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ON EVANS' KERNEL

MITSURU NAKAI

In classical potential theory on the plane, two important
kernels are considered: the hyperbolic kernel log(| 1—ζz |/| z—ζ |)
on I z I < 1 and the logarithmic kernel log (1/| z — ζ |) on
\z\ < + oo. The former is extended to a general open Riemann
surface of positive boundary as the Green's kernel.

The object of this note is to generalize the latter to an
arbitrary open Riemann surface of null boundary, which we
shall call Evans' kernel. The symmetry (Theorem 1) and the
joint continuity (Theorem 2) of Evans' kernel are the main
assertions of this note. It is also shown that Evans' kernel
is obtained on every compact set in the product space as a
uniform limit of Green's kernels of specified subsurfaces less
positive constants (Theorem 3).

The hyperbolic and logarithmic kernels are characteristic
of hyperbolic and parabolic simply connected Riemann surfaces,
respectively. The corresponding role is played by the elliptic
kernel log (l/[z, ζ]) for an elliptic simply connected Riemann
surface, i.e., a sphere. The generalization of it, which we
call Sario's kernel, is shown to be obtained in a natural
manner from the Evan's kernel.

Wide applications of Evan's kernel are obviously promised, but

we do not discuss these here at all.

1. Positive singularities* Throughout this note, we denote by

R an open Riemann surface of null boundary, i.e., i ϋ e O ^ c f . Ahlfors-

Sario [1]). We denote by R the one point compactification of Alexandroff

and by oo the point at infinity, i.e., R = R U {<*>} (cf. Kelly [4]).

Let qeR. A positive singularity (or more precisely, normalized

positive singularity) lq at q is a positive harmonic function in a

punctured open neighborhood V(lq)aR (i.e., V(lq) U {q} is an open

neighborhood of q in R) such that

( 1 ) lim lq(p) = + oo
pGV(lq),p-*q

and

( 2 ) ( *dlq = -2π

for a (and hence for all) simple analytic curve a c V(lq) which is the
boundary of a neighborhood of q and is positively oriented with respect
to this neighborhood. Here *dlq is the conjugate differential of dlq
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(Ahlfors-Sario [1]).

Two singularities lq and Γq a t qeR are said to be equivalent if
lq — l[ is bounded in a punctured neighborhood of q.

LEMMA 1. There exists a positive singularity lq for every qeR.
All lq are equivalent by pairs for each fixed qeR.

In fact, let qeR and {£/, z} be a parametric disk at q, i.e., U
is a neighborhood of q and z a conformal mapping of U onto {\z\ < 1}
with z(q) = 0. Then lq{p) = log (1/| s(p) |) on F(O = ί7 - {q} is a
positive singularity at q. Let ij be another positive singularity at q.
Denote by p = p(z) the inverse mapping of z = z(p), and assume that
lq(p(z)) is defined and positive in {0 < | z \ < r} (0 < r < 1). Let
*lq(P(z)) be the multiple-valued conjugate of Vq(p{z)) on {0 < | z \ < r},
and consider f(z) = e-

{l'q
{p{z))+i*ι'q

{p{z))). In view of (2)

\ *dl'q= -2π(a = p(\z\ = r'))

for every 0 < r < r\ Hence /(z) is single-valued in {0 < | z \ < r}. It
is also bounded, since lq(p(z)) > 0. Therefore f(z) can be continued to
all of {\z\ < r). Thus we can find a bounded analytic function φ(z)
in {| z I < r} with ^(0) ^ 0 and /(«) = znφ(z) (n = 1, 2, -). Hence

i ί ( ^ ) ) = - log I /(*) I = -rc log I s I - log I 9>(s) I

Clearly log | φ(z) \ is harmonic in some {| z \ < r"} (0 < r " < r), and
thus (2) implies that n = 1. Therefore ΪJ — lq is bounded in a neigh-
borhood of g.

For the existence of a positive singularity L at oo, see Kuramochi
[5], Nakai [6], or Sario-Noshiro [15].

