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MACDONALD'S THEOREM WITH INVERSES

KEVIN MCCRIMMON

One of the fundamental theorems in the theory of Jordan
algebras is that of I. G. Macdonald which says that any identity
in three variables x, y, z of degree zero or one in z will be
valid in all Jordan algebras if it is valid in the special
Jordan algebras.

In this paper we will extend this result to identities
which also involve the inverses of x and y.

Following the method and notation of N. Jacobson [3] we have the

THEOREM. / / $ and $ s are respectively the free Jordan algebra
and free special Jordan algebra on three free generators x, y, z and
the inverses x~\ y~ι, with @ and @β the associative algebras of linear
transformations in ^ and %$s respectively generated by the multipli-
cations by elements of the subalgebra generated by x, y, x~~x, y~x, then
the canonical homomorphism v of (£ onto @s is an isomorphism. If
% is the free associative algebra with free generators fi}j(i, j e Z)
and π the homomorphism of % onto @ determined by fi}j —-* Uχi yj

then the kernel of π is the ideal 3ΐ generated by the elements

( i ) / o , o - l

o2,i ~~ fθ,2i)fjc,j-i ~ fk,i + j

(iii) 2fSΛfiΛ - / ί _i;,(2/?,0 - /„,„) - fi+jtk

θ,i fθ>2i) Jk,i + j

From this as immediate corollaries we have

MACDONALD'S THEOREM WITH INVERSES [4]. / / 3f and $>s are

the free Jordan algebra and free special Jordan algebra on three
free generators x, y, z and the inverses x"1, y~x then the kernel of
the canonical homomorphism v of ^ onto $ s contains no elements
of degree zero or one in z.

SHIRSHOV'S THEOREM WITH INVERSES [6]. The free Jordan algebra
on two free generators x, y and their inverses x~\ y~λ is special.

More generally, we have the

SHIRSHOV-COHN THEOREM WITH INVERSES [1], Any Jordan algebra

315
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generated by two elements and their inverses is special.

Indeed, such an algebra £ is a homomorphic image of the free
Jordan algebra ξ> generated by x, y, x~\ y~ι\ by Shirshov's Theorem
with Inverses ξ> = ξ>s, the free special Jordan algebra generated by
%, VJ X~\ V~lm, thus for some ideal £ϊs we have 5£ = ©«/$,. By a result
of P. M. Cohn, $ is special if and only if

where ξ>s is imbedded in the free associative algebra 2ί generated by
%9 V, x~\ V~ι ( w e a r e following the argument of [1, p. 307]). Noting
that ί£s c ξ>s and the elements of ξ>s are symmetric under the reversal
involution * of 91, we see 9I$S9I Π Φs is contained in the linear span
of the

fix, y, x~\ y~\ k) = akb + δ*£α*

where α, be 2ί, k e Jϊβ, and /(x, T/,^"1, T/"1, «) is a symmetric element of
the free associative algebra S3 generated by x, y, z, x~\ y~x. Ordering
the generators of 33 by z < x < x~x < y < y~x we see that the tetrads

{xx-'yy-1} = 1
{zx-'yy-1} = z

{zxyy-1} = z

{zxx^y} — z

-x-1

-X

•y

are Jordan elements of S3, hence by Cohn's Theorem [1, p. 306]
f(x, y, x~\ y~\ z) is a Jordan element of 33. As a Jordan product of
®9 V, χ~\ y~x a n ( i the element k of the Jordan ideal $ s, the element
fix, y, χ-\ y~\ k) eBs. Thus SI$SSI n ξ > 8 c « s as desired.

1* Preliminaries* By "algebra" we will mean algebra with
identity over a field Φ of characteristic Φ2; associativity and finite-
dimensionality are not assumed.

Recall [5, p. 18] that an element a of a Jordan algebra is
invertible with (Jordan) inverse b if

α δ — 1, α2 6 = a .

