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SUB-STATIONARY PROCESSES

R. M. DUDLEY

This note supplements the longer paper [3], It is proved
in § 2 that if T is a bounded Schwartz distribution on Rn

9

e.g. an L°° function, then its Fourier transform ά^T is of
the form dnf/dtί' -dtn where / is integrable over any bounded
set to any finite power. This follows from the main theorem
of [3], but the proof here is much shorter.

Secondly, § 3 shows that a p-sub-stationary random
(Schwartz) distribution has sample distributions of bounded
order. This generalizes a result of K. Ito for the stationary
case.

Third, in §4 it is shown that p-sub-stationary stochastic
processes define p-sub-stationary random distributions if p ^ 1.

In [5], K. Ito introduced stationary random Schwartz distributions
L with second moments. He obtained the "spectral measure" represen-
tation of the covariance of L. Using this, he proved for each such L:

(I) There is a finite n such that almost all the sample distributions
of L are nth. Schwartz derivatives of continuous functions.

The spectral measure also yields

(II) Almost all the sample distributions of L are tempered dis-
tributions, and their Fourier transforms are first Schwartz derivatives
of locally square-integrable functions.

In [3], (II) was proved for random distributions L which are
"^-sub-stationary" for some p > 1, i.e. for each / in the Schwartz
space ϋ?,

sup E I L(τhf) \* < co ,
h

where (τkf)(t) = f(t - h). Also, "locally square-integrable" was
strengthened to "locally integrable to any finite power". In §2, we
shall give corollaries of this result for fixed distributions and stochastic
processes with much easier proofs. In § 3, we first prove (I) in the
p-sub-stationary case for any p > 0, using some lemmas from [3] but
no Fourier analysis. Then we obtain a result on the Fourier trans-
form of the covariance for p = 2. In § 4, we show that for p ^ l a
p-sub-stationary stochastic process is also a ^-sub-stationary random
distribution.
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2* Fourier transforms of bounded functions and distributions*
All three theorems in this section are immediate corollaries of the
main theorem of [3], but perhaps the easier proofs here will make
that result more accessible.

We use the notations of L. Schwartz [8], e.g. ^ , &\ £f, &".
^ is the Fourier transform operator. The results say that if a
distribution B is bounded or belongs to a suitable "stochastically
bounded" class, then ^B is of the following type:

DEFINITION. A distribution C in &'(Rk) is an FB-dίstribution
(C e FB) if and only if there is a measurable function / on Rk such
that

C = d'f/dt, . - dtk

in the sense of distributions, and

whenever 0 < r < oo and K is compact.

Beurling [1] has called a distribution on R a "pseudomeasure" if
it is the first derivative of a locally integrable function. Thus the
pseudomeasures include the class FB on the real line. The work of
Beurling, Kahane and Salem [6] and others on pseudomeasures has
apparently been primarily devoted to the question of which compact
sets carry pseudomeasures of certain types. I do not know of any
mutual implications between our results.

A distribution B in &\Rk) is called bounded (Be^f) if for
every / in ^ ,

s u p {| B(τhf) \:heRk}<oo

(cf. Schwartz [8, tome I, Theoreme IX(b) p. 72; tome II, "Autre
definition des distributions bornees", p. 61]). It follows immediately
from the main theorem of [3] that if ΰ e ^ ' , then J^B e FB.

We shall use here the Hausdorff-Young inequality for Fourier
transforms rather than for series as in [3], Suppose 1 < p ^ 2, q =
pl(p - 1), and feL*(R). Let

0, \t\>n.

Then the functions ^~fn are in Lq(R), and for some h in Lq(R),
^fn—^h in Lq (Zygmund [9, 12.41 p. 316]). In the sense of tempered
distributions, we have simply J^"f = h.
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To illustrate our method, we first prove

THEOREM 2.1. If feL~(R), then J^feFB.

Proof. Let g(t) = f(t) for 1t | ^ 1, g(t) = 0 elsewhere, and h —
f — g. Then by the Paley-Wiener theorem, ^g is an entire analytic
function, hence so is its indefinite integral, and ̂ g e FB.

Let j(t) = h(t)/t. Then j e L*(R) for all p > 1, so J?~jeLq for all
q ^ 2. Thus

e FB ,

so ^~h e FB. Hence J^fe FB.

In [3], there was an example of a bounded function / (the
Heaviside function) with j^f = Dφ, so that φ e Lr on each bounded
set for r finite, but with φ unbounded near zero.

Next suppose (Ω, &, P) is a probability space. A jointly measur-
able map

of Rk x Ω into R will be called a measurable stochastic process on
Rk, which is p-sub-stationary if

sup 11 x(t, ω) \p dP(ω) = M < oo .

We let Xω(ί) = a?(ί, ω), and JS7 = integral with respect to P.

THEOREM 2.2. Suppose %{*, •) is a p-sub-stationary process on
R and p>l. Then for P-almost all ω, ^Xω

Proof. Let Yω(t) = XJt) for 11 \ S 1, Γω(ί) = 0 elsewhere, and
Zω = Xω - Yω. Then for 1 < r ^ p,

E Γ I Zω(ί)/ί | r eft ̂  f (£? I Xω(ί) \*γι*/\ t\rdt£ 2M^/(r - 1) .