There can exist two or more nonequivalent singularities at oo.
For example, let R = {| z \ < + oo} - {0} and H(z) = λ log (1/| z |)(0 <
I z | < 1), (1 - λ)log I z I (I z I > 1). Since {0 < | s | < 1} U {1 < I s | < + <*>}
is a neighborhood of the Alexandroff point oo at infinity for R, all
ϊi(0 < λ < 1) are positive singularities at oo, but the II — lί are not
bounded in any neighborhood of oo if x Φ χ\

2. Existence of Evans5 kernel* The logarithmic kernel
log (1/1 3 — ζ |) on the plane P = { | ^ | < + o o } i s a harmonic function
in z on P — {ζ} which possesses positive and negative singularities at
ζ and oo, respectively, and is symmetric on P x P. Having these
in mind, we generalize the logarithmic kernel to an arbitrary open
Riemann surface of null boundary as follows:
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DEFINITION. An Evans' kernel e(p, q) on R is a mapping of R x R
onto (—00, +00] satisfying the following four conditions:

(a) e(p, q) is harmonic in p on R — {g}.
(b) e(p, q), as a function of p, is a positive singularity at g,
(c) — e(p, g), as a function of p, is a positive singularity at 00,

and — e(p, q) and — e(p, qf) are equivalent for every pair (g, q')eR x R,
(d) e(p, g) is symmetric, i.e., e(p, q) = e(g, p) on i? x R.

The condition (b) means that there exists a positive singularity
lq at g such that

( 3 ) e(p, q) = lq(p) + hq(p)

in a punctured neighborhood F(Zff) of g, where Λg is a harmonic function
on F(^) U {g}. Since Zff is unique up to the equivalence, (3) has a
definite meaning. The condition (c) means that there exists a positive
singularity ?«, at 00 independent of q such that sup hq < + 00 and

( 4 ) e{p,q) = - U P ) + Mp)

on R outside a compact set Kq c i?. Since there can exist more than
one nonequivalent positive singularity, e(p, q) depends essentially on
Zoo. For this reason, it would be better to call e(p, q) an l^-Evans'
kernel, indicating the dependence on L.

We are now able to state

THEOREM 1. On an arbitrary open Riemann surface R of null
boundary there exists an l^-Evans' kernel which is unique up to an
additive constant.

The existence of a function satisfying (a), (b), and (c) is known
(Evans [2], Selberg [16], Noshiro [10], Kuramochi [5], and Nakai [6];
see also Sario-Noshiro [15]). Such a function is usually called an
Evans-Selberg's potential. Actually for each fixed qeR, a function
p(p, q) with (a), (b), and (c) is obtained from — L and lq by the main
existence theorem of Sario [11] (see Ahlfors-Sario [1; p. 154]). Thus
the problem is to find a function k(p) on R such that

p(p, Q) + HQ) = P(Q, P) + HP)

for every p,qeR. Instead of seeking such a k{p), however, we will
prove the theorem in §3 and §4 by an indirect procedure.

3. Let g0 be an arbitrary but then fixed point in R. Consider
open sets

( 5 ) Rn = {p\peR, p{p, g0) > -n)
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for each positive integer n. By (c), we conclude that Rn is compact
in R. By the maximum principle, we also infer that Rn is connected.
Clearly the relative boundary dRn of Rn consists of a finite number
of piecewise analytic Jordan curves. The sequence {Rn}? is an exhaus-
tion of R, i.e., RndRn+1 and R = \J?Rn

Let gn(p, q) be the Green's kernel on Rn, i.e., the mapping of
Rn x Rn onto [0, +00] such that p—>gn(p, q) is harmonic on Rn — {g}.
It is a positive singularity at q e Rn and vanishes on dRn. Moreover
it is symmetric, i.e.,

( 6 ) gn(p, q) = gn(q, p)

on Rn x Rn (see Ahlfors-Sario [1]). Consider the kernel un(p, q) on
Rn defined by

( 7 ) ujjp, q) = gn(p, q) - n .

Since R e 0θ, the increasing sequence {gn(p, q)}? diverges to + co.
However for {un(p, q)}, we obtain the following (cf. Tsuji [17]):

LEMMA 2. The limit

( 8 ) e(p, q) = limun(p, q)
n—*oo

exists on R x R and is an l^-Evans' kernel. The convergence is
uniform on K x {q} for all qeR and all compact sets K (zR — {q}.

