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EXISTENCE OF OPTIMAL CONTROLS

A, W. J. STODDART

Let /= (fi, fz, -+, fx) be a mapping to F, from a set D
in E, X E, X E,; and f, a real function en D. Consider a
“control” function % from an interval I=[t,, ;] in E; to
E,.; and a “response” function x from [ to E, such that
&, @), u®)eD for almest every tel, fo(t, x(t), u(t)) has an
integral (finite or +oo) on I, f(t, x(f), u(t)) is integrable on I,
and

(1) a(t) = w(ts) + j £(s, 2(s), u(s))ds

for all tel. In a class I of such control-response pairs (u, %),
a pair (u*, 2*) is called optimal (with respect to f,) if the
“cost” functional

Clu, z) = (I)Sfo(t, o, wdt

has a minimum at (u*, 2*), Here we consider conditions suffi-
cient for existence of such optimal pairs.

The problem of existence of optimal controls for various functions
f, fo and classes I" has been treated in [6], [11], [7], [5], [8], [9], [13],
[10], [1], [2], and [3]. Gamkrelidze [6] assumed f, constant, f linear
in (z,u), and u restricted to a cube U in K,. Pontryagin [11]
extended Gamkrelidze’s work to the situation where U is any compact
convex polyhedron. Lee and Markus [8] considered f and f, linear in
u, and U any compact convex set. Simple integral restraints on w
were treated by Krasovskii [7] and Neustadt [9].

The conditions on U and f for f, constant were relaxed remarkably
by Filippov [5], who considered a variable compact restraint set U(t, )
such that the set f(¢, x, U(t, x)) is convex for each (¢, #). Roxin [13],
in effect, considered U a fixed compact set with (f, fo)(¢, z, U) convex,
By taking f and f, linear in « and U compact, Neustadt [10] avoided
all convexity assumptions. Cesari [1] assumes U(t, ) compact,
J@&, =, U(t, x)) convex, and f, sufficiently convex in u compared with
the curvature of f in u. In [3], Cesari extends considerations to
restraint sets U(¢, x) which can be unbounded.

In this paper, we consider variations of the conditions above for
the case in which f is linear in w, f, is convex in u, and the variable
restraint set U(¢, ) is convex and closed but not necessarily bounded,
In particular, integral restraints are taken into account, and used as
an alternative source for the fundamental compactness condition. In
a later section, we apply our results to classical existence problems
of the calculus of variations.
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168 A. W. J. STODDART

2. Definitions. We shall call a real function ¢(¢, x, u) “linearly
bounded below in %’ if

¢(ty €z, u) = p(ty 90) + u'Q(ty 90)

for some uniformly continuous and bounded functions p,q. The
meaning of “linearly bounded in % will be obvious.
Consider the following sets, functions, and numbers.

(2) The sets J, = [T, TV], J. = | T}, T/] are compact intervals in
E, with T, < T/. Let J = [T, 1I7].

(3) The set B is a closed set in J x E,, and U is a closed
convex set in F,. Let D= B x U.

(4) The real continuous functions A, ¢, x,w) on D, at most
countable in number, are convex and linearly bounded below in u.
Let U(t, ®) = U N {u: h(t, z,w) =0 for all j}.

(5) The mapping Gy(f), from J, to the class of compact sets in
E, is continuous in the Hausdorff sense. The mapping G(¢), from
J, to the class of closed sets in K, is also continuous in the
Hausdorff sense.

(6) The real continuous functions g,(¢, x, w) on D are convex
and linearly bounded below in u; ¢, are corresponding real numbers,

(7) The continuous mavping f(¢, %, #) from D to E, is linear in
% and with each component function f; linearly bounded in . Note
that linear bounding of each f; does not follow from linearity, even
if the coefficients in f are bounded; for example, f = usinz® on
E, x E,. However, if the coefficients in f are bounded and each
component of # in U is bounded above or below (in particular, U
bounded), then linearity implies linear bounding.