In this case b is invertible with inverse α, and α, b generate a
commutative associative subalgebra; we write b = or1. In a special
Jordan algebra the notion of Jordan inverse is equivalent to inverse
in the associative sense.

Given a set X and a subset 2) we denote by $(£/?)) the free
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Jordan algebra generated by X and the inverses of 2). If 2)—•S)"1

is a bisection of 2) onto a set 2)"1 disjoint from X we may set
= 3f(ϊ U S"1)/^ where $ is the ideal in the free Jordan algebra

U 2)"1) generated by all y y-1 — 1, S Λ I Γ 1 - 2/ f o r 2/ e 2) Similarly
we have the free special Jordan algebra $s(£/2)) generated by X cwwZ
£Λe inverses of 2); this may be regarded as the subalgebra of $(9c/2))+

generated by Ϊ U 2)~\ where g(£/2)) is the free associative algebra
generated by £ and the inverses of 2).

If La denotes left-multiplication by an element a of a Jordan
algebra Sί we have the following operator identities

2
 [£«, A , ] + [L

b
, L

c
.

a
] + [L

c
, L

a
.

b
] = 0

L
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L

b
L
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.
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a
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c
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b
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c
L

a
 + L

c a
L

b
 .

If we set

( 3) C7α,6 = LαL6 + L6Lα - La.b

then we have Ua = Z7α,α, Lα = J7βfl = ί/1>α. It is well known [3, p. 243]
that if ϊ is a set of generators (containing 1) for a subalgebra 35 of
21 then the operators UXtV for x,yeJL generate the same algebra of
linear transformations as the Lb for b e 35. In particular, it is not
hard to see that if 35 is generated by x, y, x~\ y~ι then the Uχifyj for
i,jeZ generate the same algebra @ of linear transformations as do
the Lb for b e 35.

2. The presentation π. The above remarks show that the
homomorphism π:g—*® in the Theorem is surjective. We next show
that the ideal 31 generated by the elements (1) is contained in the
kernel of π, i.e. π(f) = 0 for / of the form (i), (ii), (iii) in (1). Part
(i) is trivial since UχOtyO = /. Parts (ii) and (iii) follow from the first
part of (ii) by symmetry in x and y and symmetry in the operator
relations (a consequence of the symmetry in (2); more precisely, this
"symmetry" corresponds to the canonical involution in the universal
multiplication envelope). The first part of (ii) follows from the following
lemma by taking a = x% b — xj~\ c — yk and noting [5, p. 19] that
[Lxn, Lxm] = 0 for all n, me Z.

LEMMA 1. / / elements α, 6, c of a Jordan algebra satisfy

[La, Lb] = [Lah Lb] - 0

then

2LaUa.b,c = UaUb,ΰ + Ua*.b,c .
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Proof. By (2), (3) and our hypotheses we have

2LaUa.b,c = 2La{La.tLe + LcLa.b - Lc.{a.b)} + 2[La, Lb]{La.c - LcLa}

= {2LaLa.b}Lc + 2La{LeLa.b - Lc.u.b) + LbLa.c - LhLeLa)

+ Lb{2LaLcLa - 2LaLa.c}

— {2LaLbLa + Lat.b — LhLJ\Lc + 2La{LaLcLb — LaLb.c}

+ Lb{L.L,? - Z w }

= {2UaLb + LaU - LjLJL. + 2Ll{L.Lt - Lb.c}

+ {LcLa2.b + La2Lb.c — La2LcLb — Lc.(α2.δ)}

= {2LI - La*}{LbLc + LcLb - Lb.c}

+ {La2.bLc + LeLa2.b — Lc.(α2.δ)}

= UaUb,c + Ua2.btc .

Thus π induces a homomorphism σ of §1 = g/3ΐ onto @.

