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A HELLINGER INTEGRAL REPRESENTATION FOR
BOUNDED LINEAR FUNCTIONALS

JAMES R. WEBB

The function space considered is that consisting of the
complex-valued, quasicontinuous functions on a real interval
[a, b], anchored at ¢, and having the LUB norm. It is shown
that each bounded linear functional on this Banach space has
a Hellinger integral representation. A formula for the norm
of the functional is given in terms of the integrating functions
involved in its representation. A new existence criterion for
the Hellinger integral is uncovered on the way to the repre-
sentation theorem.

2. Definitions. In this section certain definitions and notational
conventions are adopted for use in the succeeding sections. Throughout
the paper, [a, b] will denote a given interval and the word funection
will mean map from [a, b] into the complex numbers.

DrrFINITION 2.1. If ¢ is any number in (a, b], then R, denotes a
function such that R(t) =0 if ¢ is in [a,¢) and R(t) =1 if ¢ ¢t =Zb.
If ¢ is in [a,b), then L, denotes a function such that L, ¢) = 0 if
a=t=cand L(t)=11s ¢ is in (¢, b]. The functions L, and R, are
called unit step functions. A linear combination of unit step functions
is called a step function. Notice that each step function vanishes at a.

DeriniTION 2.2, We now specify the function space, @Qj]a, b],
which plays the central role, Its elements are the quasicontinuous
functions anchored at ¢ and they may be defined in two ways. First,
Qfa, b] is the set of all functions which vanish at ¢ and which have
a limit from the right at each ¢ in [a, b) and a limit from the left at
each ¢ in (a, b]. Second, let Bla, b] be the Banach space of bounded
funections, with LUB norm. Then Q,[e,b] is the closure, in Bla,b], of
the linear space of all step functions. So @Jfa, b] is a Banach space
with norm || 2| = LUB|«(t)| for all ¢ in [a, b]. Also, each bounded
linear functional on @Qa, b] is determined by its values on the step
functions, since the latter form a dense linear subspace.

For proof of the equivalence of these two formulations of Qa, b],
see [1, Lemma 4,16].

DEeFINITION 2.3, Suppose ¢ is any subset of [a,b]. If z is a
function, then x, denotes a function such that z,(¢) = «(¢) if ¢ is in ¢
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and 2,(¢{) =0 if ¢t is in [a, b] but not in g. If F is a linear functional
defined on Qfa, b] and it is true that x, is in Q}a,b] for each x in
Q.fa, b}, then F', denotes a linear functional such that F(x) = F(w,)
for each « in Q]a, b].

DEFINITION 2.4. “v has bounded slope variation with respect to
#” means that v is a function, % is a real-valued, increasing function,
and there exists a nonnegative number B such that if {¢,}2_, is a
subdivision of [a, b] with n > 1, then

o v(tp*1> _ /U(tp) . v(t,,) —_ /v(tp—l) < B
=ty ) —w(t,)  w(t,) — u(t,) |

The least such number B is denoted by V}(dv/dw) and is called the
slope variation of » with respect to » over [a, b].

DEFINITION 2.5. Suppose each of u,v, and w is a function and
is increasing. “The Hellinger integral bdwdv/du exists” means that
dewdv/du is a number and for each pos‘,litive number ¢ there exists a
subdivision D of [a, b] such that if {t,}»_, is any refinement of D then

dewdv__ o w(t,( = wit, ) [o(t,) — vt )1 |
o du L U(t,) — u(tp-y)

Clearly, this integral has a unique value,

DEFINITION 2.6. If % is an increasing function and v is a function
and ¢ is in [a, b) then “D;Jv(c) exists” means that

limit -2 = 2(0)
C ut) = ule)

exists and equals D, v(c). The notation D;wv(c) is used in a corre-
sponding manner for numbers ¢ in (a, b].

3. Lemmas. This section contains results which are used in the
proofs given for theorems in § 4.

LEmMMA 3.1, If n is an integer greater than 2 and ko k., ---,k,
18 a sequence of complex nmumbers and e, e, -+, e, 1S a sequence of
positive real numbers then

kaﬂ%“%_%ﬂ
p=1 6p+1 ep
n _ n—2 _ —
2L (o) [t bl S bbbk
On Se, Se, e, Se,
¢=1 q=1 g=1 =1
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Proof by induction. For the case n = 3,

ey — ki K — k,

l@—@_@—myL
e; e, ‘

e, e
_ k3~k2_k2—k1‘+_e_1_ ky —ky  ki—k
[N e, 6 | e + 6 e |
ky—ky, ko —Fk
e + e €

But by the triangle inequality, the sum of the first two terms of the
right-hand member is greater than or equal to

l (by — ko) — (ks — ko) (ks — ko) — (ki — ko)
[ €
(ks — ky)e, _ ke, — k&,
ex(e: + e) 6
_ l ky — kg _ (ky — ko)(e, + € + e)
B €; exe, + e)

