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A NOTE OF DILATIONS IN L*

S. R. HARASYMIV

The objects of study in this note are the Lebesgue spaces
Lp(l < p < oo) on the ^.-dimensional Euclidean space Rn. We
consider a function / in one of the above-mentioned spaces,
and derive results about the closure (in the relevant function
space) of the set of linear combinations of functions of the
form

+ &1, " ' , CίnXn + bn)

where αi, , an, bu , bn e R, and di Φ 0, , an Φ 0.

1* Notation and main results* The Haar measure on Rn will
be denoted by dx. It will be assumed normalized so that the Fourier
inversion formula holds without any multiplicative constants outside
the integrals involved.

If x e Rn

y and k is an integer such that 1 ^ k ^ n, then xk will
denote the A -th component of x. Multiplication (and of course addition)
in Rn is defined component-wise, in the usual manner.

We write 22* = Rn\{x: xk = 0 for some k}.
Suppose that 1 < p < oo. Then q will always be written for the

number satisfying

l + i-i
P Q

For each integer k such that 1 ^ k ^ n, Jk will denote the projection
of Rn onto its'fc-th factor; i.e.

Jk(x) = χk for all x e Rn .

If / is any function on Rn, and aeR*, beRn, then f" will denote the
function defined by

fί(%) = f(ax + b) for all x e Rn .

(The map x —> ax + b is called a dilation of Rn.) Finally, the set Sf

is defined by

Sf = {fb

a:aeR*,beRn} .

In what follows, several vector spaces will be considered. If
1 < p < co, Lp(Rn) will denote the usual Lebesgue space. Lp(Rn) will
be given the usual norm topology.

If / is an element of Lp(Rn) we shall denote by T[f] the closed
vector subspace of Lv(Rn) generated by Sf.
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Finally, if W is any open subset of Rn, we shall write C°°(W)
for the space of functions defined on W and indefinitely diίferentiable
there. D(W) will denote the space of indefinitely diff erentiable func-
tions with compact supports contained in W. The dual of the last
space is the space D'{W) of distributions on W. For details of these
spaces see e.g. Schwartz [8].

Schwartz [7] considers the space of continuous functions on the
^-dimensional Euclidean space Rn equipped with the topology of uniform
convergence on compact sets. He shows that if / is a function in
this space, and if the linear combinations of functions of the form

/(ax, + hu , axn + bn) , a,bl9 , 6n e J?

are not dense in the space, then / satisfies at least one distributional
equation of the form

P(D)f = 0

where P{D) is a nontrivial homogeneous linear partial differential
operator with constant coefficients,

We shall prove the following result:

THEOREM 1. If feLp(Rn), where l < p < c o , and f Φ 0, then

T[f] = L*(Rn).

2* Discussion of problem* The Fourier transform g of a func-
tion g in Lq(Rn) is defined as a distribution on Rn. (See, e.g., Schwartz
[8]). It has the property of being locally a pseudomeasure; i.e., its
restriction to a relatively compact open set W coincides with the
restriction of some pseudomeasure to W (Gaudry [2] and [3]).

If W is an open set, ge Lq(R), Fe D'(W)> and if F coincides on
each relatively compact open subset of W with the Fourier transform
of an element of L\Rn), then we define F geD'(W) by

F g(φ) = g(Fφ) for all φeD(W) .

It can be shown that if W is an open set, feLp(Rn),geLq(Rn), and
if / coincides on each relatively compact open subset of W with the
Fourier transform of an element in U(Rn), then

f*9 = f 9 o n W

If / and h are in Lp(Rn), then from the Hahn-Banach theorem it
follows that heT[f] if and only if

Λ*flf(O) = 0
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for all functions g in Lq(Rn) such that

(2.1) fa*g - 0 for all aeR* .

Therefore, to establish Theorem 1, it is sufficient to prove the follow-
ing assertion: if feLp(Rn) for some p satisfying 1 < p < oo, and if
g is such that (2.1) holds, then

(2.2) supp g S Rn\R* .

(We are bearing in mind the fact that Rn\R* is p-thin, 1 < p fj co.
See Edwards [l].) The relation (2.2) will be established in §4.

