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A NOTE ON PRINCIPAL FUNCTIONS AND MULTIPLY-
VALENT CANONICAL MAPPINGS

PAUL A. NICKEL

L. Sario has constructed principal analytic functions on
planar bordered Riemann surfaces by applying the method of
linear operators to certain sets of singularity functions. Weakly
2-valent principal functions result from a similar construction,
starting with singularity functions having flux equal to integral
multiples of 2τr. In fact, such Λ-valent maps are characterized
as integral powers of principal analytic functions already
mentioned.

L. Sario has used linear operators to establish the existence of
certain canonical mappings of planar bordered Riemann surfaces W
onto slit disks [4]. These mappings F0(z) and F±(z), called principal
analytic functions, are formed from principal harmonic functions,
themselves constructed by applying the linear operator method of [5]
to systems of singularity functions defined near certain point sets of
W. In particular, near 7, the border of W, the singularity function
sy(z), which is constant on 7 with flux 2π there, is chosen, while near
ζ, a point of the surface W — W — y, the singularity function sζ(z) —
log I z — ζ I is selected. By exhausting the planar bordered surface W,
one constructs the mappings F0(z) and Fλ(z) of W onto a plane disk, with
radial or circular slits, possibly degenerate. It is easily established
that, for i — 0, 1, //γ(arg F^z)) is 2ττ, the flux on 7 of the singularity
function sv(z), and that each F^z) has a first order zero at z — ζ. These
conditions are easily seen to be a consequence of the selection of the
singularity functions sy(z) and sζ(z).

In this note, we investigate the nature of "canonical" maps F£(z)
and Fι(z) which result from starting with singularity functions Sy(z)
near 7 and Sζ(z) near ζ. Here, Sy(z) is constant for z e 7 with flux
1 dsy* — 2πX while Sζ(z) — λ log | z — ζ |. If an approximation process
similar to that of [4] is applied, canonical maps F£(z) and Ff(z)

result. Because ΔΊ arg F{{z) = \ dsy* = 2ττλ, it follows that the map-
Jy

pings F£(z) and Ff(z) are λ-valent, at least near 7. Also, at the
point ζ of W, these mappings have a λ-th order zero, and hence are
λ-valent near ζ as well. It is then reasonable to ask whether the
functions F£(z) and Ff(z), with radial and circular slit behavior
near the ideal boundary, are globally λ-valent in some sense.

For a bordered Riemann surface V with two border components
δ and 7, constructions similar to those of [3], starting with singularity
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functions s&(z) and sy(z), lead to similar questions concerning the
nature of λ-valent mappings of V onto a slit annulus. The purpose
of this note then, is to determine the geometric nature of multiply-
valenΐ canonical mappings based on the constructions already outlined.
In terms of principal functions already known, we shall be able to
establish a classification of such mappings based on the concept of
weak λ-valence.

2* The λ-th principal analytic functions. We consider first
an exhausting set of bordered surfaces {Wn}, each of which has 7 as
one of its border components, and has remaining border components
denoted ft, , βk{n). On every Wn, we construct λ-th principal analy-
tic functions FQ\(z) and F££z) such that ( i ) | F£(z) \ = constant =
ry(Fy) for zej with Jy(argFz

λ

n(z)) = 2τrλ, (ii) F£n{z) has_a λ-th order
zero at z = ζ, and (iii) F^z)(F£n(z)) maps each of W^s remaining
border components ft onto a radial (circular) slit. Such mappings are
constructed by selecting singularity functions s$(z) and s$(z) already
defined in § 1, and selecting the singularity functions s£.(s) near ft in
the manner of [4]. For ί = 0, 1, the functions Ffn(z) result from an
application of the linear operator method [5], and these are normalized
by the condition \im^ζ F^(z)J(z - ζ)λ = 1. The families {Fo

λ

n(z)} and
{FiXz)} are normal, and the resulting limits F£(z) and F£(z) are called
X-th principal analytic functions on W. It now seems reasonable to
expect that these mappings are weakly λ-valent in the following
sense.

DEFINITION. The mapping F(z) is called weakly x-valent if, for
each weF(W), the set F~\w) consists of at most λ points zeW,
and for some w e F( W), the set F~\w) consists of exactly λ points.
A weakly λ-valent mapping F(z) of W into the point set S is called
a radial (circular) slit mapping of W into S if each component of
the set {w e S; F~\w) contains at most λ — 1 points z e W} is a radial
(circular) slit or point.

3* Properties of λ-th principal analytic functions* The fol-
lowing are some properties of the maps Ff(z) and Ff(z) which will
prove useful.

(i ) For i = 0, 1, the function F£(z) has no zero on the surface
W- ζ.

(ii) If A(ζ) is a parametric disc with boundary δ whose orien-

tation is induced by //(ζ), then for i = 0, 1, I d(arg F£(z)) = 2πX.
Jδ

(iii) If σ is a cycle contained in W — ζ, then for i = 0, 1, λ

divides the integer (l/2ττ)\ d(arg
Jσ
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Proof of ( i ). If Zn is the number of zeros of Ff(z) in Wn, with
border 7 + /?«, we apply the argument principle and find:

Hence i ^ z ) is never zero on the surface W — ζ.

Proof of (ii). In the parametric disk Δ(ζ), we may write Ff(z) =

(« — ζ)λ/i(«), where /f(2) is never zero in zl(ζ). Hence it follows that

ί c?(arg i^(z)) - 2ττλ.

