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ENDOMORPHISM RINGS OF PRIMARY
ABELIAN GROUPS

ROBERT W. STRINGALL

This paper is concerned with the study of certain homo-
morphic images of the endomorphism rings of primary abelian
groups, Let E(G) denote the endomorphism ring of the abelian
p-group G, and define H(G) ={ac E(G)| 2z € G, pxr =0 and height
2 < co imply height a(x) > height x}. Then H(G) is a two
sided ideal in E(G) which always contains the Jacobson radical.
It is known that the factor ring E(G)/H(G) is naturally iso-
morphic to a subring R of a direct product II3_; M, with
Sim-1 M, contained in B and where each J, is the ring of all
linear transformations of a Z, space whose dimension is equal
to the » —1 Ulm invarient of G. The main result of this
paper provides a partial answer to the unsolved question of
which rings R can be realized as E(G)/H(G).

TueoreM. Let R be a countable subring of Ily,Z, which
contains the identity and Xx,Z,. Then there exists a p-
group G with a standard basic subgroup and containing no
elements of infinite height such that E(G)/H(G) is isomorphic
to R. Moreover, G can be chosen without proper isomorphic
subgroups; in this case, H(G) is the Jacobson radical of E(G).

1. Preliminaries.

(1.1) Throughout this paper p- represents a fixed prime number,
N the natural numbers, Z the integers and Z,. the ring of integers
modulo p*. All groups under consideration will be assumed to be p»-
primary and abelian., With few exceptions, the notation of [3], [5],
and [8] will prevail.

Let Zq(x) and E(x) denote, respectively, the p-height of = in G
and the exponential order of . If A is any subset of the group G,
then {4} will denote the subgroup of G generated by A. Denote the
p" layer of G by G[p"]. Finally, if A is any set, let | A| be the
cardinal number of A.

(1.2) Let G be a p-primary group and B a basic subgroup of G.
The group B can be written as B = 3>,ey B, where each B, is a
direct sum of, say f(n), copies of Z,». That is, B, = > s, {b;} where
E(;) = n. Define H, = {p"G, B,.,, B,.s, -+-}. It is readily verified
that G = B,p --- P B, P H, for each ne N. Thus, it is possible to
define the projections 7, (n = 1,2, --+) of G onto H, corresponding to
the decomposition G = BP B, P --- BB, P H,. Define p,=1—7, and
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On =T,y —w, for m>1. It follows that p,(G) = B, and that p, is
the projection of G onto B,.

2. Endomorphism rings. A few preliminary notions are needed
before the main results can be presented. Although given in a dif-
ferent context, many of the results of this section are patterned
after those of R. S. Pierce in his work [8].

LEMMA 2.1, Let G be a p-group and B = >,ex B, a basic
subgroup of G. If a is an endomorphism of B,[p], then a can be
extended to an endomorphism B of G such that § # n implies B(B;) = 0.

Proof. Since G =B, PHB,P--- P B, P H, for each me N, for
each m e N, it is enough to show that a can be extended to B,. Let

Sf(n)

B, = 3 (b}
where, for each 4, E(b;) = n. For b, e B,, write

a(p™'b;) = a,p" by + -+ - + a,p"'h,
Bb;) = ab, + -+ + a;b,

where k and the integers a; (0 < a; < p) are determined by a. Com-
pute B(b;) in this way for each b, ¢ B,, and extend B linearly to B,.
It follows that B is the desired extension of & to B,.

LEmMA 2.2, If G is a p-group and B a basic subgroup of G,
then any bounded homomorphism of B into G can be extended to a
bounded endomorphism of G.

Proof. By definition, G/B is divisible. Consequently,

G/B = p*(G/B) = ELB?_’E

for each positive integer n. It follows that G = B + p"G for each
neN. Let ke N be such that p*a =0, and write e G as « =
b -+ p*y where be B and yeG. It is easy to check that x— a(b)
defines a bounded extension of a to an endomorphism of G.

For proof of the following lemma see [8], Lemma 13.1,

LEMMA 2.8. An endomorphism « of the p-group G is an auto-
morphism tf and only if keraNG[p] =0 and «(G[p] N p"G) =
G[p] N p"G for each integer m =0,1,2, «--,
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For the p-group G, let E(G) denote the ring of all endomorphisms of
G. If E,(G) denotes the subcollection of E(G) consisting of all bounded
endomorphisms of G, then it is not difficult to show that E,G) is a
two sided ideal of E(G).

LEMMA 2.4, Let

H,(G) = {ae E,(G)|veGlp] and ho(x) e N imply hoa(z)) > ho(x)},
K,(G) = {a e E(G) |a(Glp]) = 0}, and
L,(G) = {a e E,(G) |(G) S pG} .

Then H,G), K,(G) and L,(G) are two sided ideals of E,(G) contained
in the Jacobson radical, J(E,(G)), of EG). What 1is more,
K, (G) + L,(G) S H,(G).

Proof. 1t is easy to check that H,(G), K,(G) and L,(G) are two
sided ideals of both FE,(G) and E(G). It is also easy to verify that
K, (G) € H,(G). It remains only to show that L,(G) S H,(G) S J(E,(G)).
To this end, suppose ae L,(G), xeG[p] and hgx) = ke N. Since
hg(x) = k, it is possible to write x = p*y for some yeG. It follows
that

a(x) = a(p*y) = pra(y) e p'pG = p*'G

Hence, hga(x)) =k + 1> h(x) and ae H,(G). Therefore, L,(G) is
contained in H,(G). To show that H,(G) is contained in J(&,(G)), let
ae H(G). Since ae E,(G), there exists a positive integer &k such
that p*a = 0. Thus, if e G[p] and Azy4x) = k, then a(x) = 0. Since
x € G[p] implies A (a*(x)) > k, it follows that a*+'(x) = 0 for all x € G[p].
If xeG[p] and (1 — a)(x) = 0, then

xr = a(x) = a?(x) = ees — a’H—l(m) — 0 .
Thus, 1 — « is one-to-one on G[p]. Also, if e G[p], then
1 - a)@+ a@) + - + a@) =2.

Therefore, (1 — a)(G[p] N p"G) = G[p] N p"G for each n =10,1,2, ---,
Applying 2.3, it is seen that 1 — «a has an inverse. Since H,(G) is
an ideal of E(G), a e J(E(G)) N E(G) = J(E,(G)) (see [4], pp. 9 and 10).

It becomes necessary, at least for the remainder of this section,
to fix the basic subgroup B and a decomposition B = >B,. This,
naturally, determines the subgroup H,, the cardinals f(n) and the
maps 7, and 3,.

