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RESIDUATED MAPPINGS

JEAN-CLAUDE DERDERIAN

In a series of papers, D. J. Foulis developed a theory in
the course of which he obtained analogues of Von Neumann’s
Coordinatization Theorem by making use of *-monotone map-
pings. A generalization of these mappings, residuated map-
pings, leads to extensions of his results. Residuated mappings
also arise independently in studies of R.Croisot and G. Nobeling.
The purpose of this paper is to develop their preperties sys-
tematically. Of particular help is the link established with
the basic properties of M-homomorphisms between groups with
operators yielding analogues of the Fundamental Theorem of
Homomorphisms and Fitting’s Lemma, and with the study of
residuation especially in Noetherian rings.

Preliminaries, Unless further restricted, P, @, R denote arbitrary
posets whose order relations are all written =.

DeFINITION 1. An isotone mapping @: P— Q is said to be re-
stduated (resp. restdual) if there is an isotone mapping +: Q@ — P
such that:

(i) @@y = (resp. xzpy = ) for all ¢ in P

(ii) @yp = @ (resp. Y@ = 2) for all z in Q.

An antitone mapping @: P— @ is said to be a Galois connection
if there is an antitone mapping +: @ — P satisfying

(i) a2py = for all x in P

(ii) @y@ = « for all x in Q.

Since one may pass from one type of mapping to either of the
other two by dualizing either one or both of the posets involved, we
shall record only the results for the residuated case, though using
them in whatever form required later.

We list some facts that will be used in the sequel and can be
found in, say, [1] and [2] possibly after applying the aforementioned
duality:

A. A necessary and sufficient condition that an isotone mapping
@: P—Q be residuated is that Max{ze P:zp =< x} exists for all =
in Q; moreover, if this is the case, o is given by the rule x4 =
Max{ze P:zp < x}. Thus + is uniquely determined by @ and will
be denoted ™.

B. If 9:P—Q and +:Q— R are residuated so is ¢py: P— E;
moreover, (pyr)t = rfp*. We denote by S(P, Q) the set of all residuated
mappings @: P— @ and write S(P) when P = Q. Note that S(P) is a
semigroup.

35



36 JEAN-CLAUDE DERDERIAN

C. optp = ¢ for all o in S(P, Q).

D. For any @ in S(P) @|ppp+: Pppt — Ppp* is an order iso-
morphism,.

E. For ¢ in S(P, Q) if V ,e.2, exists in P Ve, (2 @) exists in @ and
equals (Ve ®)p. If P has a zero 0, so does @ and 0, = Oppp. In a
complete lattice ¢ is residuated if and only if it is a complete join-
homomorphism,

We now sketch two examples to provide a perspective for the
theory:

F. Let R be a binary relation on a set X, @z F(X)— F(X)
defined by Apr = AR for A S X is residuated and its residual is given
by Apr = (A)R™'Y, where ’ denotes set-theoretic complementation.

G. Let G, G, be groups with operators M, let L(G;) be the lattice
of M-subgroups of G; and f:G,— G, an M-homomorphism. Then
p: L(G,) — L(G,) given by the rule Hp = {if: he H} for He L(G,) is
residuated and its residual is given by the rule Hp™ = {ge G,: gfc H}.
The exact relations are of interest:

(i) Hpp*™ = (H)kerf) = H V {1}p*,

(ii) Hop'ep = HN Ge.

All the above is true for the lattice of normal M-subgroups and for
normal M-endomorphisms.

2. Range-closed mappings. Henceforth P, Q, R are supposed to
contain a least and a largest element 0 and 1 respectively. We know
by definition that zp*p < x; also zpTp = 1p. When is zptp as large
as it can be: 2pTp = A 1p?

ProrosiTioN 1. For any ¢e S(P, @) the following conditions are
equivalent:

(i) @: P—Q(0, 1p) is onto

(ii) 2 A lp exists for all # in @ and equals xpTp.

(ili) @™ e0m: @0, 1p) — P is one-to-one.