Define I" to be the class of all control-response pairs (u, ) on
intervals I = [t,, t,], such that (1) holds, and

(8) thed,, tied,;

(9) (t, 2(t)e B for every tel;

(10) a(t) € Golts) , @) e Gu(ty) ;

11 w(t) e U(t, x(t)) for almost every tel;
(12) (I)gg,c(t, x, wydt = ¢ for each k.

We shall assume that
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(13) giui is equi absolutely continuous on I7;

that is, for any ¢ > 0, there exists A\(¢) > 0 such that (M)S[ wldt <e

for any (u, ) ¢ I" and measurable set M < I for which the Lebesgue
measure p(M) < ne). (Conditions sufficient for this will be discussed

in §6.) Note that (I)Slu[dt is then bounded on I.

Note also that, without further restrictions on f, 2 is not neces-
sarily determined through (1) by x(¢,) and w.

Our general approach will be to prove that the class I" is
sequentially compact and closed in an appropriate convergence system,
We then apply a general semicontinuity theorem of [14] to obtain the
existence of a minimum for C(u, ¢) on I

3. A compactness theorem. We first prove a compactness
theorem for I, It is essentially an abstraction of techniques of
Tonelli [15] and Lee and Markus [8].

THEOREM 1. Any infinite subclass of I’ contains a sequence
(u", ™) such that there exist a compact interval I* = [tf,tf], a
continuous mapping x* from I* to K, and an integrable mapping
w* from I* to KE,, for which

(14) (a) F—t5, i —t,

(b) a"(tf) — a*(ty), x"(t) — w*(t);
(c¢) sup{la™(t) —z*@)|:tel"NI*}—0; and
(d) (I*n E)Su”dt —(I* N E)Su*dt

Jor every measurable set K & K,

Proof. The linear bounding of the component functions f; gives
[fl=<a+0b|lu| for some constants a, b. Then

|2ty — a(t)| < a(t — t) + bgz} wlds

from (1); thus z is equicontinuous on /.
All Gy(t) and J, are compact; hence, by an elementary argument,
U Gi(t) is compact. In addition, x is equicontinuous and J is bounded;
hence x is equibounded on I,
On J, define
x. () = a(ty) on [T,
x{t) on [&, b,
x(t,) on [t, T{];
U (t) =0 on [T,t) and (¢, T/],
w(t) on [t t,].

=
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Let I'. be the corresponding class of pairs (u.,x.). On I',, 2, is
equicontinuous and equibounded, and Slu+l is equi absolutely con-
tinuous and (J)\|u. | dt is bounded. Consequently, from any infinite
subclass of ', we can extract in succession sequences t7— ¢, tr— tf,
% — 2% uniformly on J, and u% — uf weakly in L,(J) |4, p. 294] for

some tF, ¢, continuous x*, and integrable uZ.

Define «* = x% | [tF, tf], u* = w* | [¢F, t¥]. Then «* is continuous
and w* is integrable. Since z"(tf) — xX(tF), 2 is equicontinuous, and
tr — t¥, we have z"(t}) — x*(tF). Similarly, z"(¢r) — x*(¢f).

For any € > 0, there exists \(¢) > 0 such that (E)S[ U, | dt < e for
any set £ = J with Lebesgue measure p(£) < ame). Now

|purdt — ) |purat

for every ¢ec L.(J). For any measurable set K & E,, take ¢ as the
characteristic function of I* N E. Then

{(I* n E)Suidt (I E)Suidt‘ <e

for n greater than some N(e, £). Now

pI*NE—I"NE)+ p(I*nE— I* 0 E)
=[G -+ =,

which is less than a(e) for = greater than some N(¢). Hence, for
n > N(¢) and N(e, F),

I(I“ n E)Su”dt (I N E)Su*dtl < %.

4: Continuity and semicontinuity. The following continuity
theorem is required for the semicontinuity theorem.

