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JESSEN'S THEOREM ON RIEMANN SUMS
FOR LOCALLY COMPACT GROUPS

KENNETH A. Ross AND KARL STROMBERG

Throughout this paper G denotes a locally compact group
and {Hn} denotes an increasing sequence of closed subgroups
of G whose union H is dense in G. For each n, Jn denotes the
modular function on Hn and J denotes the modular function
on G. Then limΛ jn(x) — 4(x) for each x e H. For each n, λn

denotes a left Haar measure on Hn and λ denotes a left Haar
measure on Go For a function f on G and an x in G, xf
denotes the function xf(y) — f(xy). The main theorem states
that if j n is the restriction of j to Hn for all sufficiently
large n, then there is a ' 'normalizing" sequence {an} of posi-
tive numbers such that for every / in 2i(G,λ)

(1) :<Xn\ xfdλn=\ f dλ

for ^-locally almost all x in G. The hypotheses regarding the
jw 's and j hold in all cases known to the authors. In par-
ticular, they hold if the Hn

9s are unimodular (hence if they
are Abelian, compact, or discrete) or if the Hn

9s are open
subgroups or normal subgroups. If G is the compact group
[0,l[ with addition modulo 1, if the Hn's are the finite groups
{k2~n: 0 S h ^ 2n — 1} with counting measure λn, and if an = 2~n,
then the left side of (1) is a Riemann sum and (1) becomes
Jessen's theorem.

Jessen's theorem [10] states that if / is a function on the real
line that has period 1 and is Lebesgue summable on [0, 1], then

(2) Km 2- Σ 7 ( * + -IT) = [f(y) dy
m k=Q \ 2 / JO

for almost all x in [0,1], Jessen observed that in proving (2) he
actually proved that

( 3 ) lim -i- Σ /(« + — ) = \ f(v) dV

for any sequence {mn} of positive integers where mn \ mn+1 for all n.
Since such sequences {mn} correspond to all possible increasing sequences
of closed subgroups of [0,1[, the generalization stated in (1) gives no
new information about the case G = [0,1[.

Relation (3) fails for some functions in Si([0,1[) in the case that
mn = n. This was shown by Marcinkiewicz and Zygmund [12] and
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by Ursell [15]. Rudin [13] showed that there are many sequences
{mj and bounded functions / in 8i([0, 1[) for which (3) fails and his
strong negative theorem emphasizes that the divisibility properties of
the mn's are crucial in Jessen's theorem. These results show that
(1) cannot be proved for an arbitrary sequence {Hn} whose union is
dense. Salem [14] gives a generalization on [0,1[ of Jessen's theorem.
Another generalization is given by Civin [3],

Notation and terminology not explicitly defined here can be found
in [8] or [9]. The first theorem contains a number of equivalent natural
conditions any of which could serve as the definition of a "normalizing
sequence". We make a formal definition after the theorem.

THEOREM 1. For a sequence {an} of positive numbers, the follow-
ing conditions are equivalent:

( i ) limΛ an \ fodXn = I fodx

for some nonzero /0 in (&&(G);

(ii) limnan\ fdXn = \ fdX

for all /eg J 0(G);
(iii) limnan\n(UoΓιHn) = \(Uo)

for some nonvoid open set Uo in G such that Uo is compact and
λ(bdry UQ) = 0;

(iv) limnanXn(Uf]Hn)^X(U)
for all open sets U such that U is compact and λ(bdry U) = 0.1

Proof, (i) => (ii). There is an h e H such that fo(h) Φ 0. Then

h(f0)(e) Φ 0 and (i) is satisfied by h(f0). We select a sequence {βn}
such that

(1) βΛ Λfo)dXn - ί h(fo)dX

for all n; clearly limn βjx^1 — 1. We now use the fact that if {HΊ}
is a net of closed subgroups converging to a closed subgroup Ho in the
sense of Hausdorff and if the Haar measures XΊ on HΊ are normalized
so that I gdXy = \ gdX0 for some g e KJ where g(e) Φ 0, then