Proof of (iii). We let cr be an arbitrary cycle of W — ζ, and
choose π large enough so that σ c ίF%. If a parametric disk J(ζ) is
removed from Wn, the bordered Wn — Δ{Q results. Hence there are
integers a, b, and c< such that σ is homologous (in TΓW — Δ{ζ)) to

α7 + bd + Σ? ( % ) cliffy; and I ώ(arg Fϊ(z)) may be written as

= a f d ( a r g ^ ^ ^ + & f

Jβj

kin) C

= 2πXa — 2πXb + lim 2, cd \
m 1 Jβ

= 2πXa — 2πXb .

Thus it follows that λ divides (l/2ττ) d(a.τgF£(z)).
Jσ

The following theorem, characterizing the nature of FQ(Z) and
Fϊ(z), is our main result.

THEOREM 1. The X-th principal analytic function F£(z) (Fι(z))
is the X-th power of the principal analytic function F0(z) (F±{z)) of
[4].

Proof. We consider only the mapping F£{z) because the argu-

ments for Ff(z) are entirely analogous. According to property (iii)

of this section, λ divides (l/2ττ) i d(arg F£(z)) for each cycle σ in W — ζ.
Jσ

Hence it follows from the theorem of the appendix that Fo

λ(z) has
an analytic λ-th root, say G(z), in W — ζ. But ζ is a removable
singularity for G(z), and we call G(z), with (?(ζ) = 0, an analytic λ-th
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root of Fo

λ(z) in W, and in fact in W.

In the neighborhood Δ of ζ, we have Fo

λ(z) = (G(z))λ = (z - ζ)λH{z),
where H(ζ) has been normalized to 1. If we let H{z) be some analytic
λ-th root of H(z), then the set of functions {H(z) exp 2πik/X; k =
0, 1, , λ — 1}, according to the corollary in the appendix, represents
all λ-th roots. But (£Γ(ζ))λ = 1, hence one of the quantities
H(ζ) exp 2πik/X is 1. We assume that this occurs for k = 0, that is,
H(ζ) = 1, and we take G(z), with (G(z))λ = FQ

λ(z), as that branch for
which H(ζ) = 1. In particular, in Δ(ζ), G(z) = (z - QH(z), and G'(ζ) = 1.

We claim now that the functional Φ(G) = 2π log r(G) - A(G) of
[4] has the value Φ(FQ)y where Fo is the univalent principal radial
slit mapping of [4]. To see this, we need only compute the deviation
Φ(FQ) — Φ(G), and according to Theorem 3 of [4], this is only
Dw(log\G(z)/F0(z)\). But \og\G(z)/F0(z)\ has a removable singularity
at ζ, hence we write

X2DW log
G(z)

= Dw(\og
F0\z) I

y

W)l *{„„ Fo\z)ί l FHz)! /

=log / i
It now follows from reasoning similar to the proof of Theorem 3 in

[4] that G(z), and only G(z), maximizes Φ among analytic func-

tions F satisfying ( i ) F(z) = const for zey and 1 d(arg F(z)) = 2π.

(ii) F(Q = 0 and F'(ζ) = 1, and (iii) f d(arg F(J)) = 0. But Fo(2)

of [4] also uniquely maximizes Φ in the* same class of functions.

Hence FQ(z) = G(z), and this completes the proof of Theorem 1.

If we apply the corollary in the appendix, we find

COROLLARY 1. The set of mappings {F0(z) exp (2πί/X)k; k =
0, 1, •• ,λ — 1} represents all analytic X-th roots of FQ

λ(z). Also,
the set of mappings {Fλ(z) exp (2πi/X)k; k = 0, 1, , X - 1} represents
all analytic X-th roots of F?(z).

COROLLARY 2. The mappings Ff(z) and Ff(z) are respectively
weakly X-valent radial and circular slit disk mappings of W.

COROLLARY 3. For positive integers X and μ, the relations
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hold for ΐ = 0, 1.

Similar results may be obtained for λ-th principal analytic func-
tions defined on F, a bordered Riemann surface with two border
components 7 and δ. Again the construction of such functions is
suggested by a known construction in the univalent case [3], One
starts with singularity functions Sy(z) and s^(z) defined near 7 and δ
of the approximating bordered Vn, and takes as further singularity
functions Sβ.(z), the functions sβ.(z) of [3], Here, Sy(z) is constant on
7 with flux 2τrλ, while s$(z) is constant on δ with flux — 2πX. An
application of the linear operator method [5] to each Vn establishes
the existence of the normal families {Ffn(z)} and {Ffn(z)}, all subject
to the condition F££ζ) = 1. Principal λ-th analytic functions F£(z)
and F£(z) now result upon taking limits on n. We state the following
characterization of these functions in terms of the principal functions
F0(z) and F±(z) of [3].

THEOREM 2. The mapping F0\z) (Ffz)) is the x-th power of the
univalent principal mapping F0(z) (F^z)) of [3],

Appendix. We state, without proof, a well known characteri-
zation of those analytic functions which, on an open planar Riemann
surface W, have analytic λ-th roots. Since such a surface may be
cαnformally embedded in the complex plane, standard techniques of
complex analysis [1] may be employed.

THEOREM. Let f(z) be analytic and never zero on the open planar
Riemann surface W and let X be a positive integer. Then f(z) has
an analytic X-th root in W if and only if, for each cycle σ c W, X
divides the integer (l/2π) \ d(argf(z))m

Jσ

COROLLARY. Let f(z) be an analytic function which is never
zzro in W. If, for each cycle σ c W, X divides the integer
(l/2π) \ d(&rgf(z)), then f(z) has exactly X analytic X-th roots in W.
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