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ON THE STONE-WEIERSTRASS APPROXIMATION
THEOREM FOR VALUED FIELDS

DAVID G. CANTOR

Let X be a compact topological space, L a non-Archimedean
rank 1 valued field and g a uniformly closed L-algebra of
L-valued continuous functions on X. Kaplansky has shown
that if S separates the points of X, then either 8? consists of
all L-valued continuous functions on X or else all of them
which vanish on one point in X. In this paper analogous
results are obtained, in the case that a group of transforma-
tions acts both on X and L, for the invariant L-valued con-
tinuous functions on X.

If L and K are fields such that LczK and L/K is normal, we let
Aut (L/K) denote the group of automorphisms of L which leave every
element of K fixed, and we give Aut (L/K) the Krull topology; a basis
for the open neighborhoods of the identity of Aut (L/K) is given by
subgroups of the form

{σ e Aut (L/K): σx = x if x e LJ

where Lx is a finite extension of K contained in L.
Now suppose that L is a non-Archimedean field with a (multiplica-

tive) rank 1 valuation, denoted | | [1], Suppose K is a subfield of L
such that L/K is both normal and separable. Denote by Lc a com-
pletion of L and let K* be the closure of K in Lc. Put Lf = LKf

(the composite field generated by L and Kf in Lc) and note that K is
dense in K'. It is clear that U/Kf is normal and separable. If
σ e Aut (L'/Kf), then, since Kf is complete, | ax | = | x \ ΐ or each xeU
so that σ is a continuous map of L' onto itself; furthermore the re-
striction of σ to L, σ|jr e Aut (L/K). Finally suppose that X is a com-
pact topological space for which there exists a continuous map (σ, x) —>σx
of Aut (Lf/K') x X—> X satisfying σλ(σ2x) = (cr^x if OΊ, σ2 e Aut (U/Kf),
xe X and satisfying ex = x if β is the identity of Aut (Lr/Kr) and
xeX. It is immediate that if σeAut(L'/Kf) then the map x—>σx
of 1 ^ 1 is a homeomorphism of X. We shall call a set YaX in-
variant if Aut (L'/Kr) Y' — Y. Denote by CL,K(X) the set of L-valued
continuous functions / on X satisfying f(σx) = σf(x) for all xe X and
σ e Aut (U/Kr)) CLίκ(X) is a ϋΓ-algebra. If E is any valued field,
denote by CE(X) the continuous unvalued functions on X and give
CE(X) the sup-norm topology. Clearly CL(X) => CLSκ(X) z> C^(X).

THEOREM 1. Suppose % is a closed (in the sup-norm) K-sub~
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algebra of CLJK(X) which separates the points of X (i.e. if x,y e X
and xφy, there exists / e g such that f(x)Φf(y)). Then either
g — CLjκ(X) or there exists x0 e X such that

In the latter case the set {x0} is invariant.

Proof. Let g' be the uniform closure of the K' algebra of func-
tions generated by g in CL,(X)\ since K is dense in K', g is dense in
g' and hence it suffices to prove that g' = CL,ίκ,(X) or that g' =
{/ e CL,]K,(X): f(xQ) = 0}. Thus we may assume without loss of gener-
ality that K = K' and L = I/. We assume first that for each x e X,
there exists / e g such that f(x) Φ 0

LEMMA 2. Assuming the hypotheses of Theorem 1, if xoeX and
g£ CL}K(X), there exists / e g such that f(x0) = #(#<>)•

Proof. Fut Lx = {h(x0) :he%}; clearly Lx is a iί-subalgebra of
L containing a nonzero element of L. Suppose c e Lx and c Φ 0; c
satisfies a polynomial equation 2?=o &%<? — 0, where the a{ e K and
α0 Φ 0. Then α0 e Lx and hence if = Ka0 c L l t It follows that Lx is
a subfield of L. Put

i ϊ = {σ e Aut (L/K): σ^0 = x0}

if is a closed subgroup of Aut {LjK) which fixes every element of Lx

and also fixes g(x0). Now if σ e Aut (L/K) — H, then x0 Φ σxQ, and
there exists h e % such that h(x0) Φ h(σx0) or h(x0) Φ σh(x0). Equiv-
alently, if o e Aut (L/K) fixes every element of Lu then σ e H. Thus
Lx is the fixed field of the closed subgroup H. As H fixes g(x0), we
have φ o j e i u and there exists / e g such that f(x0) = flr(α?0).