Thus Zω(ί)/ί G 1/ for almost all ω, so

^(ZJt)/t) e Ls for p/(p - 1) ̂  s < oo .

Thus DJ^(Zω(t)/t)eFB, and hence J?"ZωeFB. Now Γω is almost
surely integrable with compact support, so ^Yω and its indefinite
integral are entire functions, j ^ ~ Yω e FB, and ̂ X^ e FB for almost,
all ω.

Now we generalize Theorem 2.1:

THEOREM 2.3. // Teέ^'(Rk), then J^TeFB.
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Proof. T is a finite sum of partial derivatives of bounded functions
(Schwartz [8, tome II, Theoreme XXV p. 57]). Clearly FB is closed
under multiplication by polynomials. Thus we may assume T is a
function / in Lr{Rh).

For each subset A of the finite set {1, 2, , k}, let SΛ be the
set of all t in Rk such that | tά \ > 1 if and only if j e A. Let fΛ = f
on SΛ, fΛ = 0 elsewherec Then for each A,

9 A = fJ Π ί; e L^(iίfc) for all p > 1 ,

so that ^ " ^ e LQ(Rk) for all g ^ 2. Taking indefinite integrals in the

xό for j& A, we obtain j^~fΛ — dkhjdx1 <3x&? where

I I hλx) Γ cϋίCj dxk < oo

whenever 0 < r < co and K is compact. Thus

= Σ ^7-i

The converse of Theorem 2.3 is not true, since it is easy to
construct examples of 2-sub-stationary stochastic processes whose
sample functions are unbounded (as distributions) with probability 1.

3* p^sub-stationary random distributions are of finite order•
Let (β, ̂ ?, P) be a probability space and let M(Ω) be the linear space
of ^-measurable complex-valued functions on Ω modulo functions
which vanish P-almost everywhere. On M(Ω), let T(P) be the topology
of convergence in probability. T(P) is metrizable, e.g. by the metric

d(f, 9) = \\f(x) - 9(x) 1/(1 + \f(x) ~ 9(x) \)dP(x) ,

but it is not locally convex in general.

DEFINITION. A random distribution is a sequentially continuous
linear map from &{R) into some M(Ω) with topology T(P).

It follows from a theorem of R. A. Minlos [7] (see [4, Chapter 4,
§ 2, #4, Theorem 6]) that for any random distribution L there is a
countably additive measure Q on £$' such that for any fu , fn in
& and Borel set B c Cn,

Q{M: <Λf(Λ), , M{fn)> e B} = P{ω: <L(Λ)(ω), , L(Λ)(ω)> e B] .

The subsets of 3$f on which Q is given form an algebra (the
"cylinder sets"). The unique countably additive extension of Q to the



SUB-STATIONARY PROCESSES 211

generated σ-algebra will be called the Minlos measure of L.
For any / in ££f(R) and integer n Ξ> 0 we let

/11. = ( £ Γ \D'f(x)\'dχ)m

Also, for any finite interval (a, b), ^[a9 b] will denote the space of C°°
functions vanishing outside (a, δ), with its relative topology from ϋ?.
This relative topology is defined by the countably many norms || \\n

(although that of £& is not). For A and B in £&' we say "A = B on
(α, 6)" if A(f) = J5(/) for all / in &r[a, δ]. The distribution defined
by a locally integrable function / or derivative Dpf will be written
[/] or [Dpf] respectively.

Clearly a continuous linear functional A on &[a, δ] for
has the form

A(f) = ±
3=0

for some gά in L2[α, δ]. Thus, integrating by parts and adding, we
have

A{f) = [D*g](f) = [D

for some g in L2(α, δ) and absolutely continuous h on (α, δ).

THEOREM 3.1. Lβί L be a p-sub-stationary random distribution
for some p > 0. 2%e% ί&erβ is α positive integer n suck that the
Minlos measure of L is concentrated in the set of M in 2$f such that
M — Dnf for some continuous function f (depending on M).

Proof. The hypothesis becomes stronger as p increases. Thus
we may assume 0 < p :g 1. For each g in & let

Note that A will not generally be a pseudo-norm for p < 1. By Lemma 4
of [3], there exist K and n Ξ> 0 such that A(g) ^ K\\g\\n for all # in

, 1], hence for g in ^ [ δ , δ + 1] for any real δ.
Now given c > 0, there exist f, , fm in ^ such that

= l for | ί | ^ c ,

and such that the diameter of the support of each fά is at most 1 (cf.
[3, proof of Lemma 5]). Let g e &[ — c, c]. Then for each j ,
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( n Γc

Σ
p=0 JO

g (n + 1)2% \\g\\n max (| ^ . ( t ) | : t e R, 0 ^ r

Thus for some Mc > 0,

l/3>«
Σ l l Λ

for all g in ^ [ —c, c].
Now £&[ — c,c] is a nuclear space (see e.g. Gelfand and Vilenkin

[4, Chapter I, §3, #6]). Thus a theorem essentially due to Minlos
([7], [4, Chapter IV, §2, #3, Theorem 4]) implies that the Minlos
measure of L restricted to l&[ — c,c] is concentrated in the set of
distributions continuous for || \\n+r for some r (actually r = 1). Thus
the Minlos measure is concentrated in the set of all M of the form

M = \Dn+r+1f] on (-c, c)

where / is continuous and depends on M. Given M, f on ( — c, c) is
determined up to an additive polynomial of degree at most n + r»
Fixing / on ( — 1, 1), say, we obtain

M = [Dn+r+1f]

for some continuous / (not necessarily bounded on R). The proof is.
complete.