J Hy J&Q

( 2 ) lim ί fdXy = ί fdX0

for all fe Koo. This is due to J. M. G. Fell; see the appendix to [7];
the proof uses an earlier result of Fell [5]. This fact is also proved
by Bourbaki [1] (in §5) and by Flachsmeyer and Zieschang [6]

1 Such sets U are sometimes called "continuity sets for λ".
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(Satz I). 2 Clearly G is the limit of the sequence {Hn} in the sense
of Hausdorff and relation (1) is a special case of (2). Therefore

limimn β% \ fdXn = [ fdX

for all fe Eoo. Assertion (ii) follows from this since lim^/3^" 1 — 1.
(ii) ==> (iv). Let U be an open set such that U~~ is compact and

λ(bdry Z7) = 0. If / e &Oo and / ^ ξj,-, then

lim supn anXn(U Π fl*) ^ limw αΛ

= \ fd\.

Since

λ(ϊ7) - X(U-) - inf {j^/dλ : fe eoo, / ^

we obtain

lim sup% anXn(U n ff.)

A similar argument using

X(U) = sup {Jβ/dλ : fe

shows that

X{U) g lim inf. anXn(U n iΓΛ) .

(iv) ==> (iii) is obvious.
(iii) =» (i). Let f0 be any nonzero function in KJ. Clearly there

is a sequence {/3J of positive numbers for which

( 3 ) lim. βn \ fodXn - ί fodX .

The already proved implication (i) => (iv) applied to {βn} yields

By supposition

2 Yet another proof, which uses the Hahn-Banach theorem, can be given for this
result. There are at least two other proofs for the compact case. One uses the fact
that the semigroup of probability measures on G is compact in the weak-* topology
and the other uses the fact that lim% anλn =: λ pointwise where λn and λ are the
Fourier-Stieltjes transforms on the space of equivalence classes of irreducible unitary
representations of G,
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and it follows that limw anβ~x = 1. This equality and (3) imply that
(i) holds for {an} and /0.

As noted in the proof of Theorem 1, sequences {an} satisfying (i)
always exist trivially. If G is compact and if Xn(Hn) = X(G) for all
n, then all the conditions of Theorem 1 hold for the sequence an — 1.

DEFINITION. A sequence {an} satisfying the equivalent conditions
of Theorem 1 is called a normalizing sequence for the family
{λ, xlf λ2, •} of left Haar measures.

It is easy to prove that if {<xn} is a normalizing sequence, then
another sequence {βn} of positive numbers is a normalizing sequence
if and only if limΛ anβ-χ = 1.

The next two theorems tell us more about normalizing sequences.

LEMMA 1. / / {an} is a normalizing sequence and if F is a
compact subset of G, then there is a finite constant cF, depending
only upon F, such that

( i ) anXn{xF n Hn) S cF

for all xeG and all n. The constant cF can be taken to be
sup. anXn{F~'F n Hn).*

Proof. Choose g in K^ such that g Ξ> ζF-iF; then

cF = sup, a^F-'F Π Hn) ̂  sup9l an \ gd\n < oo .

Consider any x and n. If xF Π Hn — 0 , then (i) is plain. Otherwise
xa — h for some a e F and h e Hn. Then

anXn(xF n Hn) = an \ ξxFdXn

= an \ ζa-^dXn g an \ ξF~iFdXn g cF .

NOTATION. For the remainder of the paper, whenever F is a
compact subset of G, cF will denote the constant in Lemma 1. If G
is compact and Xn(Hn) — X(G) = 1 for all n, then we take an = 1 for
all n and cF — 1 for all F.