LEMMA 3. Assuming the hypotheses of Theorem 1, X is totally
disconnected.

Proof. Since g separates points, X is Hausdorff. Now take xoe X
and an open neighborhood U of #0. For each y $U, there exists
/ y e g such that fy(x0) Φ fy(y). Put εy = |Λ(«0) - Λ(#) I, and let

and

Vy = {xeX: \fy(x) - fy(y) \ < εy/2}

Uy and Vy are disjoint open and closed subsets of X with x0 e Uy.
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The Vy cover the compact set X — U and hence there exists a finite
number, say Vyi, Vy2, , VVn whose union contains X — U. Then
ΠΓ=i Uy. is an open and closed neighborhood of x contained in U.

LEMMA 4. Assuming the hypotheses of Theorem 1, suppose V is
an open and closed invariant subset of X. Then the characteristic
function of V is in g .

Proof. By the Kaplansky-Stone-Weierstrass Theorem [2] and
Lemma 3, the characteristic function of V is in the uniform closure
of the L-subalgebra of CL(X) generated by g. Hence, if s > 0, there
exists fe CL(X) such that / = 2f=1 α ^ where the α̂  e L and the hi e %
and such that | f(y) ~ 11 < ε if y e V while | f(y) | < ε if y $ V. Let
L2 c L be the smallest normal extension field of K containing all of
the a{; Lλ is a finite algebraic extension of K and hence Aut (LJK) is
finite. As Aut (LJK) is a homomorphic image of Aut (LjK), there
exist representatives σ19 σ£, , σn of Aut (LJK) in Aut (L/K) and the
set of restrictions fa \Lχ: 1 < i < n) is Aut (LJK). If σ e Aut (L/K),
Put f° - ΣJLi (σajhi. Then if y e X,

m

As σ~ xF - F, |/σ(t/) - 1 1 < ε if y e V, while \fσ(y) \<eiίyίV. Put
δ = Π L i / σ ί ; then # G g and | g(y) — 11 < e if yeV while | g(y) \ < ε
if y $ V. Thus letting ε —> 0, we see that the characteristic function
of V is in g.

Proof of Theorem 1 (concluded). Suppose feCLIK(X) and ε > 0.
For each x e X, there exists by Lemma 2, gxe% such that ^(a?) = f(x).
Let Z7X be an open and closed neighborhood of x such that | gx(y) —
f(y) I < ε whenever ye Ux. Put Vx = Aut (L/K)UX; clearly Vx is in-
variant. As Vx is the union of the open sets σUx, σ e Aut (L/K), Vx

is open, and since it is the continuous image of the compact set
Aut (L/K) x Ux, it is compact. If ye Vx, there exists σ e Aut (L/K)
such that σy e Ux. Then

σ(gx(y) - f(y))

f(σy) \

\gΛv)-f(y)\ =

The Vx are open sets which cover X. Hence a finite number, say
VXl, VX2, , VXn cover X. Put A = VXl and for 2 < i < n, put
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A = VXi - 0 VX}

Each Di is open and closed, and invariant; hence by Lemma 4, the
characteristic function hi of A is in g. In addition the A are dis-
joint and U?=1 Di = X. Now put

n

9 = Σ fιi9xi ,

so that g e g. If ?/ e X, then there exists j such that y e Dά c V^;
then flr(2/) - ^/i/). As | 3̂ (3/) - /(#) | < ε, | g(y) - f(y) | < ε. Letting
ε-*0 shows that / e g . Finally, if there exists xQeX such that
f(x0) = 0 for all / e g, let g2 be the if-algebra obtained from g by
adjoining the i£-valued constant functions. Then if g e CL!K{X) satisfies
gix0) = 0, and ε > 0, there exists by what we have proved fx e g t such
that I fx{x) - f{x) I < ε for all xeX. Then f = f + a, where / e g
and aeK. Now \a\ = \ f^x,) | < ε, hence | fix) — g(x) | < ε for all
xeX. Letting ε —> 0 shows that g e g.