LEMMA 2.5. There are group homomorphisms o of E,(G) into
E(G), o of EG) into K,(G) and T of E,G) into L,(G) such that for
ac E(G)
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("Noa)(b,) = (1 — w,_)(@(d,)), (za)(b,) = T, (x(b,))
and (pa)b,) = p,(ad,)) for b,eB,,n=1,2, .-, Moreover,
=00 =0,"=7,00=00=pt=tp=0t=10=0,0+0+7=1,
and p,(0a)0,(b,) = pa(d,) for all b,eB,,n=1,2, «--,
Proof. It is clear that conditions (*) determine bounded homo-
morphisms of B into G, which by 2.2 extend to G as bounded endo-

morphisms. The remainder of the proof is similar to that of 13.4 in
[8] and will not be given.

(2.6) LEMMA., The mapping
A a— ((o@) | Bpl, (0a) | Bip], )

18 @ ring homomorphism of E,(G) onto the ring direct sum

5, E(B.Ip) .
The Kkernel of : is {ae E(G)|px e K, (G)}.

Proof. It is clear that » maps onto 3,y E(B,[p]). In fact, if
(o, g +-+, ,, 0,0, +-2) € Si,ey E(B,[p]) where a; € E(B,[p]) for k=
1,2 ..., m, then by 2.1, each of the a, have extensions 8, to G such
that j + k implies B,(B;) = 0. Obviously,

7\4(2”: B@) = (a'ly Qyy oo, Uy, 0’ Os M ')
i=1

and p" >\%,B8; = 0. Thus, )\ is onto 3,exy E(B,[p]). Clearly, )\ is
additive. To show that ) preserves products, let be B,[p]. Then
h(d) = n — 1, so that for some ce B,, b = p~*¢. Also,

P(aB(b)) = Pa(@B(b)) = pa(a((0B)(b) + (08)(D) + (z8)(b))) .

Now, o¢Be€ K, (G) and beG[p]. Thus, oB8(b) =0. Also, 78¢e L,(G)
implies that z8(b) = z8(p™'c) = p™'tB(c) € p*G, so that

0.a(zB(b) e p"G N B, = p"B, =0,
Finally, 08(b) = 0,08(b). Thus,
P(aB(b)) = P.(aB(D)) = P.a((0B)b)) = (oa)(0B8)(D)) .

Consequently, MaB) = Ma)M(B). To show that the kernel of »
is {ae E,(G)|pac K, (G)}, observe that Na) =0 if and only if
oa | B,[p] = 0 for all ne N, This condition is equivalent to pa(B[p]) =
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0 which, since px is bounded, is equivalent to pa(G[p]) = 0. There-
fore, Ker (\) = {a e E,(G)| pa € K,(G)}.

THEOREM 2.7. The Jacobson radical of E,(G) s Hy(G), and
K, (G) + L,(G) = H,(G). Also, E,(G)/H,(G) is ring tsomorphic to the
ring direct sum >.,.ey M, where each M, is the ring of all linear
transformations of a Z,-space of dimension f(n).

Proof. By 2.6 there is a ring homomorphism » of E,(G) onto a
ring isomorphic to >,eyM,. Moreover, the kernel, of N is
{ae E,(G)| pae K, (G)}. The rings M, are surely primitive. Thus, by
[4], proposition 1, p. 10, the Jacobson radical of E,(G) is contained
in Nyey Ker(o,\) = Ker x where 6, (n = 1,2, -.+) is, temporarily, the
projection map of >,ey M, onto M,. Hence by 2.4,

K,(G) 4 L,(G) & H,(G) & J(E,(G)) & Ker ).

To show that the kernel of N is contained in K,(G)+ L,(G), let
a e E(G) be such that pac K,(G). By 2.5, paa + o + tax = . 1t
follows that ae K, (G) + L,(G). Thus,

Ker A = {ae B (G) | pac K(G)} S K,(G) + L,(G) .
Hence,
Ker: = J(E,(G)) = K (G) + L,(G) = H,(G) .

For proof of the following lemma, the reader is directed to R. S.
Pierce’s work [8], p. 284.

LEMMA 2.8. Suppose R is an associative ring and S any two-
sided ideal of R. Let J(S) be the Jacobson radical of S and

J(R,S) = {xe R|xzed(S) for all ze S}.

Then the following statements are valid:

(a) J(R,S) is a two-sided ideal of R containing J(R) the
Jacobson radical of R;

(b) J(R,S) ={xe R|wxz is quasi-regular for all z, w tn S};

(e) J(R,S)={xeR|zxecd(S) for all ze S};

(d) J(R,S)NS = J(S);

(e) the image of S wunder the matural projection of R onto
R/J(R, S) is an tdeal which isomorphic to S|J(S).

Recall that M, (n =1, 2, ---) is defined to be the ring of all linear
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transformations of a Z,-space of dimension f(n).

If ¢ is the natural map of E(G) onto E(G)/J(E(G), E,G)), then,
by 2.8 (e), &(E,(G)) is isomorphic to E (G)/J(E,(G)). By 2.7, there is
an isomorphism ) of E,(G)/J(E,(G)) onto the ring direct sum >,cx M,.
Let 6, be the ring homomorphism of E, (G) onto M, obtained by com-
posing A& with the projection of >,,ey M, onto M,. That is, for
ae E,(G)

M(a) = (0., 0., +++) .
It is easy to see that if p,(n =1,2, -..) are as defined in 1.2, then
0.(0n) =0 for m=mn and d,(0,) =1.
For a e E(G), set p(a) = (9.(ap,), 0:(0s), 05(0s), ««+).

THEOREM 2.9. The correspondence

a—L56(apy), d.(0,), o), +++)

18 a ring homomorphism of E(G) onto a subring R of the ring direct
product [l.ey M, with kernel J(E(G), E(G)). Moreover, R contains
both the identity of Tl.ey M, and the ring direct sum >,,ey M,.

Proof. See the proof of Theorem 14.3 in [8].

The following lemma gives an interesting characterization of
J(E(G), E,(G)).

LEmmA 2.10. J(E(G), E,(G)) = {ac E(G)|xeGp] and hgx)e N
1mply he(a(x)) > he()}.

Proof. Suppose a € E(G) and hga(x)) > h(x) for all x e G[p] such
that A(x) is finite. Then if B¢ E(G), the product aB satisfies this
same condition. That is, for elements x in G[p] of finite height,
haB(x)) > hg(®). In particular, if 8e E,(G), then af is bounded and
satisfies the foregoing condition. Thus, for Be E,(G), aBe H,(G)
which by 2.7 is J(E,(G)). Consequently, «e J(E(G), E,(G)) by defini-
tion., Conversely, suppose a € J(E(G), E(G)), x € G[p] and A4 x) < oo.
The existence of a bounded endomorphism B such that B(x) = 2 is
easy to verify (see, for example, [3], Theorem 24.7). By definition,
apB e J(E,(G)). Consequently, Zg(a(x)) = ho(aB(x)) > hqo(x).