3 The existence of cF can also be deduced from the proof of FelΓs theorem [7]
or from Hilfssatz 1 of [6],
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THEOREM 2. Let {an} be a normalizing sequence. If fe &oO(G),
then

( i ) limn an \ JdXn = I fdx
JSn JG

and

(ii) limn an \ fxdxn = Δ{x~>) \ fdx
jHn JG

uniformly on compact subsets of G.

Proof.* The pointwise convergence of (i) and (ii) follows from
Theorem 1. Let F be any compact subset of G. An Ascoli theorem
(Theorem 15, page 232 of [11]) states that pointwise convergence im-
plies uniform convergence on compact sets provided that the functions
involved belong to an equicontinuous family of functions. Thus it
suffices to prove that the family of functions consisting of all

φn(x) = an \ JdXn and all ψn(x) = a% \ fxdxn

is equicontinuous on Fa Let E be a compact set containing the sup-
port of /. Let c = cE[jEF-ι; by Lemma 1,

anXn(x(E Ό EF-1) Γ) Hn) ^ c

for all x and n. Given β > 0, select a neighborhood V of the identity
e such t h a t xy-'e V implies \\xf—yf\\u <e/2c and \\fx — fv\\u < e/c.

Then xy1 e V implies

\J- yf\dxn

— °^n \ \χf ~~ yf\ ζx-^E

g ±- anXn(x^E nHJ + JL anXn(y~Ή Π Hn) g ε

if, in addition, x and y are in F, then

\fx - fy I ζEF-idXn

S — a^EF-1 ΓΊ Hn) ^ ε .
c

THEOREM 3. Let {an} be a normalizing sequence. Then G/Hn is
compact for some n if and only if

4 The proof for compact G was kindly given us by Thomas Paine.
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( i ) limn an \ JdXn = \ fdx
J Hn J G

uniformly on G for all / e K00(G).

Proof. Let φn(x) = an I JdXn .

Suppose that G/HnQ is compact for some nQ. Then there is a
compact set F in G such that FHn = G for all n ^ nQ; see 5.24.b of

[8], By Theorem 2 there is an nλ ^ nQ such that φn{y) — \ fdx < ε

for all yeF and n ^ nu For any a? in G and n ^ nu x = yh for

some i / e ί 7 and heHn and hence

0n(α?) = αΛ I x/dλw = an \ h(yf)dXn

It follows that
n(x) - \ fd\ < ε for all xeG and n ^ nlΛ

Suppose now that (i) holds. Let / be a nonzero function in £o~ϊj
and let F be a compact set containing its support. Since I fdx > 0,

xfdxn > 0 for all xeG. Then xeG
•rr

implies that zf(h) Φ 0 for some*heHn, hence xheF and xeFH'K
Therefore G = FHn and G/iί% is compact.

The next theorem relates the modular function on G to the
modular functions on the Hn's.

THEOREM 4. If F is a compact subset of some Hm, then
\iτnn Δn{x) = Δ(x) uniformly on F. In particular, lim% An(x) — Δ(x)
for all xeH.

Proof. Let {an} be a normalizing sequence and let / be a nonzero
function in (£J. By Theorem 2, we have

limn Δn{x)an \ fdXn = limΛ an \ fx-ιdXn

= Δ(x) \ fdx
JG

uniformly on F. Since

limn an \ fdXn - ( fdx Φ 0 ,

we infer, that lim,, Δn(x) = Δ(x) uniformly on F.



JESSEN'S THEOREM ON RIEMANN SUMS 141

Note that Δn = Δ \ Hn whenever Hn is a normal subgroup of G;
see 15.23 of [8]. If Hn is not normal, then the identity Δn~Δ\Hn

may fail to hold. It seems unlikely that Δn = Δ \ Hn must hold for
sufficiently large n, but the authors unfortunately have not been able
to produce an example to settle this question. Further comments
about this question follow Theorem 5.

