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ON THE EQUATION g>(χ) = K(ξ)f[φ(ξ)]dξ
J x

MORTON L. SLATER

Suppose K(x) measurable and 0 < K(x) ^ 1 for x e (—00,00).
Suppose f(u) convex for u e [0,1], /(0) = 0, f(u) > 0 for u e (0,1),
and f(u) = 1- /'(1)(1 - u) + 0(1 - u)1+δ as u -> 1 for some
δ > 0. (Example : /(%) = up, p ^ 1.)

Theorem : The equation (*M#) = \ K(ξ)f[φ(ξ)]dζ has a
J £

solution φ(x) satisfying 0<^(x)^l for xe (—00, 00) if and only if

S CO

e<**[l _ J£(cc)]dίc < 00 where α is the largest real root of a =

/'(1)(1—e~Λ). Furthermore, if ^ is any such solution of (*), then
the limits p(±oo) exist and satisfy

^-^-°°^ = Γ ^(a ) - K(x)f[φ(x)]]dx .

In 1960 M. L. Slater and H. S. Wilf [2] studied the linear in-

S X + l

K(ξ)φ(ζ)dξf — 00 < x < co, with φ(+ 00) = 1,
a;

and obtained the following results. Under the assumptions 1° K(x)
measurable, 2° 0 < K(x) ^ 1, 3° K(x) increasing for sufficiently large
x, and 4° lim,.,,̂  K(x) = 1, a solution φ of the equation exists satisfy-
ing <p(+oo) = 1 if and only if \ [1 — K(x)]dx < 00. (We use the nota-
tion \ to mean u the integral from any finite limit to infinity/')
If in addition 5°

lim\*+1\K(ξ + 1) - K(ζ)\dξ = 0,
X-* — 00 J x

then φ(-oo) exists.
The purpose of this paper is to extend the above results in two

directions namely to generalize the equation and to remove some of
the restrictions on K(x).

Accordingly, we consider throughout the paper the equation

φ(x) = [+1 K(ξ)f[φ(ξ)] dξ
J x

with the requirement that the solution φ satisfy 0 < φ(x) S 1 for
all x. The functions f(u) = up, p ^ 1, were the prototypes for the
analysis and the results which we summarize below are valid for at
least these functions. However, for each theorem of the paper a
wider class of functions {/} is specified in order to clarify the logical
structure of the result. The weakening of the restrictions on K(x)
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is easily stated. Assumptions 3°, 4°, and 5° are dropped completely
and without replacement.

In § II we consider the question of existence of the limits <p(±oo).
Theorem 1 and its corollary establish that under conditions 1° and 2
both of the limits exist. (The order argument used in § II was
already used to some extent in [2].)

Section III contains the proofs of two lemmas required for the
main existence theorem-Theorem 2 in § IV. This theorem provides
a necessary and sufficient condition for the existence of a solution of
the required type. The condition reduces in the linear case to that
obtained in [2]. The underlying assumptions on K are again only 1°
and 2°.

Section V contains an extension of an integral relation proved in
[2] (Theorem 3), and § VI gives a brief discussion of the actual range
of validity of the results (Theorem 4).

II Existence of φ(±°°).

THEOREM 1. Suppose K(x) measurable and 0 < K(x) ̂  1 a.e. for
— oo < x < oo, and suppose φ(x) satisfies 0 < φ{x) ̂  1 and the linear
equation

(1) φ(x) = Γ K(ξ)φ(ξ)dξ
Jx

for all x. Then both φ(+oo) and φ(~oo) exist and satisfy

( 2 ) y ( +oo)-y(-co) f- φ { ξ ) [ 1 _ K ( ξ ) ] d ξ .

A J-oo

Proof. Define

G(x) = [K(x + 1 - y)φ(x + 1 - y)ydy .
Jo

G(x) = \X+1 K(ξ)φ(ξ)(x + 1 - ξ)dζ

is absolutely continuous over any finite interval, and, by using equa-
tion (1), one can verify that G'(x) — φ(%)[l — K(x)] a.e. Thus G(x) is
increasing so that G(±oo) exist, are finite, and

- G ( - oo) = ί~ φ(χ)[l - K(x)]dx .