The following two results will be needed later,

LEMMA 2.11. Let a be any automorphism of the p-group G without
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elements of imfinite height. If BeJ(E(G), E,(G)), then o — B 1is
one-to-one,

Proof. Suppose 0+ x ¢ G[p] and (¢ — B)(z) = 0. Then by 2.10,
he(®) < he(B()) = he(a(2)) = ho(a™(a(x))) = hg(x) ,

a contradiction. Thus, ker(aw — 8) N G[p] = 0. This is enough to
ensure that ¢ — B is one-to-one.

THEOREM 2.12. If G is without elements of infinite height and
has 1o proper isomorphic subgroups, then J(E(G), E(G)) = J(E(G)).

Proof. If aeJ(E(G), E,(G)), then 1 — « is an isomorphism by
Lemma 2,11, Since G has no proper isomorphic subgroups, 1 — « is an
automorphism. Therefore, « is quasi-regular for each a € J(E(G), E (G))
(see [4], p. 7). Since J(E(G), E,(G)) is a right ideal, it follows that
J(E(G), E,(G)) € J(E(G)) ([4], Theorem 1, p. 9). Finally, J(E(G)) =
J(E(G), E,(G)) by 2.8 (a).

3. Realizations of E(G). The primary concern of this paper is
with the endomorphism rings of p-primary groups without elements
of infinite height. The study of such rings can be greatly eased with
the employment of some fairly simple notions.

Let G be a p-group without elements of infinite height and B =
Swex B, a basic subgroup of G. Let B denote the closure (or torsion
completion) of B. The group B can be defined as the torsion subgroup
of the direct product [l.ey B.. That is,

B={xe I[ B,|p'z = 0 for some kc N}.
nEN

Naturally, B is identified with the subgroup of B consisting of those
elements which have at most a finite number of nonzero components.
Thus, B is a pure subgroup of B. It is well known that there is a
B-isomorphism of G onto a pure subgroup of B (see [3], § 33). Thus,
in a sense, the study of p-groups without elements of infinite height
can be reduced to the study of pure subgroups of suitable closed
groups B.

It has already been asserted that G should be a p-group with
fixed basic subgroup B. In order that the above remarks will apply
to G, require, in addition, that G be without elements of infinite
height. That is, both B and B are fixed and G is a pure subgroup of
B which contains B.

If a, B are endomorphisms of G which agree on B, then B is
contained in the kernel of the difference v = a« — 8. Thus, ¥(G) is a
homomorphic image of the divisible group G/B, and, for this reason,
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is divisible, Since G is reduced and since v(G) & G, it follows that
Y(G) = (@ — B)G) = 0. Thus, a« = B. Consequently, if G is a reduced
p-group, then every endomorphism of G is completely determined by
its effect on the elements of any basic subgroup.

By 2.2 and the above remarks, it follows that each bounded endomor-
phism of B has a unique extension to an endomorphism of G. Because
of this, it may be assumed that E(G), the endomorphism ring of G,
contains an embedded copy, denoted by E,(B), of the ring of all
bounded endomorphisms of B. Thus, identify E,(B) with

{ae E,(G)|«(B) < B} .

Suppose that B S G < B where G is a pure subgroup of B. It has
been shown that every endomorphism of G has a unique extension to B
(see, for example, [6], pp. 84-85). Thus, it is possible to adopt the
very useful convention of identifying the endomorphism ring of G
with the subring of the endomorphism ring of B consisting of endo-
morphisms of B which map G into itself. That is,

E(G) = {ac E(B) | a(G) < G} .

With this identification, E,(G) (the torsion subring of E(G)) becomes
a subring of E,(B); namely,

E,(G) = {ae E,(B)|a(G) < G} .

It is reasonable to expect the above identifications to carry over
in some way to the images p(E(G)) where g is the map defined in
Theorem 2.9, The following results show that this is indeed the case.

Let & be the map of Theorem 2.9 developed for E(B). Then by
using the definition of & and the above convention, it is not hard to
show, for pure subgroups G of B containing B, that &|E(G) and the
map p, defined in 2.9 for E(G), are identical. Because of this, it is
possible to confine the investigation of all such maps g to the map &
and its restrictions to subrings of E(B).

By way of summation, the following is given.

LEMMA 3.1. Let G be pure subgroup of B which contains B.
Let ¢ be the map of Theorem 2.9 defined for the p-group B. The
restriction of & to E(G) and the map of 2.9 developed for G agree.
Moreover, J(E(G), E,(G)) = J(E(B), E,(B)) N E@G).

LEMMA 8.2. If G = B or G = B, then £E(G)) = [I M,.

Proof., Suppose (a;, a,, --+) is an arbitrary element of [[ M,.
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Each «; (¢ = 1, 2, - - -) may be considered as an endomorphism of B;[p].
By 2.1, each «; has an extension to an endomorphism B; of B such
that 8;(B;) = 0if ¢ # j. Let « be the endomorphism of B determined
by the conditions:

a(b,) = Bu(b) for be B, i =1,2, -+ .

By Lemma 2.2, a can be extended to B. In either case, &)=
(an Ay =+ ')-

Up to this point it has been shown that T] M, can be realized as
a homomorphic image of E(B) and E(B). Using an example of R. S.
Pierce, it can be shown that not every pure subgroup G of B which
contains B can be so classified.

First, consider the ring of p-adic integers, R, (see [3], §6). This
ring can be thought of as the collection of all infinite sums of the
form

=7+ TP+ 1Pt A oeee
where 0 < 7; < p. Suppose ze G, and re R, where
=T+ TP+ 1P+ e

and 0 < r; < p. It is possible to assign a meaning to the product rzx,
namely,

re = 1 + rpr + rpr + o0 4 0"

where n is any integer greater than E(x). Clearly, this definition is inde-
pendent of the integer n. It is easy to check that with this defini-
tion, G becomes an E,-module. Consequently, every element » of R,
induces an endomorphism of G, 2 — rx, which will also be labeled ».
What is more important, it is not difficult to show that this corre-
spondence, between the elements of R, and the elements of E(G), is a
ring isomorphism, With this in mind, it is possible to assume that
R, is a subring of the ring of all endomorphisms of G.

DEFINITION 3.3. An endomorphism « of the p-group G is said
to be a small endomorphism of G provided the following condition
is satisfied:

(*) for all £ = 0 there exists an integer = such that 0(z) <k
and Z4(x) = n imply a(x) = 0.