Let qeR. By (c), there exists an integer n(q) such that

I P(P, q) - p{V, Qo) I < c(q)

on R — Rn{q), where c(q) is a finite constant depending only on q. If
n Ξ> n(q), then p(p, q) — wn(p, g) is harmonic on Rn and p(p, qQ) —
un(p, q) = 0 on 3.K%. Hence

( 9 ) (|θ(p, g) - un(p, q) I < c(g)

for every peRn. Therefore

(10) I un+m(p, q) - un(p, q) \ < 2c(q)

for every peRn with n ^ n(q) and m = 1, 2, . Thus for an arbitrary
fixed qeR, there exists a subsequence of {un(p, g)}Γ which is uniformly
convergent on each compact subset of R — {q}.

Let D be a countable dense subset of R. Using the diagonal
process of Cantor, we can find a subsequence {nk}~=1 of {w)Γ such that
for every fixed qeD, {u%k{p, g)}£=i converges to a harmonic function,
say eq(p), uniformly on each compact subset of R — {q}.
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Next fix p arbitrarily in R. By (b), un(p, q) — un(q, p) and thus
I un+m(p, q) - un(p, q)\ = \ un+m{q, p) - un(q, p) |. Hence by (10), we
obtain

I u%+n(p, q) - un(p, q) \ < 2c(p)

for every q e Rn with n ^ n(p) and m = 1, 2, . Fix k0 with nko ^
n(p). Then {unjc(p, q) — unjc (p, q)}™0 is a uniformly bounded sequence
of harmonic functions in q and converges on a dense set D of R.
Hence by Harnack's convergence theorem {unjc(p, q) — unje (p, g)}Γ0, and
a fortiori {unjc(p, g)}Γ0, converges uniformly on each compact subset
of R - {p}. Set

hp(q) = lim un(p, q) ,
k-

which is a harmonic function on R — {p}.
Thus we conclude that

(11) e(p, q) = lim unk(p, q)

exists for every {p, q)eR x R. Again by (10), | e(p, q) — u%k{p, q) | <
c(q). By Harnack's theorem, the convergence in (11) is uniform on
K x {q} for every q e R and every compact set K c R — {q}. Since
M«(PI q) = un(q, p), e(p, q) clearly satisfies (d). In view of (11), (a) is
clearly satisfied by e(p, q). From (9), it follows that

(12) I ρ(p, q) - e(p, q) \ < c(q)

for every peR. Since p(p, q) satisfies (3) and (4), e(p, q) also satisfies
(b) and (c). Therefore e{p, q) is an L-Evans' kernel.

Finally we prove that (11) implies (8). Assume contrariwise that
(8) is not valid. Let {vk}ΐ=1 be the complementary subsequence of
{nk}ΐ=l9 i.e., K}Γ=i U {nk}ΐ=1 = {n}?. Since KJΓ=i does not converge
to e(p, q) on R x R, we can find a point (pl9 qλ) e R x R and a sub-
sequence {μk}ΐ=ι of {vk}~=ι such that

(13) lim Uμk(plf qλ) Φ e(pl9 qλ)

exists. Since {uμk}k=1 satisfies (9), by the same manner as above, we
can find a subsequence {mk}^=1 of {μk}ΐ=ι and an L-Evans' kernel e'(p, q)
on R such that (11) is valid for e'{p, q) and {umk)~=]. By (13), e(p19 qλ) Φ

e'(Pi, Qi)

On the other hand, (12) is also true for e'(p, q) and thus

e(P, q) ~ e'(p, q) \ < 2c(q)

for every peR. Therefore p —>e(p, q) — e'(p, q) is a bounded harmonic
function on R and consequently a constant a(q) (see Ahlfors-Sario [1]).
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By the symmetry, q —* e(p, q) — e'(p, q) = a(q) is also a bounded
harmonic function and so a(q) is a constant a, i.e., e(p9 q) = β'(p, g) + α
on i? x R. Since %Λ(p, g0) = p(p, q0), β(p, g0) = e'(p, q0) on i2 and thus
a = 0. In particular e(pl5 g2) = β'(^, qλ), a contradiction.

4* To complete the proof of Theorem 1, we have only to show
the uniqueness of the L-Evans' kernel up to an additive constant.
Let e(p, q) and e\p, q) be L-Evans7 kernels. Consider the difference
E(p, Q) = e(p, q) - e'(p, q). By (b) and (c), p—>E(p, q) is a bounded
harmonic function on R, and so is q —> E(p, q). Similarly as above,
we conclude that E(p, q) is a constant.