Thus it may be seen that the conclusion is true for this case.
For the final step in the induction we begin by noting that

kypv — ky  k, — K,

~1
LT R
p=1 €pi1 €r p=1 = P
A > e
=1 7=1
[asy k k k,—k
St +1 0 0
+ o : <q2_1 64) nn+1 nn
n+1 -
4 e,

is true provided the last term of the left-hand member is greater than
or equal to the sum of the last term of the right-hand member and

<1 1 -ﬁ%) ky — ko kn—11— k,
=1 n n—
o 0 S, Se,
g=1 g=1

But this is true provided the sum of the last term of the left-hand
member and

kn _ ko . kn—l _ ko
q%eq r;S:“le"

is greater than or equal to the last term of the right-hand member.
This last sum, is, by the triangle inequality, greater than or equal
to
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(ki — ko) = (ky — ko) _ (ky — ko) — (ks — ko)

en-{—l e'n
k k n—1
J— . [
+(n O)qZIq—kn_l_kn
n
en'zeq o
q=1
n+1
ko — ko) >he
k”+1~ko‘(n O)QZ:}q
€ni1 . =
e'n-!—l Z:{eq
7=

Thus each of the inequalities is true. Hence Lemma 3.1,

LevMmA 8.2, If n is an integer greater than 2 and ky k., -+, k,
s a number sequence and S, S;, -+, S, 1S an increasing real number
sequence, then
kpiv — ke  k, — K

Spr1 — So Sp — S

T ke — ey — ke | o
s =5

=il Sy — 8, 8y — Sp1

This result follows immediately from Lemma 3.1 by the transfor-
mation: s, — s, =¢, for p=1,2, --- n.

LEMMA 3.3, If v has bounded slope wvariation with respect to
w then Djv(t) exists for each t in (a,b] and Djv(t) exists for each
t in [a, D).

Proof. Suppose c¢ is in [a, b) and limit, .., (v(t) — v(¢))/(u(t) — u(c))
does not exist. Then there exists a positive number ¢ such that if »
is in (e, b) then there exists a number s in (¢, ») for which

l v(r) —vle)  v(s) — () | o c
u(r) —ule)  w(s) —ule) |

It may be seen, then, that if = is an integer greater than 2 there
exists an increasing number sequence s, s, ---,s, wWith s, = ¢ and
each term in [e, b] such that

= l v(spﬂ) - 7)(0) . ’U(Sp) _ ’U(C) | g (7’& — 1)5 .

p=ilu(s, ) —ule)  u(s,) — ule)

But from this inequality and Lemma 3.2 it follows that

nil

3 V(Spi1) — v(S,) _ v($p) — V(Sp_r) ‘ = (n — le.

u(sw-l) - u(sp) u(sp) - u(sp—l)
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Since there exists an integer »n for which (n — l)e > Vi(dv/du), this
is a contradiction. Hence D;v(c) exists for each ¢ in [a,b). An
argument similar to that just given shows that D;w(c) exists for
each ¢ in (a, b]. Hence Lemma 3.3.

LEMMA 3.4. Suppose v has bounded slope variation with respect
b
to w. If ¢t is in (a,b], theng dR,dv/dw exists and is equal to D;v(t).
b a
If t is in [a,b), then S dL.dv/du exists and is equal to Djv(t).

This lemma follows readily from Lemma 3.3 and the observation
that, in each of the two equations implied by Lemma 3.4, each ap-
proximant for the right-hand member is an approximant for the left-
hand member.

LemmA 3.5, If v has bounded slope variation with respect to u
then the functional F, given by

Flz) = S" dxdv ’

o« du

15 linear on its domain, the dv/du-integrable functions x, and these
form a linear space.

Proof of lemma is not given.

LEMMA 3.6. If S is a step function and v has bounded slope
vartation with respect to u then

S” dSdv

exists.
a du

This lemma follows from Definition 2.5 and Lemmas 3.4 and 3.5.

Lemma 3.7, If a normed linear space A may be written as a
direct sum A = B@ C of two of its subspaces in such a way that

el = Max {|| Pry(a)|l, || Prya)|f}
for each a in A, then
[ F| = [ FoPrl| +|[FoPrl,

for each bounded linear functional F' on A.

Proof of this lemma is not given.
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LemMMA 3.8. Suppose h is subset of [a,b] and f and g are
mutually exclusive subsets of h whose union s h. Suppose, moreover,
that if x is any function in QJla, b, then each of x;, x, and x, is
in Qla,bl. If F is a bounded linear functional from Qa, b] then
each of I';) F,, and F, is a bounded linear functional and

WEAN + I E A =1Fll S| F) .
This lemma is a mere application of Lemma 3.7.
4. Theorems. In this section a representation for the bounded
linear functionals on Qla, b] in terms of the Hellinger integral is

developed and a formula for their norms is given.