Proof. (i)= (ii): Suppose z =< ¢ and z < lp, then, by (i), there
exists w in P such that z < wp. Since wp =z, w = wepep™ = vpt,
and z = wp = xp*p; therefore, zp*tp = & A lop.

(ii) = (iii): Suppose z, y = 1p and @2p™ = yop*, then c = A lp =
rptp =ypto =y N lp =y.

(iil) = (i): Suppose z = lp, then zp*p = lppTp =< 1p. By the
dual of C zptpet = xp™ for arbitrary =z; thus, by (iii), 2ptp = .
Therefore ¢ is onto Q(0, 1p).

DerFINITION 2. If e S(P, Q) satisfies any of the conditions of
the proposition it is said to be range-closed. The set of all such
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maps is denoted Sk(P, Q). If o' satisfies the conditions of the dual
proposition, then ¢ itself is said to be dually range-closed; the set
of all such maps is denoted S,z(P, ®@). This terminology is suggested
by [4].

ProprosITION 2. Let P be a lattice, the following mappings on P
are residuated:

zifx e 0if x < e
xwe: . 3y xae: . ’
eifrxLe xvVeif x Le
their residuals are
lifx=e xif x=e
33(!):——: . ’ (L'(X;—: . [}
xANeif x2e x if x Ze

Proof. By computation.
Note also that w, is range-closed, «, dually range-closed, both are
idempotent and lw, = ¢ = 0.

ProprosiTION 38, For any poset P (with 0 and 1), the following are
equivalent:

(i) P is a lattice.

(ii) Forall z in P there exists Q,, R,, @, € Spy(Q., P), ¥, € Spro(P, R,)
such that lp, = = 04},

Proof. (i)= (ii): ®, and «, have the requisite properties.
(ii) = (i). follows from Proposition 1 and its dual.

PROPOSITION 4. If @ e Sky(P, Q) N Spro(P, @), then
@ [pagtn: P(0p7, 1) — Q(0, 1p)

is an order-isomorphism.

Proof. Follows from D and Proposition 1.
In the case of example G this is the Fundamental Theorem of
Homomorphisms.

DEFINITION 3. a,be P are said to form a modular pair, in symbols
M(a,b), if (xV a)Aband 2V (a A b) exist and are equal whenever
x = b, The dual statement is denoted M*(a, b).

ProprosiTION 5. For arbitrary P, Q, R, with ¢ e Sg(P, Q) and
¥ € Sro(P, Q) N Spre(@Q, R) ,



38 JEAN-CLAUDE DERDERIAN

the following conditions are equivalent:

(1) o@veSw(P, R).
(ii) M*(1p, 04") and & A 1o exists for all © in R.

Proof. (i) = (ii): Suppose @ € Spo(P, R), then

[P

ay T ptpy = alpy) o = a A lpy .
Also, if @ = 04", a = by for some b in B, We thus have

b A lpy = byFp oy = apTpy = (a A 1p)yr

where the last term exists by hypothesis. Finally, we get successively:

@A 1p) V 09 = (@ A Lp)yprt = (b A Lpy)yp™ = byt A Lopgoop*
= a A lpypt = a A (lp V 09

where all the meets and joins exist.
(ii) = (i): Suppose M*(1p, 0"), then

apFprpPpyt = (@™ A 1p) V 00" = ay™ A (1p V 047)
= ayt N\ 1oyt = (@ A Loy

since ayt = 04", Therefore

a(pp) oy = apFp oy = aytp YTy = (@ A Lpy)ptap
=(@a A lpy) ALy =a A lpy .

Thus @+ is range-closed.

DerINITION 4. The mapping @ € S(P, Q) where P is a lattice is
said to be totally range-closed if w,p is range-closed for all ¢ in P,
The set of all such maps is denoted S;zo(P, Q). @€ S(P, Q) is said to
be dually totally range-closed if o« is dually range-closed for all e
in P; the set of all such maps is denoted by Sy,.z(P, Q).