REMARK. The concept of small endomorphism is due to R. S.
Pierce and can be found in his paper [8]. The equivalence of the
above definition and that appearing in [8] can be shown using 3.1 and
2.10 in the above mentioned paper.
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It is an easy consequence of the above definition that the collec-
tion of all small endomorphisms forms a subring E,(G) of the ring
E(G). Moreover, E,(G) is an ideal of E(G).

R. S. Pierce has shown that there exists a p-group H without
elements of infinite height such that E(H) = E,(H) + R, ([8], p. 297).
The following results demonstrate a few of the many curious properties
of such groups.

Lemma 34, If E(H)= E(H)+ R, then E(H) and R, are
disjoint.

Proof. Let reR, and » = 3,2, 7;p° where 0 < r; <p. By defi-
nition, » is a small endomorphism if and only if for all £ = 0 there
exists an integer m such that x ¢ H, E(x) < k and Agz(x) = n collectively
imply 7(x) = 0. Let A be the least index such that », %= 0. Let
k> h, and for Il > k let x;, = p'~*b, where b, e B,, E(b,)) = | and A 4(b,) =
0. (Recall that B = 3,ey B, is a basic subgroup of H). Then
2, € B< H, E(xz;) =k, r(x;) # 0, and #Az(x;) increases indefinitely as [
increases. Thus 7 is not a small endomorphism, and E,(H)N R, = 0.

LEMMA 3.5. &(E(H)) = >\ M, and E&(R,) = {1} where 1 1is the
identity of >.° M,.

Proof. It is easy to see from the definitions of ¢ and
E,(H) that ¢&UFE,(H)) &> M, Since E(B)S E,(H)< E(H) and
&E,(B) =>M,, it follows that &(E,(H)) = 3, M,. Suppose r =

soripie R, Write » = r, + ps where s = ey 70", Clearly,

&(r) = &(ry + ps) = &(r) + &(ps) = &(ro) e {1}.
LEMMA 3.6.
Ker (¢| E(H)) = J(E(H)) + J(R,) = J(E(H), E,(H)) .

Proof. By 3.1, Ker (¢|E(H)) = J(E(H), E,(H)). To show that
Ker (¢|E(H)) = J(E,(H)) + J(R,), let a + r be an arbitrary element
in E(H) where ac E(H) and reR,. Suppose, in addition, that
&a + r) = 0. Since >, M, and {1} are obviously independent and since
a4+ r)y = &a) + &r)e >\ M, + {1} by the foregoing lemma, &« + r) =
0 if and only if both &a) =0 and &(r) = 0. Surely, &r) = 0 if and
only if r € pR,. Since pR, is the unique maximal ideal in R,, J(R,) = pR,
(see [4], p. 9). Thus, the conditions &(r) =0 and r € J(R,) are equivalent.
Moreover, &(a)=0anda € E,(H)ifandonlyif a e J(E(H), E,(H)) N E,(H).
By Lemmas 2.9 and 2.8 (d) of this paper and 14.4 of [8], &) = 0 if
and only if
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aecJ(E(H), E(H)) N E(H) = JE,(H)).
Thus,
Ker (| E(H)) = J(E,(H)) + J(R,) = J(E(H), E,(H)) .

LemMA 3.7. If K(G) = {ae BG)|a@Glp]) = 0}, then K(G) is a
two sided ideal of E(G) which is contained in the Jacobson radical
of E(G).

Proof. 1t is obvious that K(G) is an ideal of E(G). Moreover,
if ae K(G), then ker(l —a) NGlp] =0 and (1 — a)(G[p] N »"G) =
G[p] N p"G. Thus, 1 — a is an automorphism by 2.3. It follows that
K(G) is a quasi regular ideal in E(G); and is, therefore, contained in
the Jacobson radical of E(G) (see [4], p. 9, Theorem 1).

THEOREM 3.8. FE(H)/J(E(H)) = EH)/J(EH), E,(H)) 14s ring
isomorphic to >, M, + {1}.

Proof. By 3.5 and 3.6, & maps E(H) onto >, M, + {1} with kernel
J(E(H), E(H)) = J(E(H)) + J(R,). Also, by 28 (a), J(E(H))S
J(E(H)) + J(R,). Thus, it remains only to show that J(R,) and
J(E (H)) are contained in J(E(H)). Since E,(H) is a two sided ideal
of E(H), J(E(H)) = J(E(H)) N E,(H) (see [4], p. 10). Thus, J(E,(H)) =
J(E(H)). Since J(R,) = pR, (pR, is the unique maximal ideal of R,)
and since J(E(H)) is an ideal, Lemma 3.7 is enough to insure that
J(R,) & J(E(H)).

4. An extension property. In §3, it was shown, using suitable
pure subgroups of B, that there are at least two distinct rings of
the form E(G)/J(E(G), E(G)), namely, [T M, and >\ M, + {1}. It is
the objective of the remainder of this paper to investigate some of
the possible images &(E(G)) for B G < B.

For the duration, assume that B = 3>cy B; where each B; = {b;}
is of rank one and of order p’. In this case each M, automatically
becomes fixed as a single copy of Z,. That is, each M; will be the
ring of all endomorphisms of a cyclic group, {¢;}, of order p.

For a subset 4 of N, let ¢(A) be the element of [],ey M, defined
by the conditions

c; if jeA
tA)(e;) = 0 if jed.
It is obvious that if » is any element of [[.ey M, and if for each
1=0,1, .-, p—1 A(r) ={je N|r(c;) = tc;}, then r can be written
in the form r = >\27L it (A (7).

=0
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LEMMA 4.1, Let R be any subring of Il.ex M, with identity
e. (The identity of Tl.ex M, and e are not assumed to be identical.)
Then e = t(M) for some subset M of N. Moreover, the collection
K(R) = {A < N|t(A) e R} forms a Boolean algebra of subsets of M.

Proof. Using Fermat’s theorem

p—1

e = o= = (Sit(ae)) = S t(A4d0) = S (A0) = HM)

where M = {te N|e(c;) # 0}. If ¢(A), t(B) are members of R, then
#A N B) = t(A)(B) e R and t(A N B) = t(A) + ¢(B) — t(A N B) ¢ R. Since
t(A) = e-t(A) = t(M)-t(A) = t(M N A), it follows that A = M for all
Ae K(R). Thus, t((M — A) = t(M) —t(A) = ¢ — t(A) € R for all Ac K(R).
This shows that K(R) does indeed form a subalgebra of P(M)={A|A < M}.

LEMMA 4.2. Let R be a subring of Il.ey M, with identity
e =t(M). If reR, then t(A,(r))eR for each k=0,1,--+- p—1,

Proof.
7 = 0-1(Ay(7)) + (A7) + 28(Ax(7)) + -+ + (p — 1)E(A4,u(7)) .
Consider the product
s = 11 (te — 7).

