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LIMITS IN CERTAIN CLASSES OF
ABSTRACT ALGEBRAS

GLorIA C. HEWITT

This paper is primarily concerned with the existence of
direct limits in certain classes of Boolean algebras. The
concepts of inverse and direct limits are defined relative to a
class 2 of abstract algebras. It is assumed that the algebras
in A are of the same type.

It is found that classes which are closed under such con-
structions as the formation of homomorphic images, subalge-
bras, free products and free unions do admit direct and inverse
limits. In fact, the existence of direct limits is closely related
to the existence of free products and dually, the existence of
inverse limits is related to the existence of free unions. Also
there is a relationship between the existence of inverse limits
and direct limits.

The proofs of these observations are omitted because they are
similar in construction to the proofs given for existence theorems in
[2, 3, 5].

Let 2 be a class of abstract algebras. Let A be a directed set
and let X = {X,|ac A} be a subset of 2A. A system <{X;II> con-
sisting of the family X and a family II of homomorphisms

8 X,— X; for each «a < B8 in 4,

is called a direct system over A if w% is the identity map of X, and
7}, = minh whenever a < 8 < 0. A system <{X.; T, >.e, consisting of
an algebra X. in A and a family of homomorphisms z.: X, — X.
such that if @ < B, wyné = &, is called the direct limit of <(X; II> if
the following extension property is satisfied:

(E) if ¢g.,:X,— Z is a family of homomorphisms such that if
a < Bin A, g7 = g,, where Z €2, then there is a unique homo-
morphism ¢: X.,— Z such that g, = g7, for all « in A.

The concepts of inverse system over A and inverse limit are dual to
that of direct system over A and direct limit respectively.

1. Closure properties.

THEOREM 1.1. If U is closed under free unmions and the for-
mation of subalgebras, them A is closed under inverse limits.
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As a converse to this theorem we have the following result.

THEOREM 1.2, Let {X,|ac A} be a subset of A. Suppose

(1) A is closed under tnverse limits;

(2) Any finite subset of {X,|aeA} admits a free union.
Assume that for each Be A, there exist an algebra X;eA and a
Sfamily of homomorphisms h.s: Xz — X, for all ae A with h,, onto.
Then {X,|ae A} admits a free union.

THEOREM 1.3. If U is closed under free products and the for-
mation of homomorphic images, then A is closed under direct limits.

Conversely,

THEOREM 1.4, Let {X,|ac A} be a subset of . Suppose

(1) U is closed under direct limits;

(2) Any finite subset of {X,|aec A} admits a free product.
Assume that for each B¢ A, there exist an algebra X;e U and a
family of homomorphisms h.z: X,— X; for all ae A with h,, one-
to-one. Then {X,|ae A} admits a free product.

THEOREM 1.5. Suppose A is closed under the formation of
homomorphic images, free products of finite subsets, and direct
limits. Then WA is closed under inverse limits.

Conversely,

THEOREM 1.6. Suppose U is closed under isomorphism, the for-
mation of subalgebras, inverse limits and free wunions of finite
subsets. Then U is closed under direct limits.

We observe here that if U is a class of abstract algebras which
is closed under the formation of homomorphic images, subalgebras,
direct unions and if every algebra of U contains a one element sub-
algebra, then every inverse (direct) system in 2 admits an inverse (a
direct) limit. It is easy to see that if the direct union is in 2, then
it is the free union. This fact, together with 1.1, gives that every
inverse system in 2 admits an inverse limit. Sikorski (in [7]) proved
that every subset of U has a free product, (see also [2], p. 88). This,
together with 1.3, yields that every direct system in 2 admits a
direct limit.

2. Direct limits in particular classes. For the results in this
section, we will need the following fact.
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LEMMA 2.1. Let {X.; T, .4 be a system having all the properties
of the definition of a direct limit except possibly the uniqueness of
the homomorphism g in (F). Assume that J{r.[X.]la e A} generates
Xo. Then g is unique.