ProrosiTION 6, If P is a lattice, the following conditions are
equivalent for @ e S(P, @):

(1 ) @€ STRU(Py Q)

(ii) g A ep exists for all g, ec P and equals (gp™ A e)p.

(iii) € Spe(P) = v € Spo(P, Q).

Proof. (i) (ii): .,p is range-closed if and only if g(w.p) w,p =
JgpTwfw,p =9 N lw,p =g A ep. Since o, is range-closed, we have
9ptwiw, = 9p* A lo, = gp* N e. Therefore ¢ e Spp(P) if and only
if (9p*™ N e)p =g A ep for all ¢, g in P.

(ii) = (iii): Since + is range-closed
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(Ppp)pp = vptPtpp = vpTPiPe = (et A lf)p =& N 1y .

(iii) = (i): obvious.

Next we study the relationship between the properties ‘range-
closed’ and ‘totally range-closed’. To this end we set:

DEFINITION 5. Let P be a lattice, «:P— P is called a weak
quantifier if it is a closure operator satisfying: (e A fyr)y = eyr A for
for all e, f in P,

LeMMA. For a lattice P:

(1) If e Spre(P, Q), then ppt is a weak quantifier.

(i) If @eSp(P, Q) and ot is a weak quantifier then
@ € Spro(P, Q), whenever g N\ hop exists for all g, h.

Proof. (i) Suppose ¢ is range-closed; this equivalent to
(90" N h)p = g A ho for all g, k. A fortiori (gpp* A h)p = gp N ho
for all g, . Apply o+ to both sides:

9pp™ A\ Rppt = (99 N\ hp)p™ = gpp™ N\ hpp*

for all g, A.
(ii) Since ¢ is range-closed and pp* is a weak quantifier,

(99" N B)pp* = (99 pp™ N\ h)pp™ = gp*pp® A\ hop™ = (9 N\ hp)p* .

Since (gp™ A h)p < 1p and g A hp < lp and ¢ is range closed we get
9 N hp = (99" A\ h)p.

ProrosiTiON 7. For a lattice P and ¢ € Spo(P, Q) N Spro(P, @), the
following conditions are equivalent:

(1) @eSmP, Q).

(ii) M*(f, 0p*) for all f in P,

Proof. By the lemma, since @ € Spy(P, @), @ € Srre(P, Q) if and only
if pp* is a weak quantifier. This is equivalent to (e A fpp)ppt =
eppt N\ foppt for all e, f, and, in turn, to (e A (f V 0p*)) V Op* =
(e V 0p") A (fV 0pT) since @ Spre(P, Q). Now, if M*(e, 0pT) for
all e in P, then (e A (f V 0p™")) V 0p* = (e \V 0p™) A (f V 0p™) since
fV 0pT = 0p*. Conversely, since o™ is a weak quantifier and
=1V 0p" = fpp* whenever f = Opp', we have successively

(A eV 0pT = (e A\ fpp")pp® = epp™ A fppt = (e V 0p™) A [ .

For @ e S(P), ¢ is called p-invariant if ip < 4.
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ProposITION 8. Let P be a lattice, @ e S;p(P), 1 p-invariant:

(i) @|rwo: PO, 7)— P(0,7) is residuated, range-closed and its
residual is given by the rule (@ |re.)" = @™ A 1.

(ii) If, in addition, @ is dually range closed @|rq,: is dually
range closed if and only if M(7, Op™).

Proof. (i) By computation.
(ii) @] pw,yy 18 dually range-closed if and only if

x(p | P(om)(fp |pon)t =2V 0(@ lpoa)™ =2V (0@+ A 7/)

fOI‘ x il’l P(O, ?;). But m(@ I P(Oyi))(g) I P(Oyi))+ = x@@+ /\ ?: fOI’ all X in
P(0, 7). Hence the original statement is equivalent to M(0p™, 7).