17#k,1=0,1,+++,p—1

It follows that se R. Clearly, if ¢ ¢ A,(r), then s(¢c;) = 0 since j € A,(7)
for some 7 and

(te — 7)(c;) = ic; — r(e;) = ic; — ie; = 0.
Also, if je A,(r), then

s(6) = (0 — B)(L — k)2 — k) =+ (6 — 1) — B)((k + 1) — J)
(0 = 1) = R)e;) = (0 — ey .

By Wilson’s theorem, (p — 1)! = —1 (modulo p); consequently, t(A,(r)) =
—seR.

Suppose R is a subring of T[] M, which contains >, M, + {1}. For
each Aec K(R), let o(A) = >lieqs 0;. Define I'(R) to be the subgroup
of E(B) generated by the collection {0(A)| Ae K(R)}. Using Lemma
4.1 and 4.2 some elementary properties of I"(R) can be stated.

LEmMMA 4.3. If acl'(R), then there exists an integer m =0,
integers a, a,, ++-, a, and disjoint elements A, A,, --+, A, in K(R)
such that



ENDOMORPHISM RINGS OF PRIMARY ABELIAN GROUPS 547
a = auo(Al) + azp(Az) F oo +a’np(An) .
Moreover, the group I'(R) is a subring of E(B).

Proof. For the first statement, induction can be used. For the
induction step, it is enough to show that if

o = OLHO(Al) + amo(Az) +oeee + a'n—1p(An—~1) + amo(A%)

where A4,, ---, A,_, are disjoint, then the result holds. Using 4.1,
A, -+, A, e K(R) imply that

AlnAm "'yAn—-lnAn; Al - Any "'9An——1 - An;

and A, — U=l 4; are members of K(R). Moreover, these sets are
disjoint, Thus, if « is written

a = al(O(Al - An) + oo + a’n—l(O(An—l - An) + (a1 + “n)P(Al n An)
n—1
—[_ M + (an—-l + a’n)(o(A'n-—l - An) + amo<An - L_jl A’a) y
then it is easily checked that this is the desired decomposition. To
show that I"(R) and the subring of E(B) generated by I'(R) are
identical, it is enough to show that I"(R) is closed under composition. It

suffices to note that if A4,, A, e K(R), then p(A4)0(4,) = p(4, N 4,) € I'(R).
This is obvious by Lemma 4.1 and the definition of I'(R).

LEmmA 4.4. R = &I'(R)).

Proof. If re R, then » = 3773 it(A,(r)) where A;(r)ec K(R) (see
4.2). Let a = >7?2510(Ai(r)). Then acl'(R) and &(a) = ». Thus,
R S §(I'(R)). On the other hand, suppose

a = a,0(4) + -+ + a,0(4,) e I'(R) ,
where a;, -+, a,€Z and A,, .-+, A, € K(R). Applying &,

fa) = afp(A4) + ++ + @, 50(4) + « -+ + a,8(0(4,)) =
at(A) + -+ + at(A)eR

(see the definition of K(R) in Lemma 4.1),

The following lemma is needed before the main result of this
section can be given,

LEMMA 4.5, Let y = h >3, a,0°°"b; where he Z, ke N and each
a;(j = k) 1s an integer such that 0 < a; < p. If AS N and i€ N,
then p*y # 0 and o(A)p*~'y) e B imply that o(A)(y)e B.
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Proof. Suppose o(A)(y)¢ B. Then if A, ={icA|a;+# 0}, A, is
infinite, Since p(A)(p*~'y)e B, there is some mne A4, such that
0.0(A)(p*'y) = 0. Thus,

0 = 0,0(A) (P 'y) = P.(p*'y) = p*ha,p"*b, = ha,p ", ,

so that p*+'—* divides 4. Since pi~'y # 0, this cannot be the case,.

THEOREM 4.6. Let G be a pure subgroup of B such that BS G
and ¥(G) S G for each vel'(R). Suppose xc B[p] is such that
T'(R)(z) N G[p] S Blpl. Then there is a pure subgroup H of B such
that

(i) B&€ G H

(ii) Hl[p] = G[p] + I'(R)(x)

(ili) v(H) € H for each veI'(R).

Proof. Write » = 3,21, a;p*'b; where k, > 0,0 < a; < p for i = k,
and a, = 0. Let K be the subgroup of B generated by B and the
collection consisting of all sums of the form >, a;p*"*b, where & =Fk,.
Consider the group K generated by all elements of the form +(z) for
ze K and v(R). It is claimed that the group H = K + G has all
the desired properties. First, note that K is exactly the subset of B
consisting of all elements which can be written as b + 4 >);., a;p"b;
for some be B,heZ and ke N (the integers a; for j = k are deter-
mined by the element x). Also, if ¥y =b + & >;s, a;p7*b;c K, then
y may be written as y = b + D" Dljspia ;0" **™b;,, where b =
b+ hSkrtap ;e B and 3jspi, @;p"%"b,e K, Thus, K/B is
divisible. Suppose ne N, vy, ---,v,€I'(R) and x,, ---, x, € K. Using
the divisibility of K/B, choose ¥,, ---, ¥y, K such that x, — p"y;c¢ B
for each i =1, ---, k. Since ve I'(R) implies v(B) & B, it follows that

Yi(@s) + e A+ (@) — PM(V(Y) + e+ V(W)
= 7(2) — 7(D"Y) + o+ + V(@) — V(DY)
= 7% — P"Y) + +o0 + V(% — DY) € B

This shows that K/B is divisible. (Note that B< K since le'(R)
and B< K.) Now, both K/B and G/B are divisible. Consequently,
H = K + G is a pure subgroup of B since (K + G)/B = (K/B) + (G/B)
is a sum of divisible groups and hence divisible. Since, a, Be I'(R)
imply that aBel'(R) (see 4.3), it follows that v(K) < K for all
vyel'(R). Thus, v(H)<S H for each vyelI'(R). It remains only to
show that H[p] = G|p] + I'(R)(x). First, suppose that

y=nh> ap ;e K and Ae K(R)
izk
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Then o(A)(y)eG if and only if o(A)(y)e B. To show that this asser-
tion is correct, suppose that o(A)(y) is a member of G. Then, if
1 = E@), p"'y = K’z — b’ for suitable 2'e Z and b e B. Thus, since
I'R(x)NG= B and B< G, it follows that o(A)(p"~'y + b) =
o(A)(h'x)e B and that po(A)(p'~'y)e B. But, p(A)(p~'y)e B, p"~'y#0
and y = & 35, a,p7%b; imply, via 4.5 and the restriction on the
a;(1 = k), that o(A)(y) e B. The converse is trivial. Let