5* Joint continuity of Evans' kernel* From the potential-
theoretic view point, it is very important that the logarithmic kernel
log (1/1 z — ζ I) is continuous on P x P = {(z, ζ) | | z |, | ζ | < + ^} in the
extended sense. The joint continuity of Green's kernel is well known.
We can also prove the corresponding fact for Evans' kernel:

THEOREM 2. Evans' kernel e(p, q) on R is jointly continuous,
i.e., e is a continuous mapping of R x R onto (-oo, +oo].

Specifically, e(p, q) is finitely continuous on R x R outside the
diagonal set, and for any relatively compact subsurface V czR, the
decomposition

(14) e(p, q) = gv(p, q) + vv(p, q)

is valid on V x V. Here gv is the Green's kernel on V and vr is
a finitely continuous function on V x V.

We shall use Heins' device (Heins [3]). Let qoeR and V be a
relatively compact subsurface of R. We may assume that the relative
boundary dV of V consists of a finite number of piecewise analytic
Jordan curves. Assume that q0 e V. Set

d(q) = d(q; q0, V) = max | e(p, q) - e(p, q0) \ .
pβdV

Observe that by (c), e(p, q) — e(p, q0) is a bounded harmonic function
in p on R - V. Since R e 0G, e(p, q) - e(p, q0) takes its maximum and
minimum on dV, and therefore

(15) I e(p, q) - e(p, q0) \ £ d(q)

for every pe R — V. First we show that

(16) lim d(q) = 0 .
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If this were not the case, then there would exist a sequence {qn}~ c V
such that lim% qn = q0, d(qn) > 0, and \\mn d(qn) > 0. Let If be a
subsurface of R which is the same kind as V and such that
qQe W c W c V. We may assume that {qn}? c W. Take the Green's
kernel gv on F and consider the function vn(p) = (e(p, qn) — e(p, qo))/d(qn).
This is harmonic on R — W and, by (15), | vn(p) | ^ 1 for peR — V.
Clearly + (gr(p, qn) - Qv(p, Qo))/d(qn) + 1 ± vn(p) are harmonic and non-
negative on V. Therefore

(17) I vn{p) | ^ 1 + b(qn)

on V — W and consequently on R — W, where

b(qn) = max | gv(p, qn) - gv(p, q0) \/d(qn) .
Pβdw

Since gv(p, q) is continuous on V x V and {l/d(qn)}~ is bounded, we
obtain limΛ b(qn) = 0. Hence from (17), it follows that {vn}T is a
sequence of uniformly bounded harmonic functions on R — W. Let
p e R — W be arbitrary but fixed for the time being. Since e(p, qn) —>
e(p, ?o) (w—> oo) and {l/d(qn)}Γ is bounded, limΛ vΛ(p) = 0. Thus {vn}Γ
converges to zero uniformly on each compact subset of R — W and
in particular on dV. However this is impossible, since max^e^ | vn(p) \ =
d(Qn)/d(Qn) — l Hence (16) must be valid.

Let (pQ, q0) e R x R with p0 Φ q0. In particular, choose V in such
a fashion that p0 & V, qoe V. Let p £ V and qe V. Then from (15)
it follows that

I e(p, q) - e(p0, qo)\^\ e(p, q0) - e(p0, q0) \ + d(q; q0, V) .

By (16) and \\m^ne{p} q0) = e(p0, qQ), we conclude that

lim e(p, q) = e(p0, q0) ,

i.e., e(p, q) is finitely continuous on R x R outside the diagonal set.
Finally consider

(18) vv(p, q) = v(p, q) = e(p, q) - gv(p, q)

on V x V. From what we have seen thus far, it follows that v(p, q)
is finitely continuous on V x V outside the diagonal set. Let poe V
and W be an open neighborhood of p0 with W c V. For any ε > 0,
we can find an open neighborhood U of p0 such that V c W and

(19) v(p, p0) - ε < v(p, q) < v(p, pQ) + ε

for every (p, q) e(dW) x U. For an arbitrary fixed q e U, the functions
of p on W involved in (19) are harmonic since positive singularities
cancel, and (19) is valid on 317. Therefore by the maximum principle,
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(19) is valid on W. Thus in particular, (19) is true for every (p, q)
in U x U. Hence

v ( p , Q) ~ v(Po, P o ) \ ^ \ v ( p , Po) - v(p0, P o ) \ + e .