3. Mappings of finite ascent and descent. Since @ and @™ are
isotone, it follows immediately that 1= 1lp = 1p*= --- and 0 < 0p™ <
0(p*) < ---. If there exists an integer n» = 0 such that 0(p*)” =
0(p*)™*, there is a smallest such integer; it will be called the ascent
of ¢ and will be denoted A(p). If no such integer exists we write
A(p) = o. Dually the least integer such that lp" = lp"*' is called
the descent of @ and denoted D{p); we will set D(p) = o if no such
integer exists, We investigate the relationship between D(p) and A(p).
First we exhibit an extreme case.

ExampLE. Let Z denote the nonnegative integers and let
o: P(Z)— F(Z) be induced by the relation R = {(n, 2n):nec Z}.
We see that D(p) = 0 while A(p) = <.

PRoPOSITION 9. For any ¢ € Spo(P), if A(p) is finite and D(p) =0
then A(p) = 0.

Proof. Suppose A(p) > 0, then for some 0=+ x,eP, x,0 =0.
Since, by hypothesis 1p =1 and ¢ is range-closed, we can define a
sequence {x,} such that x,,,p=2,. Now,

wn+1¢)n+1 = (xn+1¢)¢n = xn@n = =l = 0 ’

therefore «,.; < ©,.@" " (p*)"" = 0(p*)"*. But «,,, £ 0(p*)", for, if
s = 0(@*)", we would have z, = 2,,.9" = 0(p*)"@" = 0 which would
be a contradiction. We would therefore have 0(p*)" = 0(p™)"™* for all

7 = 0 which is impossible since A(p) is finite.

ProposITION 10. If P is a lattice, @€ Spro(P) N Sprae(P), and
A(p), D(p) are both finite, then A(p) = D(p).
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Proof. Suppose D(p) =k. 1lp"* is a g-invariant, hence by Propo-
sition 8 @, = @ | pi,1o0: P(0, 1p*) — P(0, 1p*) is residuated and range
closed. Also (1)@, = lp*p = 1¢*, thus D(p;) = 0. Recall that Op;" =
0p™ A lp*, hence

0@y = (0p™ A 1p")pt A 1p* = 0(@™)* A 1o"p™ A 19* = 0(p*)* A 1p*

since lpfp*™ = lp"'pp* = 1lp*~' = 1gp*. Inductively we get O(pi)" =
0(@™)" A 1p*, hence if 0(p™)™ = 0(p™)", we have 0(p;i)™ = 0(pi)". This
means A(p,) < A(p); therefore A(yp,) is finite. Applying Proposition 9 to
@, we get A(p,) = 0. Now, suppose & < 0(p")** and let y = xp*?. We
have yp, = vp*p, = wp*™ = 0. But z¢p* =y = yp.pi” = 0p, = 0 and
2=0(p*)*. We have shown 0(p™)*™ < 0(p")*. Since we always have
0(p*)* = 0(p™)*™* we may conclude that 0(p*)* = 0(p*)**'. Therefore
A(p) = D(p). The other inequality follows by duality.

We now focus our attention to mappings for which A(p) =1 or
D(p) =1.

ProposiTION 11. For arbitrary P:
(i) If peSpy(P) and A(p) = 1, then 1p A Op* =
(i) If @ e Spre(P) N Spe(P) and A(p) = 1 = D(p), then 1p\/ 0p* = 1.

Proof. By Proposition 1, 1p A 0p* exists. We have successively
1lp A 0p™ = O0pTp*p = OpTp = 0.
(ii) follows from (i) and its dual.

COROLLARY 1. For any P, let A(p) and D(p) be finite, n =
Max {A(p), D(p)}, then if o€ Spe(P) N Spre(P), 1™V 0(p)" = 1.

Proof. Note that A(p") =1 = D(p"), hence it suffices to apply the
above to ¢".
Next, we restrict P to be a lattice:

COROLLARY 2, For any P, let A(p) and D(p) be finite, then if
@ € Sppo(P) N Spreg(P), 1p" V 0(@p*)" = 1 where A(p) = D(p) = n.

Proof. By Proposition 6 ¢" € Sgo(P) N Spre(P). By Proposition 10
A(p) = D(p). The remainder follows from Corollary 1.