TaEOREM 4.1. If x is in QJfa, b] and v has bounded slope vari-
b
ation with respect to w, then | dadv/du exists and

Sa dwdv] < {Vbﬂ + | Dy v(b)l}{le

Proof. Let S, S,, S, --- be a sequence of step functions such
that ||S, — x| < 1/p if p is a positive integer. Suppose 7 is an
integer greater than 1, {¢{,}*_, is a subdivision of [e,b] and ¢ is a
positive integer. Then, using summation by parts,

Z [S (tp) q(tzv—1)] [’U(tp) _ /U(tp~1)]
w(t,) — u(ty_s)
_ _”:‘1 ,U(tpw%) _ v(tp) _ /U(tp) _ ,U(tp—l)
- %ﬁs‘z(t”){ W(tyn) — wlt,)  u(t,) — ul(t, ) }
v(b) — v(t, )
w(b) — w(t,_.)

It is thus evident that the left-hand member of this equation is, in
absolute value, less than or equal to

IS+ e a1

+ S(t.)

From this and Lemmas 3.3 and 3.6 one may conclude that

[ Lo | < s, )1 {V2 4L 4 | Drod) }

(It is to be noted that this inequality holds true with S, replaced by
any other function in @a, b] for which the integral exists). If m is
an integer greater than ¢, then, since ||S, — S,.|| < 2/q, it follows that
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gi@;—u's—)ﬂli[ < %{V:% + [ Do) [}

Consequently, the sequence
{ S " dS,dv }”
« du q=1
is a Cauchy sequence and so has a sequential limit., Call this limit

I. We now show that the approximants to dexdv/du tend, under

refinement, to I.
There exists a number B such that

vide | o0 )| _
du | u®) — w()

for each ¢t in [a,d). Since || — S,|| < 1/p for p=1,2,---, it follows
that

i {2(s:) — S,(8) — [3(5:0) — Sp(si_)Hv(s:) — v(si)] I < %

= u(8;) — U(S;_1)

for any subdivision {s;}”, of [a, b] and any positive integer p. For
each positive integer p there exists a subdivision D, of [a, d] such
that if {s;}m, is any refinement of D, then

< [SP(Si) — Sr(si-d)][v(si) ’— /U(Si—-l)] - Sb dspd@l < B

= w(s;) — u(S;_;) o du VY
Since
despd’v__[,sz;B_ for p=1,2,.--
a——du = » 3 “y

it follows that, for each positive integer p,

i [2(s:) — a(s;_)Hv(s:) — v(8:)] T
=i u(s;) — W(S;_1)

4B
D

<

b
provided {s;}7~, is a refinement of D,. Hence | dazdv/du exists and its

value is I. That the integral satisfies the ineqaality of the conclusion
may be seen from the parenthetical note above. Hence Theorem 4.1,

THEOREM 4.2. Suppose v has bounded slope variation with re-
spect to u and F is the functional defined by

b
Fio= 2

a
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for each x in Qya,b]l. Then F is a bounded linear fumctional whose
norm s Vi(dv/du) + | D;v(b)|.

Proof. It is clear from Lemma 3.5 and Theorem 4.1 that F
is linear and bounded and that the norm of F' does not exceed
Vei(dv/du) + | Dyv(b)|. We now construct a function z in @a,b] such
that ||z|| = 1 and F(2) equals the sum of |D;v(b)| and the approxi-
mant for Vi(dv/du) corresponding to a preassigned subdivision of [a, b].

Suppose {t,l, is a subdivision of [a, b] with » > 1. Define d,,
for p=1,2, ---,(n — 1), by

— ,U(tzﬁl) _ /U(tp) _ v(tp) - /U(tp—-])
? u(tp—H) - u(tp) u(tp) - u(tp—l)

if this expression is not zero and d, =1 if the expression is zero.
For p=1,2, ... (2 — 1), let z, be a function such that

_owt) —wlt,) | d, |

u(t,) — wlt,_) d,

Zp{t) = 4 _wlty) —u®) | [d,]
u(t, ) — w(t,)  d,

0 for ¢ in [a, b] but not in [¢,_, ¢,..] .

for t in [¢,_,, t,]

for t in [¢,, ¢,.]

