¢ # 2. Then Cz C M(x), hence Cz is a chain, Since T is abelian,
we may argue as in the proof of Lemma 2.3 and show that C"z is a
chain for each positive integer n. Thus the set U{C"2;n =1,2, ---}
is a T-invariant chain not consisting of e alone, and 7 has a fixed
point other than e, This proves
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TueorEM U. If (X, T, II) is a transformation group, where T
1s abelian and is gemerated by a compact subset, and if T acts as a
group of order isomorphisms on X, then T has a fived point other
than e.

We now consider a strengthened form of axiom {e):

(e) X is strongly directed by = in the following sense: if &, ye X
and @ + e,y + e, then there is a z¢ X with z # ¢ for which z < {w, y}.

If X is a space which satisfies (a)—(e) but does not satisfy (e,),
then it is easy to see that there is an z¢ X with « # ¢ such that
to = @ for every order isomorphism ¢: X — X, If X satisfies (e,), then
we have

(g) If C is a closed nonempty subset of X with e¢ C, there is
a 2¢ X with z # ¢ for which z < C,

THEOREM 2. Let (X, T, II) be a transformation group, where X
has an order = which satisfies (b)—(d) and (e), and T acts as a
compact group of order isomorphisms on X, Let xe X with x + e,
Let

M(Tx) = {y; y = Toy = N{M(y); ye T} .

Then T leaves each point of M(Tx) fived. Furthermore M(Tzx) 1is
an infinite set.

Proof. The set M(Tx) is a T-invariant chain by axiom (d). Let
ze M(Tx). Then T% is a compact subchain of A, and since (f) holds
for = without assuming (a), T% contains a maximal element m. Since
Tz is a chain, m is the largest element of T%, hence is fixed under
T. Thus the orbit of 2 contains a fixed point under 7, so that T
leaves 2z fixed. Now (g,) also holds for =, so that the set M(Tx) is
infinite, and the proof is complete.

In what follows, let X be a nontrivial Hausdorff continuum, If
ec X, then ¢ is an end point of X if, given an open set U with ec U,
there exists y ¢ U such that y = ¢ and

X—y=VUuW,ee VU (VnW)u(VnW)=2.

If ve X, let Efe, ®) = {¢, x} U {#; 2 separates ¢ and « in X} Given two
points «, y ¢ X, define « <y if and only if x € F(e, y). Then = satisfies
(b)—(e) and (e,). Furthermore, a homeomorphism: X — X which leaves
e fixed is an order isomorphism. If in addition X is locally connected,
= satisfies (a), and the results of this section apply to such a space.
Hence if (X, T, Il) is a transformation group, where X is locally
connected and Te¢ = ¢, and if there is a closed nonempty T-invariant
subset A X such that e¢ A, then T has a fixed point other than e,
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From Theorem 2 we obtain

COROLLARY 2.1, Let (X, T, II) be a transformation group, where
X is a nontrivial Hausdorff continuum and T is a compact group
which leaves an end point e of X fized. If xe X and x + e, let

E(e, Tx) = {y; y separates e and Tx in X} .

Then T leaves each point of E(e, Tx) fized.

We will call a metric continuum a dendrite if each two distinet
points of the continuum is separated by a third point of the continuum.
It is known [10] that each point of a dendrite is either a cut point
or an end point,

COROLLARY 2.2. Let X be a dendrite with a finite number, N,
of end points. Then the only compact groups which can act effectively
on X are the subgroups of Sy, the permutation group on N symbols.

Proof. Let E be the set of end points of X and T be a compact
group which acts effectively on X. Then for each ¢ € T, the restric-
tion, ¢t|E, of t to E is in S, and the mapping ¢ —¢|E is a homo-
morphic mapping of T onto a subgroup of S,.

Let P be the set of all elements of T which leave each point of
E fixed. Pis a closed subgroup of 7, and since X = U{E(z, y); x, y € E},
it follows from Corollary 2.1 that P leaves each element of X fixed,
and because T is effective, P is the identity alone. Thus if ¢|E =
s| K, then s7'te P, hence s =t. Thus the mapping ¢t —¢|E, allte T,
is an isomorphism.

3. In this section, X will denote a nontrivial locally connected
Hausdorff continuum, and 7 is a group which leaves an end point ¢
of X fixed. We remark that all the results of this section hold when
X is arcwise connected but not necessarily locally connected (we replace
the remark immediately preceding Corollary 2.1 by Wang’s Lemma,

[9]).

LemMA 3.1, Let (X, T, II) be a transformation group, where T
is connected. Then T has a fixed point other than e.

Proof. Since X contains at least two noncut points, [8], let x = ¢
be another noncut point, and

X—2=UUV,ecUaeV,(UNV)N(UUV)=2;

now Tz contains only noncut points, and so z¢ T« since z is a cut
point. Since Tx is connected, it follows that TxcC V. Because
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V U {z} is closed, we have Tx C V U {z}. We have found a nonempty
closed T-invariant set not containing e, so that the remark preceding
Corollary 2.1 applies.

THEOREM 3. Let (X, T, II) satisfy the hypothesis of Lemma 3.1,
Either ¢ is the only moncut point in one of its meighborhoods, or
else T has infinitely many fixed points.

Proof. We use the order and notation of § 2. Let x, be a noncut
point of X with x, = e. From the proof of Lemma 2.1, we see that
A (Tx,) is a fixed point different from e. Let A, = _Z(Tx,) U Tx,.
Since ¢ does not belong to the closed set A,, we may find ze X for
which

X—2=UuV,ecU AV, (UnV)UUNV)=09.

Suppose every neighborhood of ¢ contains a cut point other than e,
and let 2, ¢ U be such a point. Since z is a cut point, z¢ T, so that
Tx,cU U {z}. Furthermore, a separation argument shows that if
veTx, then M@E)cUU{z} so that _Z(Tx)cUU{z}. Since
A (Tx)e V, we have 2 (Tx) + #(Tx,). Set

’

Azz_ﬁou ﬁluJ/Z(ﬁo)U///(Tm—l),

and complete the proof by induction.

THEOREM 4, Let (X, T, II) be a transformation group, with
T~ AH, where A is an abelian group which is generated by a
compact subset and lies in the center of T, and H is a connected
subgroup., Then T has a fized point other than e.

Proof. Let X be a fixed point under A, where x % e. Then
Tx = Hx is connected. If e¢ Hx, we are finished (in view of previous
results). If eec Hx, since Hx is a nontrivial Hausdorff continuum,
HZT contains a noncut point y % e. Then for some ze X,

X—2=UUV,ecU,yecV,(UnVHUWUNT)=2.

Because Hx is connected, z is a cut point of Hz. Since Hy contains
only noncut points of Hz,z¢ Hy, and Hyc (VN Hx)U {z}, for the
last set is closed in X. Now A lies in the center of T, hence every
point of Hz is fixed under A, so that Hy is a T-invariant set not
containing e, By the remark at the end of §2, the proof is complete.

The author is indebted to Professor Hsin Chu for his encourage-
ment during the preparation of this paper, and to the referee for pointing
out two previously overlooked generalizations in the theorems.
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