Xy Xy oo+, X, €K, 2e6G and v, Yy cc-, Yo .
Suppose
P(r(@) + Yo(@) + oo+ () +2) =0
For each i = 1,2, -+, m, let «; = d; + h; X5z, @;077"b; where d; e B,

h;eZ and k;c N. Let k' be any positive integer greater than each
of the integers k,, k., ---, k,. It is easily checked that there exist
integers m,, m,, ---, m, and elements dj, dj, ---, d, of B such that for
each it =1,.--,n

%, = di + m; >, a;p7%b; .
PETY
ThU.S, if Yy = ngk’ ajpj—klbj, then

Vl(xl) SRR ’Y'n(xn) = 71(d{ + mly) + e+ 7n(d; + /n’I’ny)
= 7(d) + cor A+ vldr) + (mey, A+ e e A+ My, (Y)
=b+ 7(y)
where be B and velI'. Since vel', it is possible to write v =

e.0(4;) + +-+ + e,0(4,) where A, --., A, are disjoint members of
K(R) and where ¢, ---,¢,c Z (see 4.3). Now,

D(Vi(®y) + Yol@) 4 oo e+ V(@) +2) =0

implies p(b + v(y) + 2) = 0; and, therefore, py(y) e G + B = G. Suppose
that e;0(4;)(y) ¢ B for some ¢ =1, ---, m. Then since be @G, py(y)eG
and o(4,)(G) € G, it follows that

P(A:) (YY) = pe;p(A)(y) = p(A:)(pey) e G .

Thus, as was noted, o(4;)(pe;y) e B. Now,

P(A:)(pey) = p(A@-)(pei > afpf—k'bj>
Jzk’
= pe,b Z;l‘ ajpj_k'bj (<] B .

JEA4;

Since, by assumption, e;0(4;)(y) ¢ B, it follows that p(4;)(y) ¢ B. Thus,
p¥~* divides ¢;. Therefore, e¢;y = elx — b’ for suitable e¢ic Z and ¥’ € B,
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Consequently, e;0(4:)(y) = p(A:)(ey) e I'(R)(x) + B. It follows that
Y + + o+ + vu(x,) e (R)(®) + B and that

Y(2) + oo + vu(x,) + e N(R)x) + G.

Thus, v,(%,) + +++ + 7.(x,) + 2 =y + w where ye I'(R)(x) and weG.
Also,

0 = p(7i(xy) + ==+ + 7u(@,) + 2) = (Y + w) = pw

and we G[p]. This shows that H[p] < G[p] + I'(R)(x). The opposite
inclusion is obvious.

5. The image. This section is devoted to the construction of
a class of pure subgroups of B having suitably restricted endomorphism
rings. The methods used here are similar to those employed by P.
Crawley in [2] and R. S. Pierce in [7].

DEFINITION 5.1. (R. S. Pierce) A family & of subsets of a
set F is called weakly independent if whenever A, A, .-+, A, are
distinct elements of &, then A, is not contained in the union of the
remaining sets A4,, 4,, ---, A,.

THEOREM 5.2. (R. S. Pierce) Let F be a set of infinite cardi-
nality . If + 1s a cardinal number such that 0 < 4 = @, then
there 1s a family F# of subsets of F such that

(a) & 1is weakly independent,

(b) |A| =+ for all Aec. &,

(e) |7 | =9

Proof. (See [8], p. 261.)

At this point it is convenient to set @ = {a|B[p]|ac E(B)}. It
is clear that @ is a ring with identity. For the moment, only the
additive group structure of @ will be considered.

LEmMMA 5.3, Let I'={a, =0, a;, ax,, -++} be any countable sub-
group of O satisfying the following condition:

(*) for all nonzero ael’, a(c;) = 0 for an infinite number of
indices j € N.

There is a collection T(I") of element in B[p] such that

(1) [T(I)] = 2%,

(i1) Xern I'(2) is direct (I'(x) = {a(x) | ael}).

(ili) a;(x)#ai(x) for all xe T(I") and for all i#7,

@iv) ai(x) = 0 for some x e T(I") implies a; = 0,
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Proof. Let K= N x N, Well order K in the following way:
@GN < h)if i+j<k+horifi+ij=k+%and i<k Now,
each element of I" satisfies (*). Thus, since the set

{4, 9) e K[(3, ) < (k, h)}

is finite for all elements (k, 2) € K, it is possible to define, inductively,
an order preserving one-to-one map f of K into N such that Zz(a;(cs:,,))
is finite (i.e., a@;(¢si;.5) #= 0) and is greater than the height or every
nonzero element in the finite subgroup of B[p] generated by the
collection {a,(¢sim.m) | & = 4 and (m, n) < (¢, 7)}. Let & be any weakly
independent collection of subsets of N such that |.& | = 2%, If
Se .7, let 2(S) e B[p] be defined by the expression:

x(S) = J% Criirg) o

Let T(I") = {«(S)|Se & }. Suppose S, S,, +++,S,,€. 7 are distinct,
2, =2(S;) for et =1,2, ..., n, and

79
> @) = 0

for positive integers %, k,, -+, k,,. Since & is weakly independent,
there exists for each ¢ =1,2, .-+, n, an integer
m;eS; — US;.
JFi
Jsng
Let k; be the largest integer in the collection {k,, -, k,}. Let
hli = kg(aki(cf(ki'mi))) + 1. It fOHOWS that

(1) (1 — mp ) (Crapmp) # O
and
(2) 1 - nhi)aéi(cﬂkimi)) + (1 — )00, (2 — Crugm)

tl-m) 3 aw)=0.

=12, eee g

Now,

(1 = m)a (€ — Craump) + (1 — 7)) > ()
j:l,’;f't-,no
=1 — w1 — T )@, — Cru;my)
+ A =) 35; a (1 — 7)) .

F=1,2,+24,m9

Since m; e S;, it follows from the definition of x; = 2(S) and the order
preserving property of the mapping f that
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1 - T @i — Crirpmy) = > Ciimm)
(m,n) < (k;m;)
n€S;

Hence, a, (1 — m,)(®, — ¢s4,,n,) belongs to the subgroup S of B[p]
generated by the collection

{ak(cf(mm)) ' k é ’kiy (my n) < (kiv mz)} .
Also, if j + 4, then m,;¢ S; and k; < k;. Therefore,

(1 = m, ) (2;) = 21 Crtmem 3
(m,n) <(k;,m;)
n€S ;

and because of this, a, (1 — m,)(x;)) € S. Thus, from (1), (2) and the
above, (1 — m,)a(cra,my) = (1 — m,)(2) = 0 for some z in S. It
follows that As((cra,m,) = hz(2), a contradiction of the definition of
the map f. Thus, .ermm I'(x) is direct. Condition (i) is clear from
the definition of T(I"). Condition (iv) follows from the preceding
argument with » = 1. Since I" is a group, condition (iii) follows
easily from (iv).

