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REMARK ON A PROBLEM OF NIVEN AND ZUCKERMAN

R. T. BUMBY AND E. C. DADE

An integer of an algebraic number field K is called irre-
ducible if it has no proper integer divisors in K. Every integer
of K can be written as a product of irreducible integers,
usually in many different ways. Various problems have been
inspired by this lack of unique factorization. This paper
studies the question: When are the irreducible integers of K
determined by their norms? Attention is confined to the case
in which K is a quadratic field. With this assumption it is
possible to give a complete answer in terms of the ideal class
group of K and the nature of the units of K.

The fields sought in this problem are those quadratic fields K
(with N:K-^Q denoting the norm) which satisfy

Property N: If a is an irreducible integer of K and β is another
integer of K such that Na — Nβ, then β is also irreducible.

In many cases Property N can be studied by looking at the class
group H of K. However the study is complicated by the existence
of quadratic number fields K satisfying:

(1) K is real and Nε — +1, for every unit ε of K.

When K satisfies (1), we are forced to consider an extended class
group H' of K defined as follows:

Two nonzero fractional ideals α, b are said to be strongly equiva-
lent if α ίr 1 = (7) is a principal ideal generated by an element 7 of
positive norm. This is clearly an equivalence relation. The strong
equivalence classes form the group Hf under the usual multiplication.
There are two strong equivalence classes of principal ideals: the class
σ consisting of all principal ideals (a) such that one, and hence all,
generators of (a) have negative norm; and the identity class 1 of
principal ideals (a) all of whose generators have positive norm. Clearly
σ2 — 1, and the class group H is naturally isomorphic to H'/ζσy.

If K does not satisfy (1), notice that H', as defined above, and
the class group H coincide.

In any case, if p is any prime ideal of K and p' is the conjugate
prime ideal, then p-p' = (Np). But N(Np) - (Np)2 > 0. So

(2) p and pf lie in inverse strong equivalence classes.

Our main result is
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THEOREM. Let K be a quadratic number field. Then K satisfies
property N if and only if:

(a) H has exponent 2
or (b) H is odd
or (c) K satisfies (1) and the 2-Sylow subgroup of Hf is cyclic

Proof. First we assume that one of (a), (b), and (c) holds. If
K does not satisfy property N then there exist an irreducible integer
a and a reducible integer β such that Na = Nβ. Let (a) = pλ ρtf

where the p{ are prime ideals. Since Nβ = Na, the ideal (β) must
equal qx qt, where, for each ΐ, either q{ is pi9 or q, is p[. But
β = y.dy where 7, δ are nonunit integers. Hence we may assume:

(7) = qτ qs , (δ) = qs+1 qt , where 1 ^ s < t.

Let ê  be + 1 if q̂  = pi and —1 if q{ = pi. By (2) there are num-
bers ε, ζ in K such that:

( 3 ) (ε) = pi1 pi8, (ζ) = Plιγ $*, α%d (7), (δ) are strongly equiva-
lent to (ε), (ζ), respectively.

In case (a), $* is equivalent to pim Therefore (3) implies that
pλ . . . ρs = (γj) is a principal ideal. Clearly η is an integer and a proper
divisor of a, contradicting its irreducibility.

In any case, if e3 = ••• =e8, then pλ p8 is principal, and we
arrive at a contradiction. Therefore we may assume

( 4 ) ex — = er = + 1 , βr+1 = = es = — 1 , where 1 ^ r < s ,

α^id β s + 1 = = eu = + 1 , eu+1 — = et = — 1 , where s < u < t .

Define the integral ideals a,h by:

a = (pi pr)(J)8+1 £ j

b = (J) r + 1 ps)(pu+1 pt) .

By (4), both α and b are proper integral ideals. By (3), a-h"1 = (εζ>
is strongly equivalent to (7 δ) = (β). Since Nβ — iVlα, the ideals (α),
(/9) are strongly equivalent. Therefore a-h*1 is strongly equivalent to
(a) = a K. So:

( 5 ) b2 = (α.b)(α b-1)-1 = (λ), wftere ΛΓλ > 0.

In case (b), this implies that b is principal. Hence a has a proper
divisor.

In case (c), the only strong equivalence classes of orders dividing
2 are 1 and σ. By (5), b must lie in one of them. So it is principal,
and a has a proper divisor.
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In each of the three cases, a must have a proper divisor, contra-
dicting its irreducibility. So K must satisfy property N.

Now suppose that K satisfies property N. We first show that H'
cannot contain an element π satisfying:

( 6 ) π has even order 2n > 2 and, if K satisfies (1), then πn Φ σ.

Suppose such a π exists. By Dirichlet's theorem there exists a prime
ideal p in the class π (or, if K satisfies (1), in the class π<V>).
Evidently p2n = (a) is generated by an irreducible element a satisfying
Na = p2n, where p = Np. But p2n = N(pn), and, since τ& > 1, p n =
p pn~ι is reducible. This contradicts property ΛΓ. So no π satisfying
(6) can exist.

Suppose K does not satisfy (1). It follows immediately from (6)
that, if H has even order, then it must have exponent 2. So one of
(a) or (b) must hold.

Now we assume that K satisfies (1). Then Hr cannot contain
elements τ, p satisfying:

( 7) τ2m = σ, where m ^ 2, and p2 = 1, pi <V>.

Suppose r, /9 exist. Choose prime ideals pu p2 in the classes r<V>,
τ~ιpζσy, respectively. Then pi-pi lies in the strong equivalence class 1.
So it is a principal ideal (a), where Na = p\p\ = N{pxp2) and ^4 = Npif

i = 1, 2. By property ΛΓ, α must be reducible. One of its proper
divisors must generate an ideal from the list: pl9 p2, pi, prp2. But these
lie in the classes τ<<7>, τ^pζσy, r2<V>, pζσy, respectively. By (7), none
of these classes is (ay. So none of the ideals in our list can be
principal. This contradiction shows that r, p cannot exist.

Now we can finish the proof. Assume that the 2-Sylow subgroup
S of Hf is not cyclic. Choose an element r e S of largest possible
order such that σe<V>. Then <Y> is a direct factor of S. Let S' be
a complementary subgroup. Since S' Π </?> = {1}, no element of Sf can
have order greater than 2 (by (6)). Sf must contain some element
p Φ 1, since S is not cyclic. If H' contains an element ω Φ 1 of odd
order, then π = p-ω satisfies (6), which is impossible. So H' = S is
a 2-group. If σ = τ2 m, where m ^ 2, then τ, |0 satisfy (7), which is
impossible. So σ = τ2 or r. Therefore

H = S/<σ> = S' x (<y>/<tf» has exponent 2.

We conclude that, if K satisfies (1) and property N, then (a) or
(c) must hold.

A simple modification of the above argument shows that the irre-
ducible integers a of a quadratic number field K are determined by
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the absolute values | Na | of their norms if and only if the class group
H is of type (a) or (b) in the theorem above.

The problem considered in this paper was raised by Niven and
Zuckerman in [2]. A more general form of this problem was treated
by other methods in [1].
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