Conversely, ©f the class U is closed wunder the formation of
subalgebras and {X.; T, p.eq 18 a dirvect limit, then J{m[X.]|ae A}
generates X..

The proof is omitted since it is like the proof of a corresponding
result in [2]. We observe that if the operations are finitary for the
algebras in the above lemma, then actually J{r, [X.]|ac 4} = X..

THEOREM 2.2. Let A be a class of algebras of type & with
finitary operations. Assume U is closed under the formation of
subalgebras. Let {L; Iy be a direct system over A in A. Suppose
every algebra L, satisfies a sentence of the form

vaeayR(z, y) ,

where R(x,y) is some conjunction of identities. Then if {Lw)Toaca
18 the direct limit of {L; II), L., also satisfies this sentence.

Proof. By Lemma 2.1, U{m.[L.]|ae A} = L.,. We notice that
for any finite set of elements «, ---, 2, in L., there exist an ac A
and elements ¥, --+,y, in L, such that =, (y;) =« forall i =1,... mn.
Moreover, if R(x, y) for « and y in L,, then R(7w.(x), 7.(¥)).

Let L and L’ be lattices containing 0 and 1. For a lattice
homomorphism k: L — L', assume, that 2(0) = 0 and (1) = 1.

COROLLARY 2.3. Let U be the class of all lattices and let B be
the class of complemented lattices. Let {L..;T,r.e, be the direct
limit in W of a direct system {L; Iy over A in B. Then {L.;T, Doy
18 the direct limit of {L; II) in B.

Proof. Let a,Be A. Choose é > a, 8. Then
To(0o) = Tsma(0,) = 7s(05) = msma(05) = 74(0;) .

It follows that L. has a zero element. Similarly L.. has a unit
element. Thus every L, and L. belong to the class € of lattices
which contain 0 and 1. Moreover, {L.; T,>.c, is the direct limit of
{L; II) in €. Every L, satisfies the sentence vaiy(xVy =1 and
2 Ay =0). By Theorem 2.2, L. satisfies this sentence and thus is
in B,
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COROLLARY 2.4. Let U be a class of lattices which contains the
class B of relatively complemented lattices. Assume that U is closed
under the formation of sublattices. Let {L; Iy be a direct system
over A im B. Then if {L.; T, ey is the direct limit of {L;IT) in
WA, (Le; Ty 1S the direct limit of {L; IT) in B.

Proof. Every L, satisfies the sentence Vavbvzay(b Az Ay =a
and a V¢ \Vy = 0b). Hence by Theorem 2.2, L., satisfies this sentence
and thus is in B.

For the remainder of this section, we consider the existence of
direct limits in certain classes of Boolean algebras. A Boolean algebra
is a complemented distributive lattice. Let B be a Boolean algebra
and let X(B) be the set of all prime ideals of B. X(B) can be
topologized in such a way that the set F(B) of all both open and
closed sets in X(B) forms a base for the topology. Moreover, F'(B)
is a field of sets which is isomorphic to B. If 7 is homomorphism
of B into a Boolean algebra C, then 7 [M] is a prime ideal of B,
where M is a prime ideal of C. Thus 7 induces a continuous mapping
7*: X(C) — X(B) by letting n*(M) = n~[M]. In fact, if Ue F(B),
(7*) U] = iwh~(U) where ¢ and & are the isomorphisms mapping C
onto F(C) and B onto F'(B) respectively.

It can be shown that 7* is one-to-one if and only if 7 is onto
and 7* is onto if and only if 7 is one-to-one.

X(B) is called the Stone space of B. For a more detailed dis-
cussion of this concept, see [6].

