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A UNIQUENESS THEOREM FOR
EDGE-CHROMATIC GRAPHS

J. G. KALBFLEISCH

Certain of the Ramsey numbers may be evaluated by
construction of edge chromatic graphs. The edges of the
complete graph on 17 vertices may be coloured in two colours
in such a way that no complete subgraph on 4 vertices has
all its edges one colour. In this paper it is proved that this
colouring is unique,

The complete graph on n vertices will be called an n-clique. The
(g) edges of the n-clique are painted with red and blue. For p, ¢ = 2,

a (p, q9)-colouring is a colouring in which there is no red p-clique (no
set of p points interjoined by red lines only) and no blue g-clique. A
theorem of Ramsey [7] implies the existence of a least integer M(p,q)
such that for » = M no (p, q)-colouring of the n-clique exists. Note
that by symmetry M(p, q) = M(q, p).

Obviously, M(2, q) = ¢, but apart from this trivial case, few of
these Ramsey numbers are known. Greenwood and Gleason [2] have
shown that M(3,3) =6, M(3,4) =9, M(3,5) = 14, and M(4, 4) = 18.
These results are obtained by a different method in [3]. The only
other known values are M(3,6) = 18 (see [4] or [6]), and M(3,7) = 23
(See [1]).

In order to establish the value of M(p, q), it is necessary to con-
struct a (p, q)-colouring of the (M — 1)-clique. Proof of the existence
of such colourings is accomplished in [2] using finite field residue
theory, and by means of “regular colourings” in [3]. The uniqueness
of these colourings is also of interest. For in a (p, q + 1)-colouring
all points joined by blue lines to a given point must be (p, ¢)-coloured.
Similarly, in a (p + 1, ¢)-colouring all points joined by red lines to
a given point must be (p, g)-coloured. When one is discussing the
existence of (p,q + 1) and (p + 1, q)-colourings, it is of considerable
help to know what (p, ¢)-colourings are possible.

A (4, 4)-colouring of the 17-clique has been constructed in [2] and
[3]. Here it will be proved that this (4, 4)-colouring is unique.

2. Preliminary results and definitions. Two edge chromatic
graphs G, H are said to be isomorphic if there exists a one-to-one
mapping f of the vertices of G onto the vertices of H such that for
each vertex pair X, Y in G, edge f(X)f(Y) in H has the same colour
as edge XY in G. A (p, q)-colouring G of the n-clique is said to be
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unique if every other (p, g)-colouring H of the n-clique is isomorphic
to G.

It is easily seen that there is a unique (3, 3)-colouring of the
5-clique. It contains 5 red lines forming a pentagon. The proof of
Lemma 1 is not difficult, and will be found in [4] and [6]. This
result has been obtained by others as well-for example, it was known
to Greenwood and Gleason in 1961.

LEMMA 1. There are three monisomorphic (3, 4)-colourings of
the 8-clique with 10, 11 and 12 lines, respectively (Figure 1 gives
the red linmes).

COROLLARY. There are three distinet (4, 3)-colourings of the 8-
clique with 18, 17 and 16 red lines (complement of Fligure 1 gives
the red linmes)

Kéry also mentions that there is a unique (8, 5)-colouring of the
13-clique. A proof of this statement will be found in [4], where lists
of all nine (8, 4)-colouring of the T-clique, all twelve (3, 5)-colourings -
of the 12-clique, and all seven (3, 6)-colourings of the 17-clique are
also given.

FIGURE 1. (8, 4)-colourings of the 8-clique.

3. A uniqueness theorem. The result to be proved in this
section is the following:

THEOREM. There exists a unique (4, 4)-colouring of the 17-clique.

The proof of this Theorem is fairly long, and will be given in a
series of Lemmas. In all diagrams, only red lines are drawn in.

LEMMA 2. Let 0 be any point in a (4, 4)-colouring of the 17-
clique. Let 2 denote the subgraph formed by the x points joined
to 0 by red. Let 27 denote the subgraph formed by the y points
joined to 0 by blue. Then x =y = 8; 2 must be coloured as in
Figure 2(a), and 27 must be coloured as in Figure 2(b).
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Proof. A red triangle in 27 together with 0 would form a red
4-clique. Therefore, 2 is (3, 4)-coloured, and since M(3,4) =9, x < 8.
Similarly, ¥ < M(4,3) —1=8. Since x +y+1=17, ¢ =y = 8§; all
points are 8-valent in red and 8-valent in blue.