We first prove <p(+©°) exists. Set M=:lim sup^^ φ(x), m = lim
inf̂ ôo φ{x), and suppose M > m. Set
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k — lim sup
X—>oo

Almost everywhere,

φ\χ) — φ(x)[l — K(x)] — φ(x -

so that since

i φ'(ζ) ! dξ .

1)] + φ(x

oo > ί°° φ[l _ K]dx , k ^ M — m .
J-oo

Now, it follows from equation (1) that φ cannot have a proper maxi-
mum at the left hand endpoint of an interval of length one that is,
it is impossible that for any x, φ(x) > φ(y) for all y satisfying x <
y έ= x + 1. We shall use this fact (which we shall refer to as the
"proper maximum property") to show that given any positive ε <
(M — m)/2 and X arbitrarily large, there exist triples x, y, z satisfying
X < x < y < z, and z —- x ^ 1, for which φ(x) — φ(z) ~ M — ε, and
φ(y) = m + ε.

Choose $o > X so that φ(xQ) — M — ε and let ?/ be the first point
greater than x0 at which φ(y) = m + ε. Now let x be the largest
point less than y at which φ(x) — ikf — ε. ?/ — cc < 1 otherwise the
proper maximum property would be violated. Finally let z be the
first point greater than y at which φ(z) ~ M — ε. z — x ^ 1 for the
same reason.

Given ε > 0, choose X = X(ε) so that for all

x ^ X, k + ε >

Now choose x, y, z as described in the preceding paragraph using
X = X(ε). Then

k + 6>['\φ'(ξ)\dξ

^ φ'(ξ)dξ \Zφ'(ξ)dξ
Jy

= 2(M — m - 2ε). Hence

k ^ 2(M — m), contradicting k ^ M — m .

Thus M = m = <p(+ oo), and incidentally, k = 0.
The proof that <p(—oo) exists is similar to the preceding proof.

Define M, m, and Λ as above but with respect to — oo. Then as in the
previous case, k <Ξ M — m. To find the appropriate triples to complete
the proof, we proceed slightly differently. Given X choose y < X — 1
such that <£>(?/) = m + ε. Then take x to be the first point less than
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y at which φ(x) = M — ε and 2 to be the first point greater than y
at which φ(z) = M" — ε. (The existence of such a 3 is guaranteed by
the proper maximum property.) The remainder of the proof is iden-
tical to the corresponding part of the preceding proof.

G(±oo) can be evaluated in terms of φ{±°°), yielding the integral
formula obtained in [2]. For, using equation (1) and an interchange
of the order of integration, we obtain

Hence

G(±oo)=

and so

j ~ - K]dξ =

COROLLARY. Suppose f(u) is continuous and satisfies 0 < f(u) ^
% /or ue (0, 1], suppose K(x) is measurable and satisfies 0 < K(x) ^ 1
/or — 00 < x < CXD , απcί suppose φ(x) satisfies 0 < <p(x) ̂  1 αtid the equa-
tion

(If) <?(«) = [+ K(ξ)f[φ(ξ)]dξ
Jx

over the same range of x. Then both φ(+00) and φ(— 00) exist.

Proof. Apply Theorem 1 to Kf[φ]/φ in place of K.

Ill* The main lemmas*

LEMMA 1. Suppose Xe(— 00, 00), a i> 1, αwώ /*<>(#) measurable,
0 ^ ^o(^) < °°, /or x Ξ> X. TAe^ ίΛβ linear integral inequality

has a solution μ(x) with 0 ^ //(a;) < 00 for x Ξ> X if and only if

(5) ^~ea*μQ(x)dx < 00 ,

where a = α(α) is ίAβ largest real root of a — α(l — e~α).
α: > 0 if a > 1 and a = 0 i/ α = 1.) Furthermore, if a finite non-
negative solution of (*) exists, then there is also such a solution of
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(*) with the inequality replaced by equality which has the addition-
al property that lirα^c [μ(x) — μo(x)] = 0.

