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HITTING TIMES FOR TRANSIENT STABLE PROCESSES

S. C. PORT

In this paper we explicitly find the asymptotic behavior,
for large t, of the probability that a transient d-dimensional
stable process first (last) hits a bounded Borel set during the
time interval (t, oo).

Assume that X(t) is a stable process on Rd (d-dimensional Euclidean
space) having exponent a < d and normalized so that the paths are
right continuous with left-hand limits at every point. Assume further
that [X(t) - X(0)]t~lla is distributed like X(l) - X(0), and moreover,
that X(l) — X(0) has a genuinely ώ-dimensional distribution on Rd. [In
particular, every symmetric stable process on Rd with 0 mean (when
it exists) satisfies these conditions.]

From these assumptions it follows that X(t) — X(0) has a bounded,
continuous density, f(t% x), which satisfies the well-known scaling pro-
perty

(1.1) f(t, x) = ί-d/α/(i, t-"*χ).

For a Borel (more generally, analytic) set BaRd, let

VB = mf{t>0:X(t)eB}

denote the first hitting time of B. As usual we set VB = °° if

X(t) ί B

for all t > 0. Our main purpose in this note is to establish the follow-
ing.

THEOREM 1. Let B be a bounded Borel (or analytic) subset of
Rd. Then under the above assumptions on X(t),

(1.2) lim Pdla)-Ψx(t <VB<^) = PX(VB = oo)C(B) Γ— - l T / ( l , 0) ,
*-~ La J

where C(B) is the natural capacity of B.

Previously, (by using a different method) Joffe [2] established this
result for symmetric processes with (d/2) < a < 1 when B has a non-
empty interior, and Spitzer [4] (Lemma, p. 114) established this result for
arbitrary compact B in the case of 3-dimensional Brownian motion.
In the case of recurrent stable processes the analogue of Theorem 1
can be found in [3].
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It is interesting to compare Theorem 1 with the following, much
easier

THEOREM 2. Let

TB = inf{ί ^ 0: X(s) $ B, all s > t}

be the last hitting time of B. Then under the same conditions as
Theorem 1,

(1.3) lim t^^Ψx(TB > ί) = C(B) ΓA - lT/(l , 0) .
c-»°° L a J

2 Proofs*

Proof of. Theorem 1. A first passage decomposition yields

(2.1) P.(ί < VB < oo) = ί PX(VB > t, X(t) e dy)Py{VB < oo)

= j Λ d [ / ( ί , y - x ) ~ \[\MX, ds, dz)f(t -s,y- z)\Py(VB < oo)dy,

where here and in the following,

Hs(x, ds, dz) = PX(VB e ds, X(s) e dz) ,

and B is the closure of B. But it is a known fact ([1] Prop. 18.4)
that there is a measure, eB(dy), with support contained in B (the cap-
acitary measure of B) and finite total mass C(B) (the capacity of B),
such that

(2.2) Py(VB < oo) = \g(u - y)eB(du) ,

where

9(x) = Γ/(*, *)<**
Jo

is the potential kernel density for the process X(t). Setting

and using the fact that

(2.3) jΛ d/(t, 2/ - aj)flr(w - 2/)% - R(t, u - x) ,

we obtain from (2.1) that
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(2.4) Px(t < VB < oo)

\\[*(χ> ds>
From the scaling property (1.1) and the fact that /(I, x) is con-

tinuous, we see that Mm^ tdlaf{t, ») = /(l,0), uniformly in x on com-
pacts, and thus

(2.5) lim t^-Ήit, x) = /(I, 0)Γ^ - lV ,

uniformly in x on compacts. Set

β(t) = ί-(^β)+1 Γ— - l T 1 .
Lα J

Then from (2.5),

(2.6) lim ί m ' l ~ X) eB(dy) = /(I, O)C(B) ,

and

lim lim Γ Γ ί ί HB(x, ds, dz)R(t - s,y - z)eB(dy)\R(t)-1

(2 7) τ~*°° '"*" *° *-**)*
= lim Γfl-^a;, ds, B)C(B)f(l, 0) = P,( Vi, < oo)C(5)/(l, 0) .

J

From (2.4), we see that in order to complete the proof it suffices
to show

( 2 . 8 ) l i m l i m s u p B i t ) " 1 \ \_[ HB(x, ds, dz)B(t - s , y - z)eB(dy) = 0 .
T->oo ί->oo JFJBJB

S t rt/2 rt-τ ct

as + 1 + I . Since
T J2* Jί/2 Jt-T

SUP /(I , X) = if < oo ,

it follows from the scaling property that J2(ί, x) S KB{t) for all t > 0.
Setting A - #<?(£), we obtain

S ί/2 ft/2

^ A \ P,(F 5 e dβ)B(t - 8) ^ AR(t/2)Px(T < VB

and thus

S ί/2

= 0 .

Next observe that
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^ A [Px(VBeds)R(t - s) ̂  AR(T)Px(t/2 < VB < oo) .
ί/2 Jί/2

By (2.4) this last term is dominated by A2R(T)R(t/2), and thus

S ί-Γ
= 0 .

ί/2

Finally, from (2.2) we see that

Γ ^ Γ ί #B(α, ds, dz) \_g(y - z)eB(dy) ^ Γ PX(VB e ds) .

But

P.(ί - T < VB fί t) = \ P.(VB > t - T, X(t - T) e dy)Py(VB ̂  Γ)

^ ί f(t-T,y- x)Py(VB S T)dy ^ K(t - Γ)-"'
J Rd

Since the paths X(t) are bounded a.s. on [0, T], we see that for each
T there is a sphere ST^B$ such that Ptf(X(ί) € Sτ) ^ 1/2 for all ί ^ Γ
and y e B. But then

( ώ Γ L H ^ , dβ, dy)Py(X(T ~s)e S*)
Rd JOJB

Thus

lim Rit)-1^ = = 0 .

This completes the proof.

Proof of Theorem 2. Clearly

PX(TB >t) = \ f(t, y - x)Py(VB <
JRd

Using (2.2) and (2.3) we see that

Pβ(TB>t) = \R(t,y-x)eB(dy),
JB

from which the theorem follows.

REMARK. When d/2 < a < d, it is possible to establish Theorem
1 by a much simpler argument. Set
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H£(x, dy) = (V λ ί P,( VB e dt, x(t) e dy)
JO

and

R\x) = \~R(t, χ)e-
λtdt.

Jo

Then from (2.4) we obtain

(2.9) Q$(χ)

It follows from (2.5) that uniformly in x on compacts,

lim R\x)X^« - /(I, O)ΓA - lTV(2 - d/α) .
λ i o la J

Consequently, from (2.9), we see that

d'« = /(I, O)C(B)PX(VB = oo)\± - lVr(2 ~ dja) .
λ i o La J

An appeal to Karamata's theorem, and the fact that Px(t < VB < ©o)
is monotone in ί, then yields (1.2).

The above argument breaks down when a < d/2 since

lim R\x) < oo ,
λ i o

and the more complicated proof given previously is needed.
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