It seems appropriate at this point to point out that if P satisfies
the ascending chain condition A(p) is automatically finite. The same
applies to the descending chain condition and D(p). In the case of
Example G Corollary 1 or 2 are known as Fitting’s Lemma., Ore’s
Theorem ([9], pp. 203-4) can be formulated and proven in terms of
residuated mappings.
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ProrosiTiON 12, Let P be a lattice and ¢ a gp-invariant:

(i) If peSppe(P) and A{p) = n, then ip" A O(p™)" A 7 = 0.

(ii) If peSprae(P) N See(P), Alp) =n and M*(z, 1p), then @ =
") A (1" V 1),

Proof. (i) We first show that if e Spz(P) and A(p) =1 then
0 =1p A Op™ A . Since ¢ is totally range-closed @ | 5, is residuated
and range-closed; moreover,

0((@ | po,i)™) = O(¢+)2 A O§0+ ANt = OCP+ AT = O(CP [Po)t .

Hence, applying Proposition 11, we get 0 = (@ | pw,0y) A W@ | pi0n)t =
1o A\ 0p™ A ©. Now note that ¢"e Spzo(P) and 0(p™)” = 0(p*)* thus,
if we apply the above to ¢”, we get 0 = ip™ A O(@™)" A <.

(ii) follows by a dual argument.

ExavmpPLE. Let R be a commutative ring with unit, L(R) the
lattice of ideals of R. Define p,: L(R)— L(R) for AC R, by the rule
Bp, = BA. Denote oy, by p,. One verifies very easily that:

(i) p, is totally range-closed and dually totally range-closed for
all ¢ in R.

(ii) Rp, = Rp. and {0}o7, = {0}07.

For R Noetherian, I an ideal and ¢ an element of R, part (ii) of
the above proposition yields I = I':(a") N (I + (a”)) for some integer r
which as is well known implies that every irreducible ideal is primary.

Extending a notion of Kurosh we set:

DEFINITION 6. Let P be a lattice, suppose e\./ =1, M(e, f),
M*(e, f), define the mappings ¢, s, @/ ;: P— P by the rules xgp,, =
(Ve NS epl;=(x A f)Ve for all x in L.

ProposITION 13. (1) o2 = @..5, Pir = (Pk ;).

(ii) Pe,r € Sro(P) N SDRO(P).

(ili) 1p,,, =1, 0pt, =ce.

(iv) If, in addition, M{(x, ¢) and M*(x, f) for all « in L, then
Pes € Sere(P) N Sprre(P).

Proof. By computation.

ProprosiTiON 14, If P is a lattice, the following conditions are
equivalent:

(i) o= PE Sro(P) N Spre(P).

(ii) 0p™ V 1p =1, M(0p', 1p), M*(1p, 0p™) and @+, = @.
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Proof. (ii) = (i) is Proposition 13.

(i) =(il): Since @* = @€ Sp(P) N Spre(P) we have M(0p*, 1p)
and M*(lp, 0p*) from Proposition 5 and its dual and Opt VvV 1p =1
from Proposition 11, Furthermore we have successively

vp = 2ppte = Tpptete = (¥ V 0pT) A 1p = T+, .

COROLLARY 1. For a lattice P the following conditions are
equivalent:

(1) @ = peSpro(P) N Sprro(P).

(i) 0p* \/ 1p = 1, M(z, 1p), M*(x, 0p*) for all « in P and
Poptiip = P

COROLLARY 2. For a lattice P the following conditions are
equivalent:

(i) P is modular complemented.

(ii) For every x in P there is ¢l = ¢, € Spro(P) N Sprre(P) such
that 1o, = .

(ili) For every x in P there is ¢ = @, € Spro(P) N Sprre(P) such
that 0p; = w.

(iv) P is isomorphic to the lattice of left annihilating ideals
of Szro(P) N SpreefP).

Proof. All equivalences are immediate except those with (iv)
which follow from paragraph 3 of [7].

The author wishes to thank Prof. D. J. Foulis for his help and
encouragement,
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