THEOREM 2.5. Let X be any abstract algebra with finitary
operations. Suppose Y = {X,|ac A} is a family of subalgebras of
X which is directed by inclusion and such that X = U.esX.. Let
A be a class of algebras with finitary operations which contains X
and X, for all acA. A s directed by a < B if and only if
X.cX;. For a <p, let @, and 7t be the inclusion maps of X,
into X and X, into X; respectively. Then <Y ;II> is a direct
system over A and {X; T, .e, 18 the direct limit of {Y;II), where
II = {78 |a < B}

Proof. Since a < B < implies X,cC Xy X;, it follows that
ninf = nd. Thus, (Y;II> is a direct system over A. Obviously
et = 7w, (@ < B). Since

X = UaGA Xav X = U{n-a[Xa] | aeA} .

If h,: X,— Z, where Zc ¥, is a family of homomorphisms such that
henf = he, then kg |y, = h, for a < B. Define h: X— Z as follows: for
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z € X, choose a, € A such that v € X, ; let h(x) = h,(x). If ve X.NX,,
choose 6e€ A such that ¢« <6 and B < d. Then zeX; and h,(x) =
hs(x) = hg(x) since hy|z, = h, and ;| P hg. This implies h is well
defined. Let @, -+-,2, be a sequence of elements of X. Then

h0n<x07 cey xn> = ka0n<x03 ctty mn>
= 0n<ha(x0)r ct ha(xn)> = 0n<h'(x0)9 tt k(mn)> y

where « is such that «, ---,2,¢X,. Thus h is a homomorphism.
If xeX,, then 7. (x) =« and h(x) = h.(x) implies hw, = h,. By 2.1,
I is unique. Hence {X; 7, >.e, is the direct limit of {Y; II).

COROLLARY 2.6. Let B be any Boolean algebra. Let B be a class
of Boolean algebras which contains B and the set B = {B.|ae A} of
all finite subalgebras of B. Let <, nt, and x, be defined as in 2.5.
Then A is directed by < and (B;II> is a direct system over A.
Moreover, {B; T,p.ey is the direct limit of {B; II).

Proof. For a,Bec A, let C be the subalgebra of B generated by
B,U Bs. Then C is finite and B,c C, B, C. Hence B is directed
by inclusion. Since for each be B, the subalgebra generated by {b}
is finite, B = U.es B,. Hence the result follows from 2.5.

Let B be a Boolean algebra. An element be B is an atom if
the ideal generated by —b (that is, the set of all ae B such that
a Ab=0) is maximal ideal. B is said to be atomic provided that
for each element a + 0 (a € B), there is an atom b < a. Observe that
every finite Boolean algebra is complete and atomic.

THEOREM 2.7. Let B,B and B be as in 2.6. Suppose that the
class B contains the class € of all complete, atomic Boolean algebras.
Then {B; ITy does mot admit a direct limit in € if B is not in €.

Proof. Suppose there is a Ce @ and mappings 7. B,— C such
that <C; T, e, is the direct limit of ¢(B;II>. Then there is a unique
homomorphism 4: B— C such that iz, = 7,. Let B, = {0,1}. Then
X(B,) contains one point, say x,. For all z e X(B), define A},: X(B,) —
X(B,) by hi(x,) = w¥(x) for each ac A. There exist unique homo-
morphisms h,: C — B, and h,: B— B, such that 2%, = h,, and h,7, =
he,. Also him, = h,%, = h,, implies k,i = h, by the uniqueness of %,.

(1) {m¥|ae A} separates points.

Let =y be in X(B). Considering # and y as prime ideals of B, there
is a be B such that b is in = and b is not in y. There is an ac A
such that 7,(b) = b. This implies ben;'[x] and b is not in 7;y].
However, ni(x) = n7'[x] and wi(y) = n;[y]. Hence wi(x) = wi(y).
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(2) =} is onto.
Let z, e X(B,). Since 7w} is onto, there is x € X(B) such that 7} (x) = x,.
Thus h¥,(2,) = ¢,. Now Tih* = hX,. Hence T¥(h*(x,)) = h.(x,) = x, and
7¥ is onto. This implies 7, is one-to-one and hence ¢ is one-to-one.