Since lim^P o v(p, pQ) = v(p0, p0), lim(J,,ffM(J,o,ffo) v(p, q) = v(p0, q0). Therefore
e is the sum of a finitely continuous function v and the Green's kernel
which is also continuous on V x V.

6* Approximation by Green's kernels* As a complementary
statement to Lemma 2, we shall prove

THEOREM 3. Let e(p, q) be an Evans' kernel on R and gλ(p, q)
be the Green's kernel on Rλ — {p\peR, e(p, q0) > — λ} with a fixed
q0 e R. Then

(20) e(p, q) = lim (gλ(p, q) - λ)
Λ-»oo

uniformly on each compact set of R x R, i.e.,

lim sup I e(p, q) - (gλ(p, q) - λ) | = 0
λ ( ) e K K

for every compact set K c R.

By a similar manner as in the proof of Lemma 2, we can show
that e'(p, q) = lim^oo (gλ(p, q) — X) exists on R x R and e'(p, q) is an
Evans' kernel such that p —> e'(p, q) gives a positive singularity at oo
equivalent to that of p —> e(p, q). Moreover the convergence is uniform
on K x {q} with an arbitrary q e R and an arbitrary compact set
K czR — {q}. Since p—>e(p, q) — e'(p, q) is bounded and harmonic on
R, as in § 4, e(p, q) — e'(p, q) is a constant on R x R. Moreover
e(p, q0) = gχ{p, q0) — λ = e'(p, qQ) on Rλ, and we conclude that e(p, q) =
e\p, q) on R x R, i.e., the identity (20) is valid.

Let wλ(p, q) = (e{p, q) — (gχ(p, q) — λ)) on JB .̂ Fix an arbitrary
λ0 > 0 and let λ > λ0. For an arbitrary fixed q e Rλo, p —* wλ(p, q) is
harmonic on Rλ and for p e 3Rλi wx(p, q) — (e(p, q) — (gx(p, q) — λ)) =
(e(p, q) - (gλ(p, q0) - λ)) = e(p, q) - e(p, q0), since gλ(p, q) = gλ(p, qQ) - 0.
Therefore | wλ(p, q) \ ̂  max^Q^ | e(p, q) - e(p, q0) \ for peRλ, and thus

(21) I wλ(p, q) I ̂  max | e(p, q) - e(p, q0) \

for every (p, q) e Rλ x Rλo. By Theorem 2, | e(p, q) — e{p, q0) \ is finitely
continuous on (dRλ) x Rλ and thus

(22) Mλ = max | e(p, q) - e(p, qQ) \ <
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By (c), P^> e(p, q) — e{p, g0) is a bounded harmonic function on R — Rλ

for each fixed q e 5;0. Thus from i2 e 0σ, it follows that

I e(p, q) - e(p, q0) | ^ max | e(p, q) - e(p, qQ) | ^ Mλ
pedRχ

for every (p, q)e(R - i^) x BλQ. Hence in particular

(23) Mλ, ^ Mλ

for all λ' > λ. Therefore by (21), (22), and (23), there exists a finite
constant M and λx e (λ0, + °o) such that

(24) I wλ{p, q)\<M

for every (p, q) e RλQ x ^ ^ and λ > λ1#

Set fλ(p, q) - w,(p, g) + M. Then

(25) 0 ^ /,(p, g) ^ 2ikf

on RXQ x β λ o . Hence p —• /λ(^>, g) and g —• /λ(p, g) are nonnegative
harmonic functions on RXQ. Therefore

XQ.

k(p, pTW, Q) ̂  MP, q) ^ k(p, p')fλ(p', q) ,

k(q, qTVxiP', QΊ ^ fz(P', Q) ^

for arbitrary points p, p', g, and g' in Rλo. Hence for (s, t) e RλQ x J?;.o,
k(s, t) is given by

k(s, t) = kRλo(s, t) - inf {c \ e-Ύh{s) ̂  h(t) ^ cΛ(s) /or every h e HP(Rh)} ,

where HP{Rλ) is the class of all nonnegative harmonic functions on
RXQ. From the Poisson formula, it follows that 1 ^ k(s, t) < &o and

(27) limfc(s, ί) - 1

(cf. Nakai [7]). By (25) and (26), we obtain

I fi(p, Q) - fi(p', q') I ̂  2M(k(p, p')k(q, q') - 1)

and in turn

(28) I wλ(p, q) - wλ(p', qf) \ < 2M(k(p, p')h(q, q') - 1)

for every (p, q) and (p', q') in RλQ x BλQ. From (27) and (28), it follows
that the family {wλ(p, q)}x>x1 is equicontinuous on R2Q X JB^. Therefore
the convergence lim^oo wx(p, q) = 0 on Rλo x RλQ outside the diagonal
implies the uniform convergence lim^oo wλ(p, q) on Bχo/2 x 5;o/2.