THEOREM 2. Let (u*, x™) be a sequence in I converging to
(u*, x*) in the sense (14). Let the functions p: B— E, and q: B— K,

be uniformly continuous and bounded. Then, for every measurable
set K< E,

A" 0 B)|lpt, =) + ur-a(t, =)ldt
—I* N E’)g[p(t, o*) - wkeq(t, x¥))de .

Proof. Note that, since B is closed, conditions (14) (a), (b), (¢c)
ensure that (¢, 2*(¢)) € B for every te I[*,
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We express our conditions in explicit form. For any ¢ > 0, there
exists N(¢) such that, for n > N(e),

Itg - ttfi <e ’

[ty — ¥ <e,

[a"(t5) — a*(t5) | < e,

() — a*(E) | < e,
and

[am(t) — a* ()| < e if tel*nNI*;
and, for any measurable set £ < E,, there exists N(¢, E) such that,
for n > N(e, E),

l(zn n E’)Su“dt —(I*n E)Su*dti <.

Also, there exists \(¢) > 0 such that (M)g[u”[dt < ¢ for all n and
for every measurable set M & I" with p#(M) < Me); and there exists
a such that (I“)g(u”ldt < a for all n. In addition, there exists
o(e) > 0 such that |p(t, z) — p(¢, 2')| and |q(t, ) — q(t', 2')| < € for
[t —t'| and |x — @'| < d(e); and there exists B such that |p(¢, )|
and [q(¢, x)| < B for all (¢, x) e B.

Now
I(I" N E)Sp(t, z"ydt — (I* N E)Sp(t, x*)dt'
=B(tr — |+ [t =t )
(B0 1| p, o)~ pit, o) dt
< Be + (T! — T)e it > N(%a) and N(3(e)) .
Also,

j(p n E)Su”~q(t, et — (I' 0 E N I*)Su”-q(t, x*)dtl
= B — 19| v | dt
|0 B0 fuwlat, =) — att, 59|
< Be + ae i n > N<% Me)) and N(G() .

By uniform continuity of a* on I* there exists ~v(¢) > 0 such that
|e*(t) — a*(t')| < e for |t —t'| < (). Divide I* into ¢ intervals I,
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with lengths less than 6(c) and ~v(6(¢)), and take ¢, = q(¢, x*(t)) for
some t e I,, Then

[(In NEN I*)Su”-q(t, s*)dt — (I* N E)Su*-q(t, x*)dt‘
- ] S(IPAEnN IS)Su"-q(t, 2*)dt — (I N E)gu*~q(t, x*)dtl
< l Se.[@nEn Is)gu”dt LN E’)§u*dt]‘
¥ e(I"‘)S| w* | dt + ae
<e+e(I*)S|u*[dt+ae if w > max N(e/a|q,|, [, NE).
We shall use repeatedly the following semicontinuity theorem,

THEOREM 3. Let ¢(¢t, x, u) be a real continuwous function on D,
convex and linearly bounded below in w. Consider a sequence
(w™, x™)y e I" converging to (u*, x*) in the sense (14). (We shall prove
in §5 that u*(t) e U for almost every telI*; and (¢, x*(t))e B for
every teI*.) Then, for every measurable set K = K|,

aIn E)Sgb(t, o*, w*)dt < liminf (I" N E)§¢(t, o, um)dt

Theorem 3 follows easily from Theorem 4 of [14]. Our con-
vergence (14) satisfies condition (10) of [14]. The discussion of §6
of [14] applies here, since the lower bound integral is continuous.

5. A closure theorem.

THEOREM 4. Let (u”, x™) be a sequence in I converging to
(w*, ©*) n the sense (14). Then (u*, x*)e .

Proof. By (14a), t¥edJ, and tfe J,.

For ¢f <t < tf,teI™ for all sufficiently large =, so x™(t) — x*(t)
by (14c). Thus (¢, z*(¢) e B. In addition, (14a) and (14b) give
(tF, x*(¢5)) and (tf, x*(t)) € B.