LEMMA 2. / / e i f i e 21 = f5/3ΐ is £&e image of fifj e
^i — ei,o, bi = 2a\ — a2i, c{ — eQti, dι — 2c\ — c2ί then we have the follow-
ing identities:

( i ) a 0 = b0 = c 0 = d0 = eQ,0 = 1

( ii ) 2(10jtk = ftiβ^ί^ + e ί + i , Λ , 2c<βftfi = d^,^ + e Λ , i + i

( i i i ) 2ej,kai = eά^i,kbi + ei+ J ,Λ, 2ekfjCi = ekti-$i + ^,i+y

(iv ) 2^^- = δίtt^ί + α ί + i , 2CiCy = d^^ + c ί + i

( 4 ) ( v ) 2ajai = α^^^ + α i + i , 2 c ^ = c^^^ + c ί + i

( vi ) a,i = a_ibi = bfo^, c{ = c_idi = ^ c . ^

(vii) bib_i = δ^iδi = 1, c ί ^ ^ = d _ ^ = 1

(viii) [ai9 aj] = [dif bj] = 0, [ciy Cj] = [ci9 dj] = 0

(ix ) bibj = bi+h didj = di+j .

Proof, (i)-(vi) follow immediately from the relations (1). (vii)
follows from

bib_i = bi{2aU - a_2i} = 2dtd^ - b{a_2i

(by vi) = α0 (by iv) = 1 (by i). For (viii) it suffices to show [α^α,-] = 0,
and this only for i,j^0 since δ* = 2a\ — a2i and a_{ = b^di by (vi),
and finally only for i — 1, j" = 2 since (iv) shows by induction that the
αi for i ^ 0 are generated by αx, δi (hence aly α2). But (iv), (v) show
2[dl9 az] = [δi, α j = — [α2, α j = [au α2], so [αx, α2] = 0 as desired. For
(ix) it suffices to show δ< = δί, and this only for i ^ 0 by (vii); this
follows by induction from (i) and
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= 2ai+1{2aia1 - a^A} - a2i+2 (by v)

= 2{aJ>i + <hi+i}a>i ~ {cφi-i + aφ, - { 2 ^ + ^ - a2ib,} (by v)

= 2α16 ία1 — a2bi_1b1

— {2a\ — a2}bi (by viii and induction)

3* The idea of the proof* We have surjective homomorphisms
α:2ί—>@ and v:@—>@s, and a linear mapping τ : @ s - + $ s by L—>L(z).
The theorem will be proven if we show μ — τovoσ is injective, for
then σ and v will be isomorphisms. This will be the case if we find
a spanning set in SI whose image under μ is independent in $ β . A
hint is provided by Cohn's Theorem [1, p. 307] which says that μ{%)
is precisely the set of all elements of the free associative algebra
%(x, y, z/x, y) which are linear in z and symmetric under the reversal
involution *. A basis for this set consists of the distinct

fλP, Q) = i\P*Q* + QZP*} = /.(?, V)

for monomials p,qe%(x,y/x,y). The idea of the proof [3, p. 249] is
to construct pre-images

f(p, q) = f(q, P)

in 21 satisfying

( 5 ) μ(f(p, q)) = f.(p, q) .

By definition the images in $ s will be independent, and the only
question is whether these elements span St. Since St is generated by
1 and the elements bk, dk, ek,u ak, ck it suffices to show the set of
f(P, Q) contains 1

( 6 ) /(1,1) = 1

and is invariant under left multiplication by the generators

( i ) bkf(p, q) = f(xkp, xkq)

( i i ) dkf(p,q) =f(ykp,ykq)

( 7 ) (iii) ektlf(p, q) = i{f(xkp, yιq) + f(yιp, xkq)} (k, I Φ 0)

(iv) akf(p, q) = l{f{xkp, q) + f(p, xkq)}

(v) ckf(p, q) - ϊ{f(VkP, Q) + f(P, VkQ)}

To this end we define f(p, q) by induction as follows. First we
inductively define sets ϊ n , 2)̂  (n ^ 0) of monomials in %(x, y/x, y) by
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3Eo = S)o = {1}

ϊ +i = {xkP\k^0,peV)n} V)n+1 = {ykp\k^O,pe%n}.