Proof. Let μ(x) be a finite nonnegative solution of (*). Let F(x)
be any increasing continuously differentiate function defined for
x^X-1. Then for x ^ X

(x + 1 - y)[F(x) - F(x - y)]dy

= F'(x) [μ(x + 1 - y)dy + μ(x)[F(x - 1) - F(x)]
JO

F ( x _ 1) _
a

If α > 1, set F(x) — (eαa; — l)/α, where a is defined above, and if a — 1
set F(x) — x, the limiting value as a approaches zero. The expression
in square brackets vanishes, and we have

( 6 ) A Γ φ + 1 - y)[F(x) - F(x - y)]dy rg -
dx J

φ + 1 y)[F(x) F(x y)]dy rg
dx Jo a

Thus, since μ(x) ^ 0, we find

[~μo(ξ)F'(ξ)dξ ^ a[μ(x + 1 - y)[F(x) - ί7^ - τ/)]# ,
Jx JO

thereby establishing necessity.
To prove sufficiency we first define

= 0 u > 1,

and show that the solution v(u) of the equation

v(v)y(u — v)dv

0

is unique, nonnegative, and bounded. Equation (7) is an example of

a renewal equation, and uniqueness and nonnegativity follow from

the general theory of such equations. (See for example Doetsch [1],

Volume III, page 145, Theorem I.) Boundedness, which is essential

here, can be shown by noting that if v is unbounded then there is a

ΰ > 1 such that if u < ΰ then v(u) < v(ΰ). But

v(v)y(u — v)dv ,

u-l

and since \ y(v)dv = 1 (a consequence of a = cc{a))y

Jo
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[v(u) — v(v)]y(u — v)dv — 0 ,

contradicting the positivity of Ύ(U).
We now proceed with the proof of sufficiency and show that

( 8 ) μ(x) = μQ(x) + v(u)μo(x + u)eaudu
Jo

is a solution of (*). Actually we show that μ(x) satisfies (*) with
equality. To do this we must verify that

( 9 ) [°v(u)eauμ0(x + u)du = a\*+1μ(ξ)dξ .
JO Jίc

The right hand side of (9) can be rewritten as

I ae~aueauμ(x + u)du = \ η(u)ea%μ{x + u)du ,
Jo Jo

and substituting (8) this becomes

S oo f oof oo

7(u)eauμ0(x + u)du + \ \ v(v)j(u)ea{u+υ)μ0(x + u + v)dudv .
o Jo Jo

If in the double integral we set u + v — w and v — z and integrate

first with respect to z we obtain

dweawμ0(x + w)\ v(z)y(w — z)dz .

o Jo

Thus, after renaming variables, the right side of (9) becomes

I dueauμ0(x + u) \j(u) + I v(v)y(u — v)dv\ ,

and the required equality is a consequence of (7).

To prove the last statement of the lemma we show now that
lim I v(u)μQ(x + u)eaudu = 0 .
a?->oo J o

This follows from the boundedness of v(u) and the fact that

1 eaxμo(x)dx < oo .

LEMMA 2. Suppose a > 1 and a = a(a) is the largest real root

S oo

eβxμ(x)dx < oo, where μ(x)

is any nonnegative finite-valued solution of (*) wΐίA £&£ parameter a.

proof. From (6)
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— \eax Ϋμ{x + 1 - y)(l - e~ay)dy~] g 0 .
ώ L Jo J

Hence for some nonnegative A, \ μ(x + 1 — y)(l — e~ay)dy ^ Ae~ax,
Jo

and

A . e~(«-β)χ ^ I β β ί ^ I μ(ξ + i „ ^)(i „ β -^)d^

a — β

Y~v){l - e~ay)dy ^eβ{ζ+1~y)μ{ζ + 1 - y)dξ
JO

^ c[° eP*μ(ξ)dξ, where C =
J»+i

IV* Existence of solutions^

THEOREM 2. Suppose K(x) measurable and 0 < ϋΓ(#) ^ 1 a.e. in
— oo < x < + oo. Suppose f(u) convex for 0 ^ u g 1, /(0) = 0, /(I) = 1,
f(u) > 0 /or 0 < u < 1, / '(I) < oo, ami /(%) - 1 - /'(1)(1 - w) +
0(1 — ^ ) 1 + δ as 6̂ —> 1 /or some δ > 0. Then the equation

(10) 9>(a?) - \X+1K(ζ)f[φ(ξ)]dζ

has a solution φ(x), — ©o < x < co? satisfying 0 < φ(a ) ^ 1, ΐ /

where a = a:(/'(l)) is ίAβ largest real root of a — /'(1)(1 — e~a). //
/ '(I) > 1, then 1 - ς φ ) = O(e~βx) as x-+ oo for all β < a = a(/ '(

Sufficiency. Define

(Po(a ) = 1, φn+1(x) =

Then, since /(^) is increasing, 0 < φn+1(x) ^ φn{
χ) for all ίu and n ^ 0.

