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ON THE STONE-WEIERSTRASS APPROXIMATION
THEOREM FOR VALUED FIELDS

DAviD G. CANTOR

Let X be a compact topological space, I, a non-Archimedean
rank 1 valued field and  a uniformly closed L-algebra of
L-valued continuous functions on X, Kaplansky has shown
that if § separates the points of X, then either ¥ consists of
all L-valued continuous functions on X or else all of them
which vanish on one point in X, In this paper analogous
results are obtained, in the case that a group of transforma-
tions acts both on X and L, for the invariant L-valued con-
tinuous functions on X,

If L and K are fields such that L c K and L/K is normal, we let
Aut (L/K) denote the group of automorphisms of L which leave every
element of K fixed, and we give Aut (L/K) the Krull topology; a basis
for the open neighborhoods of the identity of Aut(L/K) is given by
subgroups of the form

{0 e Aut(L/K):00 =2 if © e L}

where L, is a finite extension of K contained in L.

Now suppose that L is a non-Archimedean field with a (multiplica-
tive) rank 1 valuation, denoted | | [1]. Suppose K is a subfield of L
such that L/K is both normal and separable. Denote by L, a com-
pletion of L and let K’ be the closure of K in L,. Put L' = LK’
(the composite field generated by L and K’ in L,) and note that K is
dense in K’. It is clear that L’/K’ is normal and separable. If
o€ Aut (L'/K’), then, since K’ is complete, |ox| = || for each x e L’
so that o is a continuous map of L’ onto itself; furthermore the re-
striction of ¢ to L, o|,c Aut (L/K). Finally suppose that X is a com-
pact topological space for which there exists a continuous map (o, £)—ox
of Aut (L'/K’) X X — X satisfying o,(c.x) = (0,0,)x if 0., 0,€ Aut (L'/K’),
xe X and satisfying ex = x if ¢ is the identity of Aut(L’/K’) and
xe X. It is immediate that if oe Aut(L'/K’) then the map «— ox
of X— X is a homeomorphism of X. We shall call a set Y X in-
variant if Aut(L’/K’)Y = Y. Denote by Cpx(X) the set of L-valued
continuous functions f on X satisfying f(ox) = of(x) for all x € X and
ocAut (L'/K"); Cue(X) is a K-algebra. If E is any valued field,
denote by Cz(X) the continuous E-valued functions on X and give
Cp(X) the sup-norm topology. Clearly Cy(X) D Cpe(X) D Cr(X).

THEOREM 1. Suppose F is a closed (in the sup-morm) K-sub-
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algebra of Cyx(X) which separates the points of X (i.e. if ¢, ye X
and « + vy, there exists fe§ such that f(x) = f(y)). Then either
T = Crx(X) or there exists x,e X such that

B = {fe Cux(X) : fla,) = 0} .

In the latter case the set {x,} 1s invariant.

Proof. Let % be the uniform closure of the K’ algebra of func-
tions generated by & in C.(X); since K is dense in K’, ¥ is dense in
% and hence it suffices to prove that ¥’ = C. x(X) or that § =
{feCrx(X): f(x,) = 0}, Thus we may assume without loss of gener-
ality that K = K’ and L = I’. We assume first that for each z ¢ X,
there exists fe$ such that f(x) = 0

LEMMA 2. Assuming the hypotheses of Theorem 1, if x,€ X and
g€ Cx(X), there exists feF such that f(x,) = g(,).

Proof. Put L, = {h(x,): heF}; clearly L, is a K-subalgebra of
L containing a nonzero element of L. Suppose ce€l, and ¢+ 0; ¢
satisfies a polynomial equation >7,a;c* =0, where the a;€ K and
a, # 0. Then q,¢ L, and hence K = Ka,c L,. It follows that L, is
a subfield of L. Put

H = {oeAut(L/K): oz, = a5} ;

H is a closed subgroup of Aut (L/K) which fixes every element of L,
and also fixes g(x,). Now if oe Aut(L/K) — H, then =z, + ox, and
there exists ke such that h(x,) # h(ox,) or h(x,) # oh(x,). Equiv-
alently, if o ¢ Aut (L/K) fixes every element of L,, then ¢ e H. Thus
L, is the fixed field of the closed subgroup H. As H fixes g(x,), we
have g(x,) € L,, and there exists fe & such that f(z,) = g(x,).