DEFINITION 5.4. Let I' be a subgroup of #. An element « in
6 will be called I'-exceptional provided there exists a collection T(I", &)
of elements in B[p] such that

(1) [T, )| = 2%,

(il) I'(z), I'(y), {a(x)}, {a(y)} are independent for all distinet
z,ye T(I", ),

(ili) a(x) #= 0 for all xe T(I", a).
An endomorphism a e E(B) will be called I'-exceptional if «|B[p] is
I'-exceptional,

REMARK. If ac E(B) and a|B|p] = 0, then by 8.7 and 2.8 (a)
acJ(EB), E,(B)). Thus, the kernel of the map a— «|B[p] is con-
tained in J(E(B), E,(B)). It follows that & can be considered as a
map from 6 to JI M, by defining for each ae®, §(a) = &(B) where
Be E(B) and a = 8| B[p]. Extensive use will be made of this con-
vention in what follows.

LEMMA 5.5. Let I" be any countable subgroup of @. Suppose
ae0 issuchthat ¢ I’ and 4 = {I", &} satisfies the following condition:

(*) for all nonzero Be 4, B(c;) + 0 for an infinite number of
indices je N, Then « ts I['-exceptional,

Proof. Since 4 = {I", a} is obviously countable and satisfies (*),
Lemma 5.3 can be applied to conclude that there exists a collection
T(4) with the properties:



ENDOMORPHISM RINGS OF PRIMARY ABELIAN GROUPS 553

(1) [T(4)| = 2%,

(i1) Sieerwmn 4(x) is direct.

(ili) v(x) # B(x) for all e T(4) and distinet B, ve 4,

(iv) Be 4 and B(z) = 0 for some x ¢ T(4) implies B = 0.
Set T(I", «) = T(4). Clearly, conditions (i) and (iii) of 5.4 are satisfied.
Let x,ye T(I", @) be distinct, and suppose there is a relation of the
form B(x) + ka(z) + v(y) + ha(y) = 0 where B,veI" and h, ke Z. By
(ii), it is clear that both B(x) + ka(x) = 0 and ¥(y) + ha(y) = 0. It follows
by (iv) that 8 + ka = 0 and v + ha = 0. Since E(a) =1 and a¢l,
this last condition implies that both ~a = 0 and ka = 0. Thus B(x) =
ka(x) = v(y) = ha(y) = 0, and condition (ii) of 5.4 is also satisfied.
This completes the proof.

COROLLARY 5.6. Let I'" by any countable subgroup of @ satisfying
(*) for all monzero vel',¥(c;)#0 for an infinite number of
indices j € N,
Suppose ae @ is such that &(«) is not a member of &I") + (3 M,).
Then « 1s I'-exceptional.

Proof. Clearly, a ¢ I" since &(ax) ¢ &(I"). Consequently, it is enough
to show that 4 = {I", a} satisfies condition (*). Suppose, to the con-
trary, that there exist ne N and B e 4 such that 8+ 0 and B(c;) = 0
for all 5 >n. It is possible to write B = v + ka where yeI” and
ke Z. Since I' satisfies (*) and FE(a) = 1, it can be assumed that
It = 0 (modulo p). Now, 8 = v + ka and

fka)y =EB —7) =&B) —&meX M, + &I') .

Since % is relatively prime to p, it follows that &(a)e > M, + &),
a contradiction.

COROLLARY 5.7. Let I' be any countable subgroup of @ satisfying
the following condition:

(**)  for all monzero veI' there exists a sequence of integers
{a;}iex such that ~(c¢;) = a;e; for each i1e N, and a;c; =0 for an
infinite number of indices ¢ € N,

Let ae O be such that alc;) — p;a(c;) # 0 for an infinite number
of indices 1€ N, Then « is I'-exceptional.

Proof. 1If veI, then v(c;) — p:v(¢e;) = a,c; — ae; = 0 for all te N,
Thus, «¢ I'.  As before, let 4 = {I", a}, suppose v + kaecd. If k=0
(modulo p), then either v = 0 or (v + ka)(c;) = v(¢;) # 0 for an infinite
number of indices ¢e N, If v =0, then v + ka = 0; and there is
nothing to show. Suppose k= 0 (modulo p). It follows that
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(1 — p)(v + ka)(e,) = (v + ka)(e;) — pi(y + ka)(e;)
= (v — 0)(¢;) + k(a — o,a)(c;)
= k(e — p;a)(¢;) # 0

for an infinite number of indices ie N. Consequently, v + ka must
have this same property, and by 5.5, «a is I'-exceptional,

Let R be any countable subring of T] M, which contains >, M, + {1}.
Let I'(R) be as defined in §4. That is, I"(R) is the subgroup of E(B)
generated by the collection {0(A)|Ae K(R)}. Define I" to be the
subgroup of @ defined by I" = {v|B[p]|veI'(R)}. Note that I" is a
p-group in which every element has order p. By Zorn’s lemma, it is
possible to choose a subgroup 4 of I” which contains the identity and
which is maximal with respect to having only the zero element in
common with the subgroup {verl'|é(v)e >, M,}. Obviously, 4 is a
countable subgroup of @ which satisfies condition (*) of 5.3. Let &
be the collection of all those elements in & which are J-exceptional,
By 5.6, if €8 and &) ¢ &(4)+ >, M,, then a is J-exceptional. Since
&(4) + (S, M,) is countable and since & maps onto [] M, by Lemma
3.2, it follows that | & | = 2%, Let 2 be the first ordinal of cardi-
nality 2%, and let ¢ < «, be a one-to-one correspondence between the
elements of & and the ordinals ¢ < 2.

LEMMA 5.8. There exist collections {G,|p < 2}, {P,|p < £} and
{U,|p < 2} such that

(i) for all p < 2,G, is a pure subgroup of B containing B,
P, = G,[p] and U, is a subset of B[p],

(i) G, =G, and U, S U, whenever ¢ <y < £,

(i) 1P, = (ol + DR and | U,| = (@] + D},

(iv) %G, € G, for all ve'(R) and each ¢ < £,

(v) P,NnU,= @ for all p <2,

(vi) for each @ < 2 there exists z,€ P, such that «,(z,) e U,.