We next prove two lemmas that are needed in order to prove in
Theorem 5 our main result, namely, our generalization of Jessen's
theorem. The first lemma is a consequence of a result of Edwards
and Hewitt [4],

LEMMA 2. Suppose that {μn} is a sequence of nonnegative Borel
measures on G. Then, for every fe2ί(G, λ), xf is μn-measurahle
for X-locally almost all xeG. Suppose also that

( i ) limn ί fdμn = ί fdX
JG JG

for all / G K 0 0 ( ( J ) and that

(ii) supTO \ xfdμn < oo X-locally a.e.

for all fe Sί(G, λ). Then

(iii) urn,, 1 xfdμn — \ fdX X-locally a.e.
JG JG

for all feZ^G, λ).

Proof. In their Theorem 1.6, Edwards and Hewitt [4] prove the
following. Suppose E is a real semimetrizable topological vector space
of the second category and that (S, ^f, μ) is a measure space. Let
g be the family of all ^^-measurable functions from S into [0, oo],
where any two functions in % that are equal /̂ -locally almost every-
where are identified. Suppose {Pa} is a countable net of sublinear
operators from E into % satisfying

(1) for each α, limn /„ = / in E implies that limΛ Pafnk = Paf μ-
locally a.e. for some subsequence {/Hjfe} of {fn}9

and

( 2 ) Pf(s) = supα Paf(s) is finite μ-locally a.e. for every feE.

Let Eo be the set of / in E for which limα Paf(s) = 0 ^-locally a.e.
Then EQ is a closed vector subspace of E.

It suffices to prove (iii) for / in £ϊ(G). Let E = 2{ and, for each
positive integer m and / e S[, let

Pmf(x) - ( Jdμm - ( fdX for x e G .
}G }G
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Suppose that G is σ-compaet. If A is a λ-null function on G, then | h \

is dominated by a Borel measurable λ-null function k. Then (x, y) —>

k(xy) is Borel measurable on G x G and an application of Fubini's

theorem (13.9 of [8]) shows that ak is μm-measurable for λ-almost all

x and that I xkdμm is λ-null. The same remarks thus apply to h.
JG C

A similar application of Fubini's theorem shows that \ xfdμm is λ-
JG

measurable for any /eSi(G, λ). Therefore Pmf is λ-measurable and
is well-defined in the sense that if / = g λ-a.e., then Pmf = Pmg in %.
If G is not σ-compact, the same statement can be proved by making
a similar argument on its open σ-compact subgroups. It is easy to
see that each Pm is sublinear:

PJaf) =\a\ Pm(f) and PJJ + g) £ Pmf + Pmg

λ-locally a.e., where a is real.

To prove (1), fix m and suppose that limΛ \\fn — f\\ι — ® where /

and each fn belong to £j\ Since limΛ \ fndλ — \ fdX, it suffices to
JG }G

prove that the sequence

sn(x) = \ Λfn)dμm ~ \ xfdμw
JG JG

of functions has a subsequence that converges λ-locally a.e. to 0.

For positive integers k, choose nk so that \\fnjc — /Hi < 4rk &nd ^

9 = Σk=i2k\fn, — / I . Ύhen g belongs to 2X and \ zgdμm exists and
k r JG

is finite λ-locally a.e. For any x such that 1 xgdμm < oo we have
JG

and hence limΛ sΛfc(aj) = 0. This proves (1), and (2) follows immediately
from (ii).

Let Eo consist of all / in S[ such that limm Pmf(x) — 0 λ-locally
a.e. Equivalently EQ consists of the functions in Sϊ for which (iii)
holds and so we need only prove that Eo = Si. For any / e (£JO

x e G, (i) applied to J shows that limmPm/(.τ) = 0. Therefore K
the theorem of Edwards and Hewitt asserts that Eo is closed in S r

and hence EQ — S[.

LEMMA 3. Suppose that {an} is a normalizing sequence and that
An — A\ Hn for all n. Let f be a nonnegative Borel measurable
function on G. Let

f*(x) = sup, an \ JdXn
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for xeG and for t ^ 0, let Bf = {xeG: f*(x) > t}. Then for t^O

and every compact subset F of G, we have

( i ) tX{Bf Π F) ^ cF \ . fdx.