Next we define sets of pairs of monomials by

2L» = 2). x 2L u ?L x 2). = ?)-..
3M,m = ϊ . X D . U ? L X ϊ » .

Finally, / is defined recursively on t h e sets Hn,m, tyn,m, 3 B , m by

(D.0) On XOlO = 2)0>0 = 3 0 > 0 = {(1,1)}:

/(1,1) = 1

(D.I) On ϊ,+ 1,«+ 1: for i,j Φθ,i^ j , (r, s) e ?)..«

/(a V, a;J's) = /(ίc '̂s, a V) = δί /(a;<~ ί r , s) .

(D.2) On D,+ 1,m + 1: for ΰ > 0 , i έ ί, (r, s) e ϊ . . .

f(yfr, yss) = /(y '̂s, yY) = djfiy^r, s) .

(D.3) On 3, + l i m + 1 : for i, i Φ 0, r e D., s e %m

f{xιr, y's) = f(yi8, χ*r) = 2eidf(r, s) - f(y'r, x*s)

which is defined by induction unless n = m = 0,r = s = l, and on 3i,i:

/ ( * ' , Vs) = f(v', *') = tuj •

(D.4) On ϊ . + 1 > 0 = ϊo,»+i = 3»+i.o: for i Φ 0, r e D.

/(a 'r, 1) = / ( I , a?V) = 2α ί/(r, 1) - f(r, x()

which is defined by induction if n φ 0, and on ϊ l f 0 = %Λ = 3i,0:

/(a?4,1) = / ( I , af) = α, .

(D.5) Similarly, on | ) s + 1 ( 0 = 2)0>M+1 = 3o,»+i:

/(2/V, 1) = / ( I , yV) = 2etf(r, 1) - /(r , »')

and on tyuo = %Λ = 3 0 ; 1 :

r, 1) = /(I, y') = β, .

I t is easy to verify t h a t f(p, q) = f(q, p) is a well-defined element
of SI for all monomials p, q in %(x, y/x, y).

4 . T h e m a i n l e m m a . The previous considerations have reduced
t h e proof of t h e theorem to t h e following.
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( 8 )

LEMMA 3. The elements f(p, q) = f(q, p) e 31 defined by (D.O)—
(D.5) satisfy (5), (6), (7).

Proof. (5) can be verified at each step of the inductive definition,
and (6) is just (D.O). We will prove (7.i)-(7.v) for (p, q) in Xn,w, 2)w,w,
8n,m by induction on the weight n + m; the case n + m = 0 follows
immediately from the definitions (D.1)-(D.5), and we assume the result
proven for all weights less than n + m. We claim that if ί, j Φ 0
(but k,l = 0 are allowed) then

(i ) (r, s) e 2)-i,»-i - δ,/(^r, α's) - /(x*+ίr, α*+'8)

(ii) (r, s) G 2 ) ^ X 3 ^ =- 5/c/(xV, 7/̂ ) = f(xk+ir, x*y>'8)

(iii) r 6 ?L-i => 6fc/(a?*r, 1) - f(xk+ir, xk)

(iv) (r, s) e S-i.»-i =- 2βtfl/(a?<r, a**)

= f(xk+ir, yιx3's) + f{yιxιr, xk+js)

(v) (r, s) e 2)-i x *»-i => 2α,/(^r, ̂ s)

= f(xk+ir, yjs) + /(xV,

(vi) r G S - ! => 2αA/(a?V, 1) = /(a?*+ίr,

These suffice to establish the various cases of (7) according to the
following table:

{yn,0 ΛjO,n

Here the columns indicate the particular cases of (7) and the rows
the particular possibilities for (p, q), with n, m > 0; "def" means the
result follows directly from the definitions, and * denotes the dual
formula obtained by everywhere interchanging x and y. The proof of
(8.i)-(8.vi) will be broken into corresponding Cases I-VI.