LEMMA 3. Assuming the hypotheses of Theorem 1, X is totally
disconnected.

Proof. Since ¥ separates points, X is Hausdorff. Now take 2, X
and an open neighborhood U of x,, For each y¢ U, there exists
fy € such that fi(z) = fi(y). Put e, =|f(x) — f(¥)], and let

U, ={reX:|f(x) — filx)]| < &,/2}
and
Vv = {CE€X: Ile(x) - fﬂ/(y)[ < 6,,/2} ’

U, and V, are disjoint open and closed subsets of X with x,€ U,.
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The V, cover the compact set X — U and hence there exists a finite
number, say V,,V,, -+, V,, whose union contains X — U. Then
N, U,, is an open and closed neighborhood of & contained in U.

LEMMA 4. Assuming the hypotheses of Theorem 1, suppose V is
an open and closed invariant subset of X. Then the characteristic

function of V is in J.

Proof. By the Kaplansky-Stone-Weierstrass Theorem [2] and
Lemma 3, the characteristic function of V is in the uniform closure
of the L-subalgebra of C (X) generated by §. Hence, if € > 0, there
exists fe C(X) such that f= >, a;h; where the a; € L and the ;e ¥
and such that | f(y) — 1| <e if ye V while |f(y)| <eif yg¢ V. Let
L,c L be the smallest normal extension field of K containing all of
the a,; L, is a finite algebraic extension of K and hence Aut (L,/K) is
finite. As Aut(L,/K) is a homomorphic image of Aut(L/K), there
exist representatives o, 0., -+, 0, of Aut(L,/K) in Aut (L/K) and the
set of restrictions {0;|;,:1 << < n} is Aut(L/K). If ocAut(L/K),
put f° = 37 (oa;)h;. Then if ye X,

£@) = 3 (0a)hi(ooy)

= a(ié aihi(a‘ly)>
=0of(e7) .

As o' V=V,|f(y) — 1| <eif yeV, while |f'(y)| <eifye V. Put
g =TI%, /% then ge® and |g(y) — 1| < e if yeV while |gy)| <e
if ye V. Thus letting ¢ — 0, we see that the characteristic function
of Visin J.

Proof of Theorem 1 (concluded). Suppose fe Cpx(X) and € > 0.
For each = € X, there exists by Lemma 2, g, e § such that g,(z) = f(z).
Let U, be an open and closed neighborhood of 2 such that |g,(y) —
f()| < € whenever ye U,. Put V, = Aut(L/K)U,; clearly V, is in-
variant. As V, is the union of the open sets oU,, ¢ Aut(L/K), V,
is open, and since it is the continuous image of the compact set
Aut (L/K) x U,, it is compact. If ye V,, there exists ¢ e Aut (L/K)
such that oye U,. Then

9.(y) — f)| = |a(g.(y) — f(y))|
= |g.(0y) — floy)| <e.

The V, are open sets which cover X. Hence a finite number, say
Vep Vap »++, Vo, cover X, Put D, = V, and for 2 < i < n, put
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i—1

Di: in—UVEJ'
J=1

Each D; is open and closed, and invariant; hence by Lemma 4, the
characteristic function %; of D; is in §. In addition the D, are dis-
joint and Ui, D; = X. Now put

g = Z{hzg% ’

so that ge . If ye X, then there exists j such that yeD,C V.
then g(y) = ¢.,(¥). As |g.(¥) — f(W)| <&, |9() — f(y)| <e. Letting
¢— 0 shows that fe@. Finally, if there exists x,¢ X such that
f(@) = 0 for all feF, let F, be the K-algebra obtained from § by
adjoining the K-valued constant functions. Then if g € C,x(X) satisfies
g(x;) = 0, and & > 0, there exists by what we have proved f,e{, such
that | fi() — f(z)| <€ for all xe X. Then f, =f+ a, where fe%

and ac K. Now |a|=|fz)]| <é& hence |f(x)— g(x)| <& for all
ze X. Letting e — 0 shows that ge .