A simpler form of the last proof yields

THEOREM 3.2. Let L be a random distribution, p > 0, and (α, b)
a finite interval. Suppose E \ L(f) \p < oo for all f in £&[a,b]m

Then for some n, the Minlos measure of L is concentrated in the set
of all M in ϋ ^ ' equal on (a, b) to [Dnf] for f continuous on [α, 6],

Proof. L is continuous from ϋ^[α, b] to LV(Ω) [3, Lemma 2]..
Thus for some n and ε > 0,

| | / | | n < e implies

and



SUB-STATIONARY PROCESSES 213

for all / in ϋ^[α, 6] by homogeneity. Now we use nuclearity of
[a, b] and can proceed as in the last proof.

Suppose L is a random distribution with finite second moments,
i.e. its range in M(Ω) is included in L2(Ω, &, P). Then there is a
unique B in 3f\R2) such that

E(L(f)L(g)) =

where (/®£)(M) = f(s)g(t) (see e.g. [2, §3]).

LEMMA. If L is 2-sub-stationary, then B is bounded.

Proof. We must show that for any h in &(R2), B(τzh) remains
bounded as z runs over R2. We know this for h of the form

For a general h, we have h(s, ί) = 0 outside some square C^: \s\^M9

\SM. Let ^ G ̂ (i2),flr(s) = 1 for IsI ^ Λf, and g(s) = 0 for | s | ^ 2M.
We expand h in a Fourier series:

λ(s, ί) = g(s)g(t) 2 . ^ ( m

? w) βxp (πi(ms + nt)/2M)

for all (s, ί) in R2. Since A on C2Jlf extends to a C00 function periodic
of period 4ikΓ in s and ί, we know that for any polynomial p in two
variables, p(m, n)a(m, n) is bounded.

Now, by Lemma 4 of [3] there exist k and N > 0 such that

for all / in &r[-2M, 2M]. Let

hm(s) = g(s) exp (π ims/2M) .

Then

P « ||* = ( Σ I D'hjβ) |2 ds)1'* £ Γ(l + m2)'
\i = 0 J-2M

for some T > 0 (depending on M and ^, but not on m). Now

A(s, t) = Σ α ( m . n)hm(s)hn(t)

and α(ra, ?ι)(l + m2)fc+1(l + ^ 2 ) / ί + 1 is bounded in m and w, so

sup [ B{τzh) I ̂  sup X I a(m, n)B{τshm (g) τ,An) |
z s,t m,n

From the lemma just proved and Theorem 2.3, we can infer that
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for any 2-sub-stationary random distribution L,

E(L(f)L(g)) =

for some .FΈ>-distribution C, i.e.

C = [d2f(x, y)/dxdy]

for some measurable function / integrable to any finite power over
any compact set. When / is of bounded variation on R\ L (or B)
is called harmonizable. Clearly such a B is a bounded continuous
function: B e <^?{R2)O We have the following inclusions of subsets
of &'(W)\

harmonizable c
c J^"\FB) c J^""1 (pseudomeasures) .

For none of these classes do we have a simple characterization both
of the distributions and of their Fourier transforms (such as the
Bochner, Plancherel and Paley-Wiener theorems and their generali-
zations and other results of Schwartz). Thus which will yield the
most useful theory remains unclear.

4* Stochastic processes and random distributions*

THEOREM 4.1. If p ^ 1, a p-sub-stationary stochastic process
x(', •) is a p-sub-stationary random distribution.

Proof. Let fe &(Rk). For any h in R\ let

A(f, h) =

\

\ f(t - h)x(t, ω)dt PdP(ω)
Jit*

V

f(s)x(s + h, ω)ds dP(ω) .

Let C be the support of / and let λ be Lebesgue measure. We
apply Holder's inequality to the inner integral, with q = p/(p — 1),
obtaining

Λ(f, h) S H/IIJ ( \x(s + k, ω)\*dsdP(ω)
Jo

^ \\f\\p

qX(C)sui)\\x(s,ω)\pdP(ω) < co .
s J

Thus a random distribution L is defined by

L(f)(ω) = \ x(t, ω)f(t)dt
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and is p-sub-sίationary.

For p < 1, it seems unclear whether a p-siib-stationary stochastic
process defines a random distribution at all.

I thank C. M. Deo for pointing out some corrections to [3] which
were incorporated in the published version, and for suggesting that
(I) should hold for p-sub-stationary processes.
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