7.i

8.i

00°
00

def

def

7.iv

8.iv

8.vi

8.v

def

8.iv*

7.1Π

8.iv

def

def

def

8.iv*

7.v

8.iv

def

8.v*

8.vi*

8.iv*

7.ii

def

def

8.ii*

δ.ίii*

8.i*

Case I. (a) If k + i, k + j Φ 0, say % ̂  j , then

hfix'r, x's) = btb}f(tf-*r, s)

= b^fix^r, s)

= f(χk+ir, x

(b) If, say, k + j = 0 then

(D.I)

(4.ix)

(D.I)
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bkf{xιτ, xjs) = bφjfix^W, s) (induction 7.i)

= f(xi+kr, xj+ks) . (4.vii)

Case II. (a) If 0 Φ ί + k ^ k the result follows from (D.I).

(b) If 0 = ί + k, m = w = 0, r = s == 1 we have

δ*/(s*, 2/0 - M-*.i (D.3)

= 2αΛe0,i ~ βjfe.i (4.ϋ)

- /(I, a?V) (D.4)

= f(xk+ί, xkyj) .

(c) If 0 = i + fc but r Φ 1 or s Φ 1 then

(r, s) - f(y>r, x's)} (D.3)

,eo,i - ektj}f(r9 s) - f(xkyjr, s)

by 4.ii and induction 7.i—which is applicable since by our assumptions

on r and s (yjr, x*s) has weight less than n + m)

= 4αΛc, / ( r , s) - {/(α*r, i/ys) + /(i/JV, xks)} - f(xky3'r, s)

(induction 7.iii)

= 4α/c^ /(r , s) — f(xkr, yjs) — 2akf(yjr, s) (induction 7.iv)

= 2akf(r, yjs) — f(xkr, yjs) (induction 7.v)

= /(r, xkyjs) (induction 7.iv)

= f(xk+ίr, xkyjs) .

(d) If 0 Φ i + k < k then

bkf{xir, yjs) = &A{2α^/(r, yjs) — /(r , ^T/^'S)} (induction 7.iv)

= 6A6i{2a_i/(r, 2/J's) — f{x~ιr, yjs)} (4.vi, Case lib, c above)

— bk+if(r, x~ιyjs) (4.ix, induction 7.iv)

= f(xk+ir, xkyjs) . (D.I)

Case III. The proof is obtained from that of Case II by setting
j = 0, s = 1; the second line of the proof of (c) is justified by Case II
rather than by induction 7.i.

Case IV. We allow k or Z to be zero, and we induct on | i \ + | j \
the result follows from the induction hypothesis if i or j is zero.

(a) If i,j have the same sign, say | i | ^ \j\ > 0, then \i — j \ < \i\
so
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2ekflf(xirί x*s) = 2ek,ιbjf(xi->r, s)

(induction 7.i)

= 2{2ek+j)laj - ^ + 2 i ,;}/(^ w r, s)

(4.iii)

= 2ek+s,ι{f(xir, s) + /(»<-'>, xjs)}

- {f(xi+j+kr} yιs) + fiyW-tr, xk+2js)}

(induction 7.iii-iv)

= {2ek+j,ιf(xi~jr1 xjs) - /(y'x^'r, xk+2>s)}

+ {2ek+j,ιf(xir1 s) - f(xi+>'+kr, yιs)}

= f(xi+kr, yιxjs) + f(yιxιr, xk+js) .

(induction, | i — j \ + | j \ < | ί \ + | j |)

(b) If i,j have opposite signs, say \i\ ^ \j\ > 0, then | i + i | < | i |
so

2eΛ,ι/(a?ίr> xjs) = 2ek,ι{2ajf(xir, s) - f(xi+h% s)}

(induction 7.iv)

- 2{ek_j)lbj + ek+jΛ}f{xιr, s) - 2ek>ιf(xi+'r) s)

(4.iii)

= 2ek_jtlf(xί+jr, xjs) - f(yιxi+jr, xks) - f(xi+j+kr, yιs)

+ f(xi+>'+kr, yιs) + f(yιx*r, xk+js)

(induction 7.i, 7.iii)

= f(xk+ir, yιxjs) + f{yιx{r, xk+js) .