To prove (2.2), we shall show that if XGJS*, then (2.1) implies
the existence of a relatively compact neighbourhood W of x, and a
function keLι{Rn) such that

k-g = 0

and I k \ > 0 on W. This will imply that g — 0 on W. For there will
exist a function K e &(Rn) such that

fcί-lon W

(Rudin [6], Theorem 2.6.2), and so if φeD(W), we have

g(φ) =

— k*K*g(φ)

- 0

since ά*# = 0. Section 3 is essentially devoted to constructing the
required functions k.

3. Preliminary results. Consider any function φ e D(R*). Then
if xeR*, it follows that φx~ι o. D(R*). If s is any distribution on
Rn, we define a function s V φ on 22* by

s V ^(^) = siφ*"1) for all a? 6 i2* .

We then have

LEMMA 1. If φeD(R*) and seD'(Rn), then s Vφ£ C°°(,B*).

Proof, (cf. Hormander [5], Theorem 1.6.1.)
First we show that s V φ is continuous.
Suppose that %—>°a;ei?*. Then φi*-ι-*φ«*-1 in /)(#*). For let

α = sup {| #fc |: x e supp <p, 1 ^ fc ^ }̂ < °o

6 = inf {| xk |: *τ e supp <p, 1 ^ /b ̂  n) > 0
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and let A, B > 0 be numbers such that

B/b < \ > x k \ < A / a , l ^ k ^ n

for all j . Then if y e supp φjχ"\ we have y/jx e supp φ. This implies

that

b <̂  I yk/
jxk I ̂  α , 1 ^ ft ^ w ,

and so

I %fc I b ^ 13/fc I ̂  I J'% I a , 1 ^ ft <̂  w .

It follows that B <\yk\ < A. Hence all the sets suppφ**-1 are con-
tained in a fixed compact subset of iϋ*. Furthermore, since

it is easily shown that for each multi-index <x,

lim D'iφ''*-1) = D " ^ " 1 )

uniformly. Thus φ^^-^φ^-1 in D(R*) and, since s is continuous,
we have

lim s V ^(y^) = s V 9>(°α) .
3

Hence s\J φ is continuous on J?*.
To complete the proof of the lemma, it is sufficient, in view of

the above, to show that if 1 ^ ft <; n, then

(3.1) Dk(sVφ) = -1/Λ s \/ JkDkφ on i2* .

The required result will then follow by induction.
Thus, let ek be the unit vector along the ft-axis and consider the

quotient

[s V φ{x + hek) - s V φ(x)]/h = s[^

where x e i2* and h Φ 0. We have

(3.2) lim [^ +* *>-1 - ^ p - - 1/s* (Λ
*- 0

To verify this, consider any multi-index a — (au •• ,an). We have

The last expression converges pointwise to Da[ — (llxk){JkDkφY'1].



A NOTE ON DILATIONS IN L*> 497

The convergence is in fact uniform. This may be deduced from the
fact that if ψ is any function in D(Rn), and h is a positive number,
then

\[f(y + hek) - ψ(y)]/h - Dkψ(y)\ <\h\-\\Dlφ\U

which follows easily via the mean-value theorem. This establishes
(3.2), and (3.1) follows. Thus the proof of Lemma 1 is complete.

COROLLARY. If W is any relatively compact open set such that
W £ JB*, and if φe D(R*) and s e D'{R%), then there exists a function
k in L\Rn) such that

s V Ψ = k on W .

Proof. In fact we may take for k any function of the form

(sVφ-fV

where ψ e D(R*) and ψ — 1 on W. [Here and elsewhere, v denotes
the inverse Fourier transform:

h(x) = ί e2Kixvh{y)dy for all h e Lι(Rn)} .

LEMMA 2. // fe L»(Rn)t g e Lq(Rn) and φ,ψe D(R*)9 then

?Vφ-g(Ψ) = \jφ(t)/\Ji(t)\ HΛW^j^^X^J^)^*/^)^}^.

Proof. Choose a sequence {/,-} of functions in &{Rn) Π Lp(Rn)
such that

lim /,. - / in Lp(Rn) .

Then, if ψ is any function in D{R*), we have

(3.3) lim/^-V^ t = fVφ-f in D(R*) .