If x*(tF) were not in Gy(ty), then it would not be in the closure
N°¢ of some neighbourhood N of Gytf). But G(t) & N for ¢t suf-
ficiently near tf, so z"(t}) e N for all sufficiently large n, from which
x*(tF) e N°! Similarly, z*(¢f) e G.(t5).

The closed convex set U in FE, is the intersection of a countable
number of half spaces {u: 8 + u-b < 0}. Let

E={t:teI* 8+ u*{)-b> 0} .
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Then
0= ("N E)S(B ot b)dt — (E)S(B L outbde =0 .

Thus ¢(E) = 0, and so u*(¢t) € U for almost every te I*.
Let E; = {t: te I*, hy(t, x*(t), w*(t)) > 0}. Now

(I n Ej)ghj(t, o, umdE < 0

SO
(B |ht, %, ur)dt = 0

by Theorem 3. Consequently, p#(E;) = 0. Thus (u*, 2*) satisfies (11).
By Theorem 3 with E = FE,, the integral (I )ggk(t, x, wydt is lower
semicontinuous in the convergence (14). Consequently

<I*>§gk<t, %, u¥)dt < e

that is, condition (12) is satisfied.

Consider ¢ such that ¢f <t < ¢f. Theorem 3 with E = {s:s = ¢}
shows that the integral

CEORTENE

is continuous in the convergence (14). Also, x*(t)— x*(t) and x"(t}) —
2*(t§). Thus condition (1) on (u", #™) carries over to (u*,2*). For
t = t¥, a similar argument applies, but with £ = FE,.

Thus (u*, x*) satisfies conditions (1) and (8) through (12).

6. The existence theorem.

THEOREM 5. Let the real continuous function fi(t, x, u) on D be
convex and linearly bounded below im u. Assume, as previously,
that I' satisfies condition (18). Then, if I' is mnot empty, C(u, x)
has a minimum on I,

Proof. Theorems 1 and 4 show that I" is sequentially compact
in itself with respect to the convergence (14).

Since f, is linearly bounded below in % and % is integrable,
fo(t, x, u) has an integral, finite or -co. Theorem 3, with E = E|,
shows that (I )S folt, x, w)dt is lower semicontinuous with respect to
the convergence (14).
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A lower semicontinuous funotional on a sequentially compact
space has a minimum. Hence the result.

7. Equi absolute continuity of S|u|. Condition (13) plays the
key part in our compactness theorem. We now study conditions suf-
ficient for equi absolute continuity of Slu} on [,

For example, if the set U and the functions 4; are such that

Ut, ») = Un{u: ht, z,u) <0 for all j}

is bounded uniformly on B, then condition (13) is obviously satisfied.
This is the standard situation in problems of optimal control.
The following more general integral condition is quite standard

in the calculus of variations.

THEOREM 6. Let r(u) be a real function on E,, bounded below
and such that r(u)/|u|— o as |u|— o, If (I)Sqlr(u(t))dt s bounded
on I, then Slui 18 equi absolutely continuous.

Proof. Suppose that (I)qu(u)dt < c¢ on I'; ¥(u) = b; and, for any
e >0, (v(w) — b)/|w| >1/e for |u| > m(e). For any (u,x)el” and
measurable set M I, define

M+ = Mn{t:tel |ul)| > mE)}, M-=M-—M+.
Then

0wy | dt = (o uldt + 1) [u ] dt
= e()| () + [b)dt + m(E)(M)

= (D)) + b )dt + mEu()
< e+ b (T — Ty + 1)

if (M) < e/m(e). Thus S|u| is equi absolutely continuous.

For example, a “growth condition” g.(¢, z, u) = +(u) on some g,
would be sufficient for the bounding of (I )Sq}r(u)dt on I". Alterna-
tively, the bounding of (I)\+(u)d¢, sufficiently for our purpose, would
follow from a similar growth condition on f,.

THEOREM 7. Suppose that fi(t,x,w) = y(u), where + has the
properties stated in Theorem 6. Then our existence theorem,
Theorem b5, holds without the direct assumption of condition (13).