(\i + 3\ + \3\<\ί\ + \3\, induction)

Case V. (a) If m = n = 1, r = s = 1 we have

2akf{x\ yj) = 2akeifj = ei+k>j + δ.β^,,,- (D.3, 4.H)

- /(χ f e + ί, 2/0 + hfir-', ψ) (D.3)

= / ( ^ & + ί , Vj) + / ( ^ , ̂ /cί/0 (Case II-III above)

(b) If r Φ 1 or s Φ 1 then

2akf(x*rf y's) - 2αJfc{2βi,y/(r, s) - /(yV, a**)} (D.3)

= 2{eί+Λfi + bkei_ht3)f{r, s)

- {f(xkyjr, x*s) + f(y>'r, xi+ks)}

(by 4.ii and induction 7.iv—which is applicable since by our assumptions
on r and s (yjr, xιs) has weight less than n + m)

= {2ei+k,όf{r, s) - f{yιr, xi+ks)}

+ bk{2e^htjf(r9 s) - f(y*r, x^s)}
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(induction 7.i applicable to (y'r, xi~ks)—or use Case II above)

= f(xi+kr, yjs) + bkf{xι-kτ, yjs) (induction T.iiϊ)

= f(xk+ίr, yjs) + f{xιr, xkyjs) . (Case 2 above)

Case VI. This follows from Case V by setting j = 0, s = 1 through-
out the proof; the second line in the proof of (b) is justified by Case
V rather than by induction 7.iv.

This completes the proof of (8), the Lemma, and all the Theorems.

5* Remarks and conjectures* We will now indicate how the
above proof can be modified to prove Macdonald's original theorem
without inverses; in a similar manner we obtain a one-inverse form
of the theorem.

We require that all indices ί, j , fc, I etc. be nonnegative; this
modifies the free algebra g of the theorem, so we add to the relations
(1) the further elements of 3ΐ

. v fi,ϋfj,k + fj,θfi,h ~ (2/|,0 ~~ /2j,θ)/ί-i,θ/θ,A; ~ fi + j,k

jOfifkfj + jQ,jfk,i (2/o.j1 Jθ,2j)Jθ*i-jJk,O ~~ fk,i+j

for i ^ j corresponding to the relations

,. &iβi,k + a>sei,k = bjd^jCk + ei+j,k

ciek,j + cάekti = ddCi__3'(ik + ek,i+j

in the algebra §1. It suffices to establish the first relation in (4.x),
and this follows by putting a = x\ b = x^5, c — yk in the following
addition to Lemma 1: if α, δ, c are elements of a Jordan algebra
satisfying

[La, Lb] = [La, La.b] = 0

then

LaUa.b,c + La.bUa,c = UaLbLc + Ua2.b,c .

The only other thing to be changed is the proof of (8). Cases Ib,
Πb-c-d, and IVb are unnecessary, but the proof of Case V works
only for i ^ k; for i < k we must use the relations (4.x).

It would be nice if the inverse-less and one-inverse theorems
could be obtained directly from the two-inverse form, which leads to
a general

Conjecture. If ϊ 0 c 9£, 2)0 c 2) then the canonical homomorphism
s injective.
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If we represent 3 M ) 0 ) by 3(3^ U So"1)/^ and
as in the first section of the paper then the conjecture amounts to

3(*o U So"1) Π Λ - $0 .

It is also sufficient to consider only the case 3£ = Xo

More generally, we have a

Conjecture. (̂36) can be imbedded in a universal Jordan division
algebra SB(X) such that the canonical homomorphisms &(3£/2}) —• 3D(X)
are all injective.

It is easy to see that this implies the first conjecture by con-
sidering the commutative diagram
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