The 8-clique .2~ must be (3, 4)-coloured. By Lemma 1, .2° contains
at most 12 red lines, and there are at least 8.8 — 8 — 2,12 = 32 red
lines from 2° to 2. Therefore, 2 contains at most (8.8 — 32)/2 = 16
red lines. However, 27 is (4, 8)-coloured, and by the Corollary to
Lemma 1, it contains at least 16 red lines. Therefore, 2@ is (4, 3)-
coloured with 16 red lines, and .2~ is (8, 4)-coloured with 12 red lines.

Now name the points of .2* A4, B,C, ..., H, and the points of 2
P,Q,.--,W. By Lemma 1, 2 is coloured as in Figure 2(a). By
the Corollary, the colouring of 2 is given by the complement of
Figure 1(c), and it is easy to show that this colouring may be
redrawn as in Figure 2(b). This completes the proof of Lemma 2.

(b)
FIGURE 2. Diagrams for Lemma 2.

LevmA 3. Let I, J be two points in a (4, 4)-colouring of the
17-clique.

(i) If IJ is red, there are three points joined by red lines to
both I and J, and for points joined by blue lines to both I and J.

(ii) If IJ is blue, there are four points joined by red lines to
both I and J, and three points joined by blue lines to both I and J.

Proof. I may be chosen to be 0 in Lemma 2. By symmetry, in
(i) J may be taken to be any point in 27, while in (ii) J may be
any point in 2/, Since all points are 8-valent in red, each point of
& is joined by red lines to four points in 2 and conversely. The
results of Lemma 3 may now be read from Figure 2.

Now choose a particular point 1 in a (4, 4)-colouring of the 17-
clique. Points joined by red lines to 1 are named 2,3, ---,9; points
joined by blue lines to 1 are named 10, 11, ..., 17 (Figure 3). It will
be shown that red lines joining points in 2,3,..-,9 to points in
10,11, .-+, 17 may be drawn in essentially one way only.
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FIGURE 3.

LEMmA 4. The four points im 2,3, ---,9 which are joined to
10 by blue lines form a red path of length 3; the remaining four
points of 2,3, --+,9 are joined to 10 by red lines and also form a
red path of length 3 (Figure 3).

Proof. 10 is joined by blue lines to 13, 14,15, 1 and to four
points in 2,8, ---,9. This 8-clique must be coloured as in Figure
2(b). 13-14-15 is a red triangle, and by symmetry in Figure 2(b),
{18, 14, 15,} may be identified with {P, @, R}. (There is only one kind
of red triangle in Figure 2 (b)). Now 1 is joined by blue lines to
13, 14 and 15 and must correspond to U. The four points in 2,3,.-+,9
joined by blue to 10 must correspond to WVTS, and they form a red
path W-V-T-S of length 3.

Also, 10 is joined by red lines to 11,12,16 and 17 plus four
points in 2,8, ---,9 and this 8-clique is coloured as in Figure 2(a).
16-17-11-12 is a red path of length 3 in Figure 2(a). By symmetry,
{11, 12, 16, 17} correspond to {H, A, B,C}, {H, A, B, F'}, or {H, A, E, F'}.
In the first two cases, the remaining four points joined by red lines
to 10 correspond to red paths G-F-E-D and G-C-E-D, and the
lemma holds.

Now suppose {11, 12, 16, 17} correspond to {H, A, E, F}. Then
the four points in 2,8, ..-,9 joined to 10 by red lines correspond to
C, D, B, G, where C-D, C-B and C-G are red. By symmetry in
2,8,...,9, take 10-2, 10-3, 10-6, and 10-9 red in Figure 3. Now
10-2 is red, and 3,6, and 9 are all joined by red lines to both 2 and
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10. By Lemma 3(i), there is no other point joined by red lines to 10
and 2 both. Therefore, 2 is joined by blue lines to 11,12, 16 and 17,
and 2-13, 2-14 and 2-15 are red. Now 2-13-14-15 is a red 4-clique.
No (4, 4)-colouring results in the third case above, and the proof of
Lemma 4 is complete.

LEMMA 5. For each point K in 10, 11, --. 17, the four points
wm 2,8, .+-+-,9 which are joined to K by red lines are numbered
a,a+1,a+2 a+4, or a,a+1,a+2 a+6 (mod 8 for some
a=2,3,.--,9.

Proof. By Lemma 4, the eight points 2,3, ---,9 must be divided
into two disjoint red paths of length 3, one joined to 10 by red lines
and the other joined to 10 by blue lines. This can be done in two
ways only:

(i) The four points in 2,3,---,9 joined by red to 10 are
numbered consecutively (mod 8)

(ii) They are numbered a, a +1,a +2,a+4 or a,a+1,a+ 2,
a + 6 (mod 8). In either case, 10 (and by symmetry, each point K
in 10,11, --.,17) is joined by red lines to three consecutive points
a,a+1,a+2,in 2,3, .-, 9.