COROLLARY 5. Suppose that CLjκiX) separates the points of X
and that I is a closed ideal of the K-algebra CL!K(X). Then there
exists a closed invariant set YczX such that

I={feCLlKiX):fiY) = {0}}.

Proof. Put Y = Π/er {̂  : /(#) = 0}. Then Y is a closed invariant
subset of X. If xlf x2e X — Y and x± Φ X2, then there exists / e I
such that f(Xj) Φ 0. If fixx) Φ f(xz)f let g be the constant function
1, while if f(xx) = /(α?2), choose g e CL!κiX) such that gixλ) Φ gix2).
Then in either case the function h = gf e I and hixx) Φ hix2). Now
let Xx be the topological space obtained from X by identifying the
points of Y, and let p be the projection from X to Xle Then p is
continuous and if xux2e X, we have p(xλ) = 2>(&2) if and only if either
#1 = x2 or #1, α?2 G Y. A basis for the open neighborhoods of a point
xeXτ is given by sets of the form p(V), where V is an open neigh-
borhood of p-\x) in X. If σ e Aut iL'jK') and α?e-3Γi, we define
<7# = piσp~\x)); this is well defined and yields a continuous map
(σ, B) —» σx of Aut iL'jK') x l ^ Xlβ Denote by CLlκiX, Y) the if-
algebra of / 6 CLiκ{X) which are constant on Y. life CLlκiX, Y)
define pf GCLJK(XU by ipf)ix) = /(p"1^)); this is well defined and
yields a norm preserving isomorphism between CL[κiX, Y) and CLlκ(X^.
Put p i — {pf: f el}; pi is a uniformly closed iΓ-subalgebra which
separates the points of Xl9 and every function pfepl vanishes on
piY); hence by Theorem 1, pi consists of all fe CLIK(X^ which vanish
on piY). Thus J consists of all feCLlκiX) which vanish on Y.
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COROLLARY 6. Suppose that CL]K(X) separates the points of X.
Then the maximal ideals of the K-algebra CZικ(X) are precisely the
sets of the form

{feCLIK(X):f(x0) = 0}

where x0 e X.

The following theorem permits the extension of Theorem 1 and
its corollaries to certain subsets of X.

THEOREM 7. Suppose Y is a closed subset of X and Aut (U/Kr)Y=
X. Then each continuous K-valued function f on Y, satisfying
f(σy) — σf(y) whenever σ e Aut (L'/Kf) and both y, σy e Y, has a
unique extension to a function fλ e CLjκ(X).

Proof. If x 6 X, take σ e Aut (L'/K') such that σxeY and define
f(x) — σ~1f(σx). This definition is independent of the choice of σ, and
/x is the unique extension of / to X which satisfies fλ(σx) = σfλ(x) for
all xeX and σeAut(L'/Kf). If fx were not continuous, there would
exist a net ^ G I converging to xQe X such that the net fλ(Xi) would
not converge to /i(α?0). Suppose that xt — a%yi where σ{ e Aut (L'/Kr)
and yi e Y. Since both Aut {L'jK') and Y are compact, we may as-
sume, by taking subnets if necessary, that both lim yi = yQ and
lim σ{ = σ0 exist. Then σQyQ = xQ and

lim f^Xi) = lim σifiyi) - σof(yϋ) = f^x,) .

This contradiction shows that fx is continuous.
We now consider a special case of the above results, which is of

interest in applications. Suppose that if is a finite algebraic extension
of a field of p-adic numbers Qp and that L = K the algebraic closure
of K. We take X to be an invariant compact subset of K (the action
of Aut (K/K) is the usual one) and note that the map of Aut (K/K) x
X—> X given by (<τ, x) —> σx is continuous. In fact given σ0 e Aut (K/K),
x0 e X, and ε > 0, put

H = {σ e Aut (K/K): σxQ — σQxQ}

and

N = {x e X: \ x — xo\ < s}

then both H and iV are open and HN = iSΓ. We then obtain

THEOREM 8. Suppose I is an ideal of K[x]; then the uniform
closure of I in C^IK (X) is the set of functions f e C^lκ(X) which
vanish at every zero of I.
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