Proof. The proof is by transfinite induction. Suppose G, and
U, exist forall o < y. Let G) = Uy« G, + B. P, = U,<; P, + Blp]
and U; = U,<, U,. Note that G\[p| = P,, that v(G}) S G, for each
vyeI'(R), and that G is a pure subgroup of B. Suppose there is an
element z in P, N U,. The existence of z implies the existence of
ordinals + <y and ® <y such that ze Uy, and z¢ P, + B[p] = P..
Let ¢ be largest of 4 and . Then z¢[P, + B[p]|n U, =P, N U,
contrary to the induction hypothesis. Thus, P, N U, = @. Since
|P,| = (@] + DS, and |T,| = (@] + D}, for each p < %, it follows
that [Pl = (x| + DX and [ Uy| = (x| + DXRe.  Thus,

{P7, Uy, Bl = [ PrITUZ IR = (2] + DR, < 2%
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Since a, is J-exceptional, there is a collection T(«,) S B[p] such that
(a) |Tia)|= 2%

(b) v,z T(er,) imply that 4(y), 4(2), (W)}, {@,()}

are independent and «,(y), a,(2) are nonzero. Therefore, it is possible
to find 2z, e T(«,) such that «,(z,) = 0 and

%) {A(Zx), az(zx)} N {P);y U)Z’ B[p]} =0.

Now suppose ve I'(R). Since every element of I" has order p and
since 4 is maximal with respect to having zero intersection with
{vel|&v) e, M}, it is possible to write v|B[p] as a + S where
aed,Bel’ and &(B)e >, M,. Since &(B)e >, M, it follows from the
definition of I'(R) that B(B[p]) & B|p]. Therefore,

(2, = a(z,) + B(z,) € 4(z,) + Blp] .

Consequently, if v(z,) € Gi[p] = P;, then (using (¥)) ¥(z,) € B[p]. Thus,
G, and z, satisfy the hypothesis of 4.6. Let G, be the pure subgroup
of B obtained by the application of 4.6. Then

P, = G,lp] = GiIp] + I'(R)(2,) = P; + 4(2,)

and v(G,) S G, for each vyeI'(R). Also, |P,| = (x| + 1)W.. Let U,
be the set obtained by adjoining «,(z,) to U;. Then |U,| = (Ix| + 1)\,
and conditions (i), (ii), (iii), (iv) and (vi) obviously are satisfied. To
show that (v) holds, suppose ze P, N U,. There are two cases to
consider:

Case 1. z=a,(z,) and z =y + B(z,) for ye P, and Be4. By
#), a,(2,) — B, =y =0. Thus, applying (b), it is clear that
a,(z,) = 0. This is a contradiction of the choice of z,.

Case 2. ze U, and z =y + B(z,) for ye P, and Be 4. In this
case, 0 =z —y = B(z,) by (#). Consequently, y =z¢e U,. This is a
contradiction since U, N P, = Q.

LEMMA 5.9. Let G(R) = U,<0 Gy, P(R) = U,<o P, and U(R) =
Ui<e U,. Then

(i) G(R) is a pure subgroup of B,

(ii) G(R)[p] = P(R),

(i) P(R) N UR) = o,

(iv) Y(G(R)) S G(R) for each yeI'(R),

(v) if we E(B) and if a is d-exceptional, then a ¢ E(G(R)).

Proof. The arguments for (i), (ii), (ii), and (iv) are quite easy
and can be found in the proof of 5.8. To show (v), suppose «a is
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d-exceptional. Then there exist ¢ < 2 and z, € P(R) such that a(z,) € U,
(see (vi) of 5.8). Since P(R)N U(R) = @ and G(R)[p] = P(R) by (iii)
and (ii), it follows that a ¢ E(G(R)).

THEOREM 5.10. Let R be any countable subring of the ring
direct product TI M,. Suppose that R contains >, M, + {1}. There
is a pure subgroup G of B, containing B, such that &(E(G)) = R.
Moreover,

E(G)
' J(E(G)’ E:D(G))

n

R.

Proof. Let G = G(R). By 4.4, R = &I'(R)). Thus, since I'(R) &
E(G) by (iv) of 5.9, R = &(E(G(R))). Suppose a € E(G(R)) and &(x) ¢ R.
By 4.4, 8N S &) S EI(R)) = R. Thus, &4) + (3 M,) S R, and Lemma
5.6 may be applied to infer that « is 4-exceptional. This is contrary
to (v) of 5.9. Therefore, &(E(G(R))) = R. It follows from 3.1 that

E(G)

= R.
J(E(G), E(G))

LEMMA 5.12. Let U and V be vector spaces over a field such
that V= U. Let U/V be finite dimensional. Suppose aec E(U), «
18 ome-to-one and a(V) =V. Then «a is an automorphism of U.

Proof. Since a(V) = V, « induces an endomorphism «’ of U/V
(@'(w + V) =a'(u) + V for ue U). Moreover, a’ is one-to-one; and,
consequently, the dimensions of U/V and «/(U/V) are equal and finite.

It follows that a’(U/V) = U/V; and therefore, a(U) = U by a standard
argument.

THEOREM 5.13. The groups G = G(R) have no proper tsomorphic
subgroups.

Proof. Let a be an isomorphism of G into G. By (v) of 5.9, «
is not 4-exceptional. By 5.6, 5.7 and the definition of the map ¢,
there must exist an integer # and an element S e 4 such that a(c;) =
B(c;) for all 4> mn. Since a is an isomorphism, 0 = a(c;) = B(¢;) for
all ¢ > n. It follows that « and B agree on (7,G)[p] = 7.(G[p]) (see
§1 for the definition of z,). Now, 4cI" = {v|B[p]|vel'(R)},Bec4
and B(c;) # 0 for ¢ > n imply, using Fermat’s theorem, that 57— acts
as the identity on 7,G[p]. It follows that A maps (x,.G)[»] N p*x,G)
onto itself for each £t = 0,1, --.. Thus,

a(G[p] N p*G) = a((=.G)[»] N p*(x.G) = (x.G)[p] N p*(x.G) = G[p] N P*G
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for each k. =n,n+1,.--. Suppose m =1 is the largest integer
such that a(G[p] N »™'G) = G[p] N p™'G. It has been shown that if
m exists, then m < n. An application of 5.12 to U = G[p] n »™'G
and V = G[p] N p™G shows that the existence of such an integer m
is impossible. Consequently, a(Gip] N p*G) = G[p] N p*G for all k = 0.
By Lemma 2.3, it follows that « is an automorphism of G.

COROLLARY 5.14. Let R be any countable subring of the ring
direct product [ M,. Suppose that R contains >, M, + {1}. There
is a pure subgroup G of B which contains B such that

EG) o
JIEG)

Proof. Let G = G(R) and apply 5.10, 5.13 and 2.12,
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