Take 10-2,10-3,10-4 red. If 2, 3, and 4 are also joined by red
lines to another point L in 10,11,...,17, Lemma 3(i) or 3(ii) will
be violated. Therefore, each of the 8 sets of three consecutive points
12,3, 4}, {8,4,5}, ---,1{9,2,3} is joined by red lines to exactly one
point in 10,11, ...,17. If (i) held, this condition would be violated,
and therefore the Lemma holds.

COROLLARY. To each a = 2,3, ---,9 there corresponds a unique
K in 10,11, ---,17 to which a, a + 1 and a + 2 (addition mod 8) are
jJotned by red lines.

Proof of theorem. By the corollary above, Table 1 may now be
constructed. Four points in a column of the table are all joined by
red lines to the same point K in 10,11, ...,17. The eight sets of
three consecutive points may be entered, one in each column. By
symmetry, take 10-2, 10-3,10-4 red. Either 10-6 or 10-8 is also red
by Lemma 5, and by symmetry in 6 and 8, take 10-8 red. Since
there are no more red lines from 8, the remaining point in the
column with 4,5,6 cannot be ¢ +4 =8, and must be a + 6 = 2.
Similarly, there are no more red lines from 2, and the column with
6,7, 8 must contain 4; the column with 8, 9, 2 must contain 6.
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TABLE 1. Red lines in Figure 3.

K 10
Points 2 3 4 5 6 7 8 9
Joined 3 4 5 [ 7 8 9 2
to K by 4 5 6 7 8 9 2 3
Red lines 8 2 4 6

By Lemma 3(i), 10 and 11 are both joined by red lines to one
point in 2,3,.-.,9. By Table 1, 11 is joined by red lines to 5,6, 7
or to 7,8,9. The same comment applies to 17. But the graph is
symmetrical with respect to 11 and 17 (only red lines from 10 have
been specified). Therefore, join 11 by red lines to 5,6,7, and 17 by
red lines to 7, 8,9 (Table 2).

TABLE 2, Red lines in Figure 3.

K 10 13 16 11 14 17 12 15
Points 2 3 4 5 6 7 8 9
Joined 3 4 5 6 7 8 9 2
to K by 4 5 6 7 8 9 2 3
Red lines 8 9 2 3 4 5 6 7

Now 10 and 17 are joined by red lines to 11, 16, and 8. By
Lemma 38(i), there is no additional point joined by red lines to both
10 and 17, and thus 17-3 is blue. By Lemma 5(a = 7), 17-5 is red.
There are no more red lines from 5, and by Lemma 5(¢ = 9), 7 may
be entered in the 9-2-3 column of Table 2. Similarly, 9 and 3 may
be entered in the second and fourth columns of Table 2.

By Lemma 3(i), there is just one point in 2,3, -..,9 joined by
red lines to both 11 and 12. Therefore, 12 must be entered above
the seventh column of Table 2. Similarly, 13, 14, 15 and 16 must
head columns 2, 5,8 and 3.

The configuration of red lines specified by Figure 3 and Table 2,
together with 1 and red lines from it, provide the only possibility for
a (4, 4)-colouring of the 17-clique. Since a (4, 4)-colouring is known
to exist (see [2] and [3]) one has been constructed above; and its
uniqueness is now established.

4. Further results. It is easy to show (as in Lemma 2) that
points in a (4, 4)-colouring of the 16-clique are 7-valent in red and
8-valent in blue (type A), or 8-valent in red and 7-valent in blue
(type B). If there are ¢ A’s and b B's, then @ + b = 16. The number
of red lines is (7a + 8b)/2, so that a and b must both be even.

If 1 and all lines from it are removed from the (4, 4)-colouring
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of the 17-clique, a (4, 4)-colouring of the 16-clique with ¢ = b =8 is
obtained. This colouring has the property that changing the colour
of any line introduces a 4-clique of one colour. This suggests that
every (4, 4)-colouring of the 16-clique may have a = b = 8. At present,
all that is known is that there exists no (4, 4)-colouring of the 16-clique
with @ = 0 or b = 0, which may be proved by arguments similar to
those in §3 (see [4], Chapter 6). Investigation of the remaining
cases appears to be a necessary preliminary to evaluating M(4, 5).
At present it is known only that 25 < M(4, 5) < 30. These bounds
are obtained in [3] and [5].
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