If f is also in Sί"((τ, λ), then

(ii) f*(X) < oo
for X-locally almost all x in G.

Proof.5 Let φn(x) = αw I xfdXn. Let AT be a fixed positive inte-

ger and let DN — {x e G : sup1^w^jy ^w(a;) > ί}. For n = 1, 2, , AT, let

# % = {α; G G : 0Λ(α>) > ί} and let An=EnΓι (Uf—+i ̂ ) ' ; n o t e t h a t ^ =

£7^. Note also that EkHn — Ek for n ^ k and hence AnHn = L̂w for

all n ^ N. Recall that anXn(xF Π fl"n) ̂  c^ for all x and w by Lemma

1. For all n, we have

tX(An ΠF)^\ φndx
j

Γ f
= an Δ{y-χ) ξu

= \ f{x)an \ A,Xy-ι)ζ{A nF)-ix{y)dXn{y)dX{x)
JG JHn

Γ Γ
— i J \ '^"n I ζ%—*~(Λ Γ\F)\sy ) ^ n\U) \ )

= \ f(x)anXn(χ-\An ΠF)f] Hn)dX{x)
JG

- \^ f(x)anXn(χ-1(An f]F)Π Hn)dX(x)

^ cΛ fdX .

The last equality follows from the fact that A%Hn = An. Since Dn —

\Jξ=ιAn and the union is disjoint, we infer that tX(DπΓ)F) <̂  c^ I fdx.
J Djsf

Inequality (i) now follows from the fact that Bf is the union of the
increasing sequence {DN} of sets.

To prove (ii) we need to show t h a t ' 5 = : f\7=1Bf is locally null.
For a compact set F, (i) shows that tX{Bf Π F) g cF \\f\\x and hence
l i m ^ X(Bf n f ) = 0. Therefore λ(J3 ί l ^ ^ O and B is locally null.

5 This proof of (i) is a modification of the proof of one of Jessen's lemmas [10].
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An example showing the necessity of the hypothesis regarding A
and the An's will be given after Theorem 5. In Theorem 6, we will
obtain sharper results about the function /* for the case that G is
compact.

THEOREM 5. Suppose that {an} is a normalizing sequence and
that An — A\Hn for all sufficiently large n. If f is in S^G, λ), then

(i ) \\mn an \ JdXn = \ fdX
JSn JG

for X-locally almost all x in G.

Proof. Choose n0 so that An = A \ Hn for n ^ nQ. We apply Lemma
2 to the sequence {anxn : n ^ nQ} of measures; these measures may,
of course, be regarded as defined on G. Hypothesis (i) follows from
Theorem 1. To prove (ii), we replace / by a Borel measurable function
that is equal to it λ-a.e. and then apply (ii) of Lemma 3.

REMARKS AND EXAMPLES. The hypotheses regarding A and the
An's in Lemma 3 and Theorem 5 are there because Lemma 3 is false
otherwise and because we are unable to prove or disprove Theorem 5
without this hypothesis; compare with our remarks following Theorem
4. We now give an example to show that (ii) of Lemma 3 can fail

Q
 y V x > 0,

z > 0; we abbreviate ί £ y\ as (x, y, z). See 15.28.b of [8]. Let

H1 = {(x, 0,1): x > 0} and for n ^ 2 let

Hn = {(x, y, exp (k 2-n)): x > 0,y e R, k e Z) .

The characteristic function / of {(x, y, z): x > 1, | y \ < 1,1 < z < e} is in

SooΛi re
\ \ x^z^dzdydx = 2. If (α, b, c) e G,

S I J-lJl
(a,b,C)fdX1 is the integral over H1 of the characteristic function

of {(x, y, z): ax > 1, | ay + bz \ < 1, 1 < cz < e}. If a > 0, | b \ < 1, and
1 < c < e, the intersection of this set with iJ3 is {(x, 0, 1): x > or1}
and therefore

I (a,b,c)fdX1 = I dXi =
JH1 J α " 1

Thus /*(α, b,c) — oo on the open set {(α, 6, c): α > 0, 161 < 1, 1 < c < e)
which is certainly not λ-locally null.