If Dyv(b) =0, let z, = R,. If D;v(b)+ 0 let z, = (D;v(b)/| D;v(b)|)R,.
Finally, let z = >, 2,.
Bach of z,2,2, ---, 2, is in Q)a, b] and it may be verified that

Sb dzdv [ oty — o(t) (L) — oty ) ] |d, |
o« du ’I/l/(tp.l_l) — u(tp) u(tp) - %(tp—l) dp

for p=1,2 -+, (n — 1) and Sb(dzndv/du) ~ |Dyw(b)|. Hence,

« du p=1

Sb dzd,v . n—1

() — v(E,) v(t,) — v(t,_) N
TR S [+ D7)

If ¢t is in [a, t,], then
u(t) — w(a)  [d]

‘z(t”:i”mto—u(a) a |=1
If ¢ is in [t,_., b), then

uw(®d) — wt,)  da

If p is one of 1,2, ..., (n — 2) and ¢ is in [¢,, ¢,.,] then
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. ?I/(t) - u(tp) |d:n+11 _ u(tp+1) _ ’L(,(t) ldpi <1
u(tzﬂ-l) - u’(tp) dp+1 u’(t:o-i—l) - u(tp) dp o )

And |2(b)| = 1. Hence ||z = 1.
It may be inferred from the foregoing that the norm of F is not
less than VX(dv/dw) + | Dyv(b)|. Hence Theorem 4.2,

[2(t) | =

THEOREM 4.3. If F is a bounded linear functional from QJa,b]
then there exist two functions % and v, with v having bounded slope
variation with respect to u, such that

> dadv

o du

mng
for each x in QJa, b].

Proof. Suppose ¢ is in (a,b]. If r and s are numbers such that
a <r<s<e¢ then, by Lemma 3.8, || Fi..|l=| Fi.l =0. Conse-
quently, limit,., || F,,. || exists. Let )\ denote the function such
that \c¢) = limit,_,_|| Fl,,., || for each number ¢ in (a, b] and N\(a) = 0.
Similarly, let o denote the function such that o(c) = limit,... || F... ||
for each ¢ in [a, b) and p(b) = 0.

Now it may be seen from the definition of A and Lemma 3.8 that
if {t,}2_, is a subdivision of [a, b], then

SMt) = P

A similar statement is true of p. Thus there exists a countable
subset M of [a,b] such that if ¢ 1s in [a, d] but not in M then
ME) = o(t) = 0.

Let u denote an increasing function such that (1) if ¢ is in (a, )
and M?) > 0, then w(t) — w(t—) >0, and (2) if ¢ is in [a@,b) and
o(t) > 0, then u(t+) — w(t) > 0. For each ¢ in [a,b] let u, denote
the function such that u,(s) = 0 for a = s <t and wu,(s) = u(s) — u(t)
for ¢t <s=<b. Let v denote the function such that »(¢) = — F(u,) for
each t in [a, b].

Suppose {¢,}7., is a subdivision of [a, b] and » > 1. Then, by the
definition of v and the linearity of F' there exists a number sequence
{d,}rzl, with |d,| =1 for p=1,2, .-+, (n — 1), such that
iy v(tp+1) _ /v(tp) . v(tp) _ /U(tz-—-l)
u’(ter) - u(tp) u(tp) - ?’{’(tp—-l)

_ F(n}:jl[ Uy = U, Uy, — Uy Jd )
= ulty,) — ult,)  ut,) — wlt,_) | )

p=1
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It may be verified that the norm of the function which is the argu-

ment of F in the right-hand member of the equation is 1. Conse-

quently the left-hand member is less than or equal to || F'|l. Thus it

may be inferred that v has bounded slope variation with respect to wu.
Let G denote the bounded linear functional such that

® daedv
a du

Gz) = g

for each « in Qa, b]. Suppose ¢ is in (a, b]. By Lemma 3.4
G(R,) = D;v(c)

G(R,) = limit 20 — v(®)_
t—c— ’Z/L( ) — %(t)

=it F (S =)

For ¢ in (a, ¢), one has
0 if s is in [a, ]

I______ut(s) — udS) _ R”(S)l = we—) — ult) if s is in (¢, ¢)
u(e) — u(t) u(e) — u(t)

0ifc<s=<b
so that

l ?)(C) — /U(t) _ F(R) —
u(e) — u(t) ’

IF”'C( (c) — uzt) ,

< || F,, |- HeD) —uwd)
(o) — ult)

F(t:c) H .

Now limit,,_ || F;,, || = Me). But if Ae) > 0, then w(c) — u(c—) > 0
so that

u(e—) — u(®) _
tme=a(e) — u(t)

So, whether A(c) is positive or zero, one has that
limit | 29 —v® gyl =0,
t~e— | u(c) — u(t)

Hence F(R,) = G(R,) for each ¢ in (a, b]. A similar argument shows
that F(L,) = G(L,) for each ¢ in [a,b). Therefore F(S) = G(S) for
every step function S. Thus, F = G. Hence Theorem 4.3, Clearly,
the norm of F' is given by the expression appearing in Theorem 4.2,
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