(38) If ye X(C), there exists e X(B) such that AX(x,) = y.
Let ye X(C). Define h*: X(B,) — X(C) by h*(x,) = y. Then mi(y) =
TE(Y) = Roiny(¥o).  Thus TEh* = hu,. By the uniqueness of 7,
h* = hi,.

(4) <* is one-to-one.
Let # +#y be in X(C). By (3), there exist x,, #,¢ X(B) such that
h*(xo) =g and A* (%) = y. Now @, = x,. If 7%(2) = 1*(y), wi(x,) = 73(w,)
for all a since

wH@) = hi (@) = Trhi (@) = wii* (@) = TE*(Y) = Tihi(w) = TE(@) .

By (1) this is impossible. Hence i*(x) = 1*(y).
(2) and (4) imply that ¢ is an isomorphism and hence B is iso-
morphic to C.

COROLLARY 2.8. Let B be a class of Boolean algebras such that
(1) B contains all finite Boolean algebras;
(2) B does not contain all Boolean algebras;
(3) any algebra isomorphic to an algebra of B is in B.
Then B is not closed under direct limits.

Proof. Let {B; IT> and {B; ©,p.e4 be as in 2.6 with B not in B,
Then, following the proof of 2.7, if there is an algebra Ce®B and
homomorphisms 7,: B, — C such that {C; 7T, ).e, is the direct limit of
{B; II», C is isomorphic to B. This is contrary to (3) and the
assumption that B is not in B.

THEOREM 2.9. Let B be a class of Boolean algebras which
contains the two element Boolean algebra, B,. Let {B;II> be a
direct system over A. Suppose

(1) there exists a family of homomorphisms w,. B,— B, where
Be B, such that if a < B, mmt = 7,

(2) U{m.B.]|axe A} generates B;

(8) if gu: B.— B, is a family of homomorphisms such that if
a < B, gsmt = g., then there exists a unique homomorphism g: B— B,
such that gz, = g..

Then {B; T, .eq s the direct limit of <B IT>.

Proof. Suppose h,: B,— C, where Ce®B, is a family of homo-
morphisms such that if a <pB, hen = h,. Let X(B,) = {x,}. For
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ce X(C), let ¢k: X(B,) — X(B,) be defined by g#(x,) = hi(c). Then
for every cc X(C) we have a family of homomorphisms ¢.,: B, — B,.
Since 8¢k (x,) = n8hi(c) = hi(c) = gi(x,), it follows that g:; 78 = g,..
By (3), there is a unique homomorphism g,.: B — B, such that ¢g,7, =
9.. Define p*: X(C)— X(B) by p*(c) = gX(x,). Now

TEpr(e) = migk () = gr.(%,) = hi(c) .

Thus pr, = h,. Since Y{z [B.]la e A} generates B, {17, 7' [F.]la e A}
generates F' as a Boolean algebra, where ¢: B— F and 4,: B,— F, are
the isomorphisms of B and B, onto the field of all both open and closed
subsets of X(B) and X(B,) respectively. Hence {i7,i;'[F.]|ac A} is a
subbasis for the topology. Let U,c F,. Then (z})[U,] = 7 2(U.).
Therefore, (p*)7'[im i (U] = () (@) [Ua] = (h3)7[U.] is open in
X(C). Thus p* is continuous. By 2.1, g#: B— C is unique. Hence
{B; Ttoyuea is the direct limit of (B; II).

COROLLARY 2.10. Let B be a class of Boolean algebras which con-
tains the two element Boolean algebra. Let {B; IT> be a direct system
over A. Suppose B satisfies (1) and (3) of 2.9. Assume also that B
15 closed under the formation of subalgebras. Then {B; T, ).cs S the
direct limit of {(B; [Ty if and only if U{w.[B.]|ac A} generates B.

Proof. Immediate from 2.1 and 2.9.
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