7* Sario^s kernel* The most important potential-theoretic kernel
on the extended plane P = {\ z \ ̂  + °°} is the elliptic kernel log (!/[#, ζ]),
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where

For simplicity, let s{z, ζ) = log (l/[z, ζ]) and φ , ζ) = log (1/| z - ζ |).
Observe that

(29) s(2, ζ) = i log (1 + e-2β(' °>)(l + e-
2β(^0)) + φ , ζ) .

In view of this, the most natural generalization of the elliptic kernel
to an arbitrary closed surface S is as follows:

(30) s(p, q) = i log (1 + e~2e^a))(l + e-
2β(* β)) + e(p, q)

for (p, q) e S x S, where a is an arbitrary but then fixed point in
S, °o a point in S different form a, and e(p, g) is an Evans' kernel
on S — {oo}.

For an open Riemann surface S e 0θ, the kernel s(p, q) can also
be defined by (30), where co is taken as the Alexandroff point at
infinity of S.

Even if S£θ0, maintaining the formality (29), we may define

(31) 8(p, q) = h log (1 + e-2«*>a))(l + e-™'-a)) + g(p, q) ,

where g(p, q) is the Green's kernel on S.
Then the kernel s(p, q) on an arbitrary Riemann surface S enjoys

most of the important properties of the elliptic kernel, and thus may
be regarded as a generalization of the elliptic kernel. It satisfies the
following:

(a) s(p, q) is bounded from below on S x S,
(β) s(p, q) = s(q, p) on S x S,
(Y) Avs(p, q) exists on S — {α, q}, is continuously extendable to

S, and the resulting 2-form is independent of q,
(3) for every subsurface Ω c S with ΩgO#, there exists a

finitely continuous function vΩ{p,q) on Ω x Ω such that

(32) s(p, q) = gΩ(p, q) + vΩ(p, q)

on Ω x Ω, where gΩ(p, q) is the Green's kernel on Ω.
In general, a function with the four properties (a)—(δ) may be

called Sario's kernel on S, since Sario [12, 13, 14] constructed such
a function (see also Nakai [8, 9]). In our case, the formulas (30) and
(31) enable us to prove (a)—(δ) quite rapidly.

The properties (β) and (7) are direct consequences of (30) and (31).
For open S, (δ) is again an easy consequence of the very definition of
s(p, q) and (14). For closed S, we have only to consider the case
where Ω is a parametric disk at co and a^Ώ. Observe that there is
only one positive singularity gΩ(p, 00) at 00 up to the equivalence.
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Let

v(P, Q) = e(p, Q) ~ 9Q(P, °°) - 9Q(Q, °°) - 9o(p, Q)

Both p —* v(p, g) and g —> ^(p, g) are harmonic on β. Clearly

v(p, q) ̂  min v(p, q)
(p,q)e(dΩ)X(dΩ)

for every (p, q)eΩ x Ω. Since v(p, g) = e(p, q)(> — ©o) is continuous
on (3£>) x (3i2), there exists a constant c such that i;(p, g) ̂  c > — oo.
Similarly as in the proof of (28) we obtain

I v(p, q) - v(p', q')\^\ v(p', q') ~ c \ (ko(p, p')Jco(q, q') - 1) .

Thus v(p, q) is finitely continuous on Ω x Ω. From this, (32) follows.

8* Finally we prove (a). We only prove it for open SeOQ. If
S is closed, then we have only to consider S — oo. For S$ 0β, the
same proceedure with the replacement of e(p, q) by g(p, q) and with
an obvious modification gives the proof.

Take a relatively compact subsurface V of S containing α. Set

Λ = inf s(p, q) ,

and

A2 = inf _̂  s(p, q) = inf _ _s(p, q)
(p,q)eVX(S-V) (p,q)e(S-V)XV

A3 = inf _ s(p, q) .
(p,q)β(S~V)X(S~V)

We have to show that Ai > - °o(i = 1, 2, 3).
In general, s(p, q) > e(p, q) > — c>o. Since e(p, q) is continuous on

V x "P, Λ ^ min(3,,,)€FχF β(̂ >, g) > - °o.