COROLLARY 5. Suppose that Cp(X) separates the points of X
and that I is a closed ideal of the K-algebra Cx(X). Then there
exists a closed invariant set Y X such that

I'={feCx(X): 7(Y) ={0}}.

Proof. Put Y = Nye:{z: f(x) = 0}. Then Y is a closed invariant
subset of X. If z,2,e X — Y and 2, # %,, then there exists fel
such that f(z,) = 0. If f(x) #= f(x.), let g be the constant function
1, while if f(x,) = f(x,), choose ge C.x(X) such that g(x,) # g(x.).
Then in either case the function % = gf eI and h(x,) # h(x,). Now
let X, be the topological space obtained from X by identifying the
points of Y, and let p be the projection from X to X,. Then p is
continuous and if x,, x,e X, we have p(x,) = p(x,) if and only if either
=, or &,%, €Y. A basis for the open neighborhoods of a point
xe X, is given by sets of the form p(V), where V is an open neigh-
borhood of p™(z) in X. If ocecAut(L//K') and ze X,, we define
ox = p(op~'(z)); this is well defined and yields a continuous map
(0,2)— ox of Aut(L//K') x X;— X,. Denote by C.(X,Y) the K-
algebra of feC,g(X) which are constant on Y. If feC, (X, Y)
define pf e Cpe(X)) by (pf)(@) = f(p~*(x)); this is well defined and
yields a norm preserving isomorphism between Cy (X, Y) and Cyx(X)).
Put pI={pf:fel}l;pl is a uniformly closed K-subalgebra which
separates the points of X,, and every function pf e pl vanishes on
p(Y); hence by Theorem 1, pI consists of all f e C;x(X;) which vanish
on p(Y). Thus I consists of all f e Cyx(X) which vanish on Y.
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COROLLARY 6. Suppose that Cpx(X) separates the points of X.
Then the maximal ideals of the K-algebra Cpx(X) are precisely the
sets of the form

{f e Cox(X) : f)) = 0}

where x,¢ X.

The following theorem permits the extension of Theorem 1 and
its corollaries to certain subsets of X.

THEOREM 7. Suppose Y is a closed subset of X and Aut (L'/K")Y =
X. Then each continuous K-valued function f on Y, satisfying
floy) = of(y) whenever oc Aut(L'/K') and both y,oyeY, has a
unique extension to a function f;€ Crx(X).

Proof. If ze X, take o ¢ Aut(L’'/K’) such that ox € Y and define
fix) = 67'f(ox). This definition is independent of the choice of ¢, and
f1 is the unique extension of f to X which satisfies f,(ox) = afi(x) for
all xe X and oc Aut(L//K"). If f, were not continuous, there would
exist a net x;e X converging to x,€ X such that the net fi(xz;) would
not converge to fi(x,). Suppose that x; = 0,y; where ¢;¢ Aut (L//K’)
and y;€Y. Since both Aut(L//K’) and Y are compact, we may as-
sume, by taking subnets if necessary, that both limy; =y, and
limo; = o0, exist. Then ¢y, = ®, and

lim fi(z,) = lim 0, f(y:) = 00/ (o) = fi(®o) .

This contradiction shows that f, is continuous.

We now consider a special case of the above results, which is of
interest in applications. Suppose that K is a finite algebraic extension
of a field of p-adic numbers @, and that L = K the algebraic closure
of K. We take X to be an invariant compact subset of K (the action
of Aut (K/K) is the usual one) and note that the map of Aut (K/K) X
X — X given by (o, ) — o2 is continuous. In fact given o, Aut (K/K),
xz,€ X, and ¢ > 0, put

H = {ceAut (K/K) : ox, = 0.2}
and
N={xeX:|le—2|<e};
then both H and N are open and HN = N. We then obtain
THEOREM 8. Suppose I is an ideal of Klx]; then the uniform

closure of I in Cyx (X) is the set of functions f e Cx(X) which
vanish at every zero of 1.
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