For, if a is any multi-index, the Leibnitz formula for the differentia-
tion of a product shows that Da[(fά - f) Vφ ψ] is a sum of terms
of the form

where βζ <: aif i = 1, , n, and A is a constant depending only on a
and β. Thus we are reduced to proving that if a is any multi-index,
then
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(3.4) lim D"[(fj - f) V φ] = 0 uniformly on supp ψ .
5

Now, quite generally, if s is a distribution on Rn, a = (au - , an) a
multi-index, and φ a function in D(R*), then

D«(s Vφ) = (l/«7?1 Jp) Σ i<*βS V (J?1 • JM?V)}

where the αβ are constants depending only on a and β, and the sum-
mation is carried out over all multi-indices β such that β1^a1, * ,
βn ^ ocnm This is easily shown by induction, using (3.1). Since
Ju '"iJn &re bounded away from zero on supp ψ, it suffices, in order
to establish (3.4), to show that for every multi-index a

(3.5) lim (/,- - /) V (Jί1 JnnDaφ) = 0 uniformly on supp ψ .
j

Thus, let

a = sup {| xk |: x e supp φ, 1 ̂  k S n\ .

Then, if a; G supp ψ, we have

From this, (3.5) follows immediately, and hence (3.4) and (3.3).
Using (3.3), it is seen that

fVφ 9{i) = limg{fj V φ ψ)

(3.6) '
r

- l i m g(x)-lf,V<P'1rY(-x)dx.

Now

= \ e-2^%Vφ(y

= \ e-^*4\ fj(t)φ(ty-ι)dt\ir(y)dy

= ί ψ(t)\\ fAythHv) ί ^(i/) I I JJiv)
Ji?^ [}Rn

= \ (φ(ty | ./#) ] . . . | jn(ί) I)
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Substituting this in (3.6), we have

{SΊ) = lim

= lim \ (φ(t)/\ Ji(ί) I I Jn(t) |){ \ f j j f^Γ/. I (x)g *ff\χ)dx)dt

Now, if

a = sup {| ίfc |: t e supp <p, 1 ̂  ^ ^} ,

then if t e supp <p, we have

I f ψ\J^Jn\(x)-g*ff\x)dx - \ ψ\J\^7nI(x)g*/^U

||χ II g*(fΓ - Γ1) II-

| | | 1 |lfl'll, IIΛί"1 = / ' " Ί l ,

IIIi llflΊUI/ί - /ll, α".

Using this, and (3.7) we see that

= \ (φ(t)l I J,(t) I Λ I (ί) I){( ^ / Γ ^ 7 B I (α) -9 * /'-'(a ίda

This completes the proof of Lemma 2.

COROLLARY. If φeD(R*),fe Lp(Rn), g e Lq{Rn), and if

f**g = 0 /or all aeR*

then f V φ-9 — 0 o^ i2*.

LEMMA 3. Suppose that feLp(Rn) and that J?* D supp/ Φ 0 .
i/ flf e Lq(Rn) is such that

f**g ^ 0 for all aeR* ,

We Λαvβ

supp £ S Rn\R*

Proof. First we observe that

/\
supp/α = α supp/

and hence, since i?* Π supp / Φ 0,
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(3.8) U SUpp p 3 B* .
aeE*

Now suppose that xeR*. By (3.8), #esupp/ & (say). Choose a
relatively compact neighbourhood W of x such that W Q iϋ*. There
exists a function φeD(W) such that

/%>) Φ 0

i.e. / δ V φx~\x) Φ 0 .

This implies that fb V <£)iB~1 is bounded away from 0 on a neighbour-
hood of x. Since fb V φx~x € C°°(jβ*) (by Lemma 1) and (by the corollary
to Lemma 2)

ΓVφβ~1-g = 0 on i2*

the corollary to Lemma 1 and the reasoning indicated in §2 together
entail that x ί supp g. Thus

supp g s Rn\R*

as we wished to show.

4* Proof of Theorem 1* We can now prove Theorem 1.
Let fe Lp(Rn), (1 < p < oo), / Φ 0, and suppose that # e Lg(i2n) is

such that

fa*g = 0 for all aeR* .

Since Rn\R* is g-thin if 1 < q < co, we deduce that

supp / Π #* Φ 0 .

Then, by Lemma 3,

supp g S i2w\^*

and so (since Rn\R* is p-thin) ^ = 0.
I take this opportunity to thank my supervisor, Dr. R. E. Edwards,

in the first place for suggesting this problem, and secondly, for his
suggestions and criticisms concerning the work presented here.
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