Thus lim^oo 9?Λ(a;) = <p(a?) exists and φ(x) satisfies equation (10) by the
dominated convergence theorem. We must show that φ(x) is positive.
For n ^ 1

φn{x) - φn+1(x) -

Thus
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1 - φΛ+1(x) £ 1 - Ψl(x) + /'(

(11) = ("+1[1 - K(ζ)]dξ + /'(I)
Jx

Since

since /'(I) Ξ> 1, and since

lim Γ+1(l - K)dξ = 0 ,

there is by Lemma 1 a nonnegative function μ(x) satisfying

(12) μ(x) = Γ+1[l - K(ζ)]dξ + /'(l)Γ+V(f)d£ and lim μ{x) = 0 .

Now

1 - φi(x) =

and by induction using (11) and (12) we see that 1 — φn{x) ^ μ(x)
and consequently 1 — φ{x) ̂  μ(x). Thus lim,.^ φ{x) = 1, and if <p(sc)
= 0 for some x, there must be a largest a? at which φ vanishes. But
this clearly contradicts the fact that φ is a solution of (10).

Necessity. Suppose that φ(x) is a solution of the required type. By
the corollary to Theorem 1, <p(+oo) exists. Now, in fact, <p(+oo) =
lub φ(x)y for if not there would exist an x such that for all x > x,
φ(x) > φ{x), which would contradict the fact that φ(x) satisfies (10).
In particular this means that φ{+ oo) > 0. If f(u) = u, then φ(x)/φ(+ oo)
is a solution whose limit at infinity is one. If f(u) ^ u, then f(u) < u
for 0 < u < 1, and from (10) we see that since ^»(+oo) r£ 0, it mus1;
be equal to one. Thus we may always assume <p(+oo) ~ 1.

Writing f(u) = 1 - /'(1)(1 - %) + i2(w) we have

φ{x) - Γ+1[l ~ if(f)][l - /'(1)(1 - φ(ζ))]dζ
J

If /(%) = u, then JB(̂ 6) = 0 and /'(I) = 1 so that the use of Lemma
1 with μ(x) — 1 — <p(s&) allows one to conclude that

9dx\X+\l-K(ζ)]φ(ξ)dξ<
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Then, since <p(+oo) = 1, we obtain the desired result that

i - K(ξ)]dζ < - .

If f(u) =έ u, then /'(I) > 1. We first show that if δ > 0, then

Define

Γ 1 -K(x + 1- y)f[φ(x + 1 - #)]}» dy .

Now #(#) is absolutely continuous over any finite interval and since
for almost all x, g'(x) = — [φ(x) — K(x)f[φ(x)]] g 0, g(x) is decreasing.
Furthermore from (10)

[*+1g(ζ)dζ - Γ[l - φ(x
Jx JO

Thus for any ε e (0, /'(I) — 1) and for sufficiently large x, since

φ(+ oo) = 1, we have 1 - /[<?>(&)] ̂  (/;(1) - e)(l ~ ^(^)), s<> t h a t

- f[φ(x + 1 - y)]]y dy/'(I) — ε

Hence by Lemma 2,

) fe < oo for all β < a =

Since #(#) is decreasing,

flr(a? + l)e^ ^ ί"+Vflr(f) dξ<A = A(β) ,
JίC

and so g(x) = O(β~βcc) for all β < a. On the other hand

V - K(ξ)f[φ(ζ)]}dξ

1 - X(α + 1 - y)f[φ(x •+ 1

g 2^(x) + 2g(x + 1/2) = O(β-^) ,

so that if we now choose β so that β(l + δ) > α, we have the required
result.