EXISTENCE OF OPTIMAL CONTROLS 175

Proof. If C(u,z) = o« for all (w,x)el’, then the result is
trivial. Otherwise, there exists (u, x,)el” with C(u, 2,) < . In
considering a minimum for C(u, ) on I", we can restrict consideration
to the class

Iy =T n{(w,2): Clu, 2) = Cu,, @)} .

Then (I )S«/r(u)dt is bounded on I',, Theorems 5 and 6 show that
C(u, ) has a minimum on I7;, which is obviously also a minimum on
r.

8. Extension to unbounded intervals J,, J,. If J, has semi-
infinite form, then our existence theorem still holds, provided f, is
positively bounded below.

THEOREM 8. Assume that fi(t, ¢, u) = m for some positive con-
stant m. Then Theorm 5 holds also for J, of the form [T, o).

Proof. 1If C(u,x) = o for all (u, x)e ", then the existence of a
minimum for C(u, x) is trivial. Otherwise, C, = C(u,, @,) < « for
some (u, #,)el’. We can restrict consideration to the class I'; of
those (u, ®) e I" for which C(u, z) = C..

For (u,x)e ", C, = C(u, ) = m(t, — t,), S0

L=<t +C/m=T]+ C/m.

Thus the condition ¢, e[T,, Ty + C,/m] does not further restrict I'.
Then Theorem 5 shows that C(u, ) has a minimum on [";, which is
also a minimum on /",

Obviously, similar considerations apply when J, = (— o, TY]; and,
indeed, when J, and J, both have these semi-infinite forms.

9. Classical problems. If U = E, and the class of functions
h; is empty, then U(t, x) = E, for all (¢, ), that is, there are no
explicit restrictions (11). In this case, the fundamental condition (13)
on % could come from a growth condition on f, or some g¢g,, as dis-
cussed in §7.

If we take f(¢, @, u) = u, so that u = 2’ almost everywhere,
then we have a minimum problem for (I )g Jo(t, @, «')dt. The Tonelli

theorem [16], on the existence of a minimum for nonparametric curve
integrals, is just this problem with no explicit restrictions (11) and
no integral restrictions (12); the condition (13) comes from a growth
condition on fi.

More generally, consider curves y:I— E, with absolutely con-
tinuous derivatives y"" of order » — 1. Take z = (%, Ty, +* -+, Tn)
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with 2,(f) = y*"(t), and u(t) = y”(t). Then our work gives an
existence theorem for the minimum of (I )S ot y, 9, <+, y")dt. Here

f(t» €, ﬂ/) = (x(i)y Ly * 0oy Lip)y ’M/) .

The linear bounding of the components of f is implied essentially by
the bounding of (I)§| y" | dt .

Returning to first order problems, we can also consider parametric
curve integrals (I )g folz, 2")dt with f, positively homogeneous of degree
one in «’. In this case, a growth condition on f, of the form previously
considered is impossible. However, if there are no explicit restrictions
(11), the functions g, are similarly independent of ¢ and positively
homogeneous of degree one in z/, G, and G, are constant, and B is of
the form E, x C for some closed set C in E,, then we have a system
invariant under Fréchet equivalence. We can reparametrize the curves
of finite length I, = 0 by their relative arc lengths s/L on the interval
I =1[0,1]; here s is the arc length. In terms of the new parameter,
|2’ | = L almost everywhere. If the curves in /" have bounded lengths,

then S]x'i is equi absolutely continuous. This is trivial for curves

with L = 0. Thus condition (13) would be satisfied if the curves
have bounded lengths.

We have really proved here part of Hilbert’s theorem on com-
pactness of a class of parametric curves. The bounding of the curve
lengths L could come from the form of some g,

(for example, (I)Sgk(x, 2dt — o as L — oo) ;
or, effectively, from the form of f,
(for example, (I)Sfo(oc, 2")dt — oo as L — oo) .
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