Next consider the case (p, g) e (S — V) x F. Clearly

s(p, q) > e{p, q) - e(p, a) = w(p, q) .

By (c), p-*w{v,q) is bounded and harmonic in S — V. Since SeOG,

w(p, q) ̂  min w(p, q)

for every (p, q)e(S — V) x V. The function w(p,q)(> — oo) is con-
tinuous on (dV) x F and thus

w(p, q) ̂  min w(p, q) ̂  min __ w(p, q) > — oo

for all (p, q)e(S -V) x F. Therefore AL ̂  min ( 2,,g ) e ( 9 F ) x F ̂ (p, q) >
Finally let (p, g) e (S - F) x (S - F) and observe that
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s(p, q) > e(p, q) - e(p, a) - e(q, a) = v(p, q) .

By (c), V~-^v{pyq) is bounded in a punctured neighborhood of oo.
Moreover it is harmonic in S — V — {q} and v(q, q) = + oo. By S e 0σ,
we infer

(33) v(p, q) ^ min v(p, q)
ed

for every (p, q) e (S — V) x (S — V). Fix p arbitrarily in dV. Simi-
larly as above, the minimum principle applied to the harmonic function
q —> v(p, q) gives

(34) v(p, q) ^ min v(p, q)

for every (p, q) e (dV) x (S - V). From (33) and (34), it follows that

v(p, q) ^ min v(p, q)
(p,q)e(dV)X(dV)

for all (p, q) e (S — V) x (S — V). Again since v(p, q)(> — oo) is con-
tinuous on (δV) x (dV), we conclude that

A 3 ^ m i n v(p, q) >-<*>.
(P,q)e(dV)X(dV)

REFERENCES

1. L. V. Ahlfors and L. Sario, Riemann surfaces, Princeton Univ. Press, Princeton,
1960.
2. G. C. Evans, Potentials and positively infinite singularities of harmonic functions,
Mh. Math. u. Phys. 4 3 (1936), 419-424.
3. M. Heins, Lindelδfian maps, Ann. of Math. 62 (1955), 418-446.
4. J. L. Kelly, General Topology, Van Nostrand, Princeton, 1955.
5. Z. Kuramochi, Mass distributions on the ideal boundaries of abstract Riemann sur-
faces I, Osaka Math. J. 8 (1956), 119-137.
6. M. Nakai, On Evans potential, Proc. Japan Acad. 38 (1962), 624-629.
7. , Radon-Nikodym densities between harmonic measures on the ideal boundary
of an open Riemann surface, Nagoya Math. J. 27 (1965), 71-76.
8. , Potentials of Sario's kernel, J. d'Analyse Math. 17 (1966), 225-240.
9. , Sario's potentials and analytic mappings, Nagoya Math. J. 29 (1967), 93-101.
10. K. Noshiro, Contributions to the theory of singularities of analytic functions,
Japanese J. Math. 19 (1948), 299-327.
11. L. Sario, A linear operator method on arbitrary Riemann surfaces, Trans. Amer.
Math. Soc. 72 (1952), 281-295.
12. , Value distribution under analytic mappings of arbitrary Riemann sur-
faces, Acta Math. 109 (1963), 1-10.
13. , General value distribution theory, Nagoya Math. J. 25 (1963), 213-229.
14. , A theorem on mappings into Riemann surfaces of infinite genus, Trans.
Amer. Math. Soc. 117 (1965), 276-284.
15. L. Sario and K. Noshiro, Value Distribution Theory, Van Nostrand, Princeton,
1966.
16. H. Selberg, ϋber die ebenen Punktmengen von per Kapazitat Null., Avh. Norske



ON EVANS' KERNEL 137

Videnskaps-Akad. Oslo I Math.-Natur. (1937), No. 10.
17. M. Tsuji, Existence of a potential function with a prescribed singularity on any
Riemann surface, Tόhoku Math. J. 4 (1952), 54-68.

Received July 26, 1966. The work was sponsored by the U.S. Army Research
Office—Durham, Grant DA-AROD-31-124-G742, University of California, Los Angeles.

MATHEMATICAL INSTITUTE, NAGOYA UNIVERSITY

AND UNIVERSITY OF CALIFORNIA, LOS ANGELES