If one applies Theorem 5 to the real line R and its subgroups
Hn = {k2~n :keZ}f one finds that

X fi
& = — oo \
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whenever / is in S^JB).

Groups G admitting nontrivial increasing sequences {Hn} with dense
union exist in profusion. For a compact Abelian group, this property
holds if and only if the character group X contains a nontrivial
decreasing sequence of subgroups whose only common element is the
identity. Any nontorsion X has this property as does any X that is
a sum or product of an infinite number of subgroups. Some groups
without this property are finite products of Z(p°°) groups. Thus finite
products of the groups Δv of p-adic integers do not have nontrivial
increasing sequences {Hn}. An allied question asks what groups contain
increasing sequences of finite subgroups. No compact infinite Abelian
torsion-free group enjoys this property. If G is a direct product of
finite groups or groups with this property and there are at most c
factors, then G also has this property. Thus {—1, 1}**° and Tc have
this property. Finally, of course, there are nonabelian groups that
contain increasing sequences of finite subgroups having dense union.
Such an example is the group D(2) of orthogonal transformations of
the plane and its subgroups Hn of symmetries of the regular polygon
with 2n sides.

All the results of this paper are simple and uninteresting (though
true) when the subgroups Hn are open. A locally compact Abelian
group is the union of an increasing sequence of proper closed (re-
spectively, open) subgroups if and only if it is not compactly generated;
see Lemma 3.3 of [2].

The next technical lemma is needed for our last theorem.

LEMMA 4. Let G be a compact group. Let f be a nonnegatίve
Borel measurable function on G and let /* and Bf be as in Lemma 3.
For u^O, let Bu = {xeG: f(x) > u}. If 0 < a < 1 and t ^ 0, then

(i ) (1 - a)tX(Bf) ^ \ fdX.

Proof. Let g — fξBat) then we have

f*(x) g sup. ί f(xy)ξBat(xy)dXn(y)

+ sup, I f(xy)ξB'(xy)dXn(y)

^ g*(x) + at .

Thus, letting Cu* = {x e G : g*(x) > u), we have

Applying (i) of Lemma 3 to g yields
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(1 - a)tX(Bf) ^ (1 - α)ίλ(C5_β)ί)

g ί flrdλ ^ ί #dλ = ί fdX .

THEOREM 6. Let G be a compact group. Let f be a nonnegative

Borel measurable function on G and let f*(x) — sup% \ xfdxn. If

f is in 8>p where 1 < p < oo, then so is / * and

( i ) I I / Ί I , ^ — ^ -v
If feS> log+ S, then / * e Si ami for every a e ]0, 1[, we have

(ii) | | / * II, S - + - ^ — ί /log+/dλ .

ί/ / e Sx, ί^e^ / * G Sp /or αίi 0 < p < 1 and

This theorem is proved using (i) of Lemma 3 and Lemma 4 in
exactly the same way that the Hardy-Littlewood maximal theorems
(21.76 and 21.80 of [9]) are deduced from Lemmas 21.75 and 21.79
of [9].

Theorem 6 cannot be extended to locally compact noncompact
groups as the following examples show. Consider the group R of
real numbers and its subgroups Hn = {k2~n : k e Z}. If / = ξί0Λί, then
f*(x) = 1 for all x e R. A more striking example is given by the
function g(x) = (l/a?)£[lfoo[(a). Even though g belongs to 2P(R) for all
p > 1, g*(x) — oo for all x e i2; ^* is not even locally in

The authors are indebted to Professor Edwin Hewitt for suggesting
this problem.
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