Since R(φ) by hypothesis is O{(1 — <p)1+δ}, the equation
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(13) μ{x) = \X+1K(ζ)R[φ(ζ)]dζ + / '(I) Γ
Jx Jx

has by Lemma 1 a nonnegative solution μ{x) for which lim^^ μ(x) = 0.
0.) NOW,

φ{x) =

Define ψQ(x) =

(14) ψn+1(*) = [+K(ξ)[l - f\l)(l - ψn(ξ))]dξ

Since R(φ) ^ 0 (by the convexity of / ) , φ(x) = ψϋ{x) ^ ψι{%), and we
see by induction using (14) that each ψn(x) ^ ^^+i(^). Thus φ(x) —
^Λ(a?) is increasing with respect to w. Again,

(15) φ(x) - ^+1(α?) = [+1K(ξ)R(φ)dξ + f'(l) [+1K(ζ)[φ(ζ) - ψn(ζ)]dξ .
Jx Jx

Now, φ(x) — ψo(^) = 0 g ^(a?), and by a second induction using (13)
and (15) we see that φ(x) — ψn(x) ^ j"(»). Thus ^nΛ lnψ(%) (say) sat-
isfying 9?(a?) ^ ψ(a ) ^ <̂ (a;) — μ(x), and

(16) ψ(α?)

We rewrite (16) as

1 -ψ(χ) = \X+\l - K(ζ)]

and note that since l ί m , ^ μ(x) = 0 there is an X = X(ε) such that
for x ^ X, 0 g 1 - ψ(x) g e. Thus

[1 - K(ζ)]dξ + / ' (I)
Jx

and so by Lemma 1,

V. An integral relation. Suppose f(u) is as in Theorem 2 and
in addition f(u) Ξ£ U. Then <p(+oo) = 1 and from equation (10) we
see that φ(— co) = 0 or 1. Apply Theorem 1 with K replaced by
Kf(φ)jφ. Then equation (2) becomes
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{φ(ξ) - K(ζ)f[φ(ξ)]W .

If φ(— oo) = 1, then <£>(#) = K(x)f[φ(x)] for almost all x, and since
<p > 0, this means that φ == 1 and ^ Ξ 1 a.eβ This yields the follow-
ing relation.

THEOREM 3. Let f and K be as in Theorem 2 and in addition
assume f(u) Φ u and K(x) Φ 1 a.e. Then a solution φ of equation
(10) satisfies

(17) JI> ( ί ) ~ K&f&(^d% = V2

VI. Concluding remarks. The hypotheses in Theorem 2 were
chosen to make, in some sense, a "clean" theorem, and as is usually
the case more is actually proved than is stated. Thus in proving
sufficiency, no use is made of the assumption R(u) = 0(1 — u)1 + δ.
Furthermore very weak use is made of the convexity of / and, in
fact, the behavior of f(u) in the neighborhood of u ~ 1 is all that is
significant in the following sense.

THEOREM 4. Let % be the class of increasing, nonnegative, con-
tinuous functions defined on the unit interval such that if / e g ,
then /(I) = 1. Suppose that for a certain /x e % equation (10) has a
nonnegative solution φt satisfying φt ^ 1 and <£>i(+°°) — 1. Then if
some other f2 e g coincides with fx in some neighborhood of 1, equa-
tion (10) with f — f2 has a nonnegative solution φ2 satisfying φ2 rg 1
and ψz(+ oo) = 1.

Proof. Suppose A(u) = f2(u) for uQ 5Ξ u <^ 1. There is an X such
that for x 2> X, φλ(x) ^ u0. Set ψo(x) = 0 for x < X and ^o(a0 = <Pi(%)
for a? ̂  X. Then for — oo < x < + oo

(18) ψQ(x) £ \+K(ξ)f2[f 0(ζ)]dξ .
JX

Now for n Ξ> 0 define

^n+1(α?) - \*+1K(ξ)ft[ψn(ξ)]dζ .

Since /2 is increasing, ψn+1(x) ^ ^%(^) for all n and aj and in addition
ψn(x) ^ 1. Thus ψn(x) ]n φz(x), a solution with / = /2.
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