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ERGODIC PROPERTIES OF NONNEGATIVE
MATRICES-I

D. VERE-JONES

This paper contains an attempt to develop for discrete
semigroups of infinite order matrices with nonnegative elements
a simple theory analogous to the Perron-Frobenius theory of
finite matrices. It is assumed throughout that the matrix is
irreducible, but some consideration is given to the periodic
case. The main topics considered are

( i ) nonnegative solutions to the inequalities

^xj ( r > 0 )

(ii) nonnegative solutions to the inequalities

r 2 χktkj ^ Xj (r > 0)

(iii) the limiting behaviour of sums Pj(n; r) = ^
as n —> oo? where {Uk} is arbitrary nonnegative vector. An
extensive use is made of generating function techniques.

It is well-known that an n x n matrix with positive elements ti5

has an eigenvalue with very special properties: it is positive, greater
in modulus than all other eigenvalues, a simple root of the character-
istic equation, and associated with unique positive eigenvectors for
both the original matrix and its transpose. In the present paper we
shall develop some related results when the matrix is infinite (of
denumerable order). Although this work was suggested by recent
results for Markov chains, we shall not here make the assumption
that the matrix is stochastic (i.e. that Σjti3> = 1). Nor shall we place
any restrictions on the matrix of the type that it should act as a bounded
linear operator on one of the standard sequence spaces. Thus our results
are not directly covered by recent extensions of the Perron-Frobenius
theorem to linear operators leaving invariant a positive cone in a
normed linear space; the relation of our results to these theorems
will be discussed in a sequel (part II of the present paper).

It is convenient to relax the requirements that the matrix elements
be strictly positive, and to suppose only that they are nonnegative and
that the matrix is irreducible. If we also assume (as we shall throu-
ghout) that the matrix iterates (Tn = {tif}) are defined and finite for
n = 2, 3, , the condition of irreducibility is equivalent to the condi-
tion that for each pair of indices i, j there exists an integer n > 0
(depending in general on i and j) such that tlf > 0.

As in the Markov chain case the weakening from matrices with
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positive elements to matrices that are irreducible and have nonnegative
elements, introduces the possibility that the set of indices /, labelling
the matrix entries, may split into a finite number of subclasses

The integer d can be obtained as the H.C.F. of all integers n for
which t{il] is nonzero. The subclasses Ca are characterized by the
property that if i e Ca and j eCβ, the only nonzero terms in the sequence
{tlf} occur when n falls into a given residue class (modulo d) determined
by a and β. Moreover, the labelling can (and will) be imposed in such
a way that

t\f Φ 0 only if n = (a - β) mod d .

These assertions are a simple consequence of irreducibility, and
are quite independent of whether the matrix is stochastic. We shall
refer to the subclasses Ca as the periodic subclasses of J, and the
integer d as the period of the matrix.

A fundamental result for irreducible matrices may be described
now as follows.

THEOREM A. If T is an irreducible matrix with nonnegative
elements, the quantities

(where n tends to infinity through the residue class, modulo d, for
which the terms in the sequence are not identically zero) exist for
all i, j eJ, and have a common value say XM = 1/R.

For i — j , the existence of the limit follows directly from the
inequality

and the remaining assertions are a fairly straightforward consequence
of irreducibility (Kingman [8]).

It is clear that the quantity R is the common radius of convergence
of the generating functions Ti:j(z) = 2~=0 tlfz

n (where tf = δ} (Kronecker
delta)). Since zTio(z) is nothing other than the i-j element of the
resolvent operator for T (with z = 1/λ—see equation (6)), it follows
easily that when T is finite-dimensional, XM — 1/R must be the familiar
maximum eigenvalue. When the matrix is infinite-dimensional, however,
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this interpretation may break down. Thus the matrix may not even
define a bounded operator on the particular sequence space in which
we are interested. Alternatively, it may define an operator on several
such spaces, but its spectrum in these spaces may vary, and in general
it will not be true that the spectral radius is equal to 1/R (see the
discussion in Vere-Jones, [18]).

The aim of the present paper is to investigate the extent to which
the Perron-Frobenius theorem holds true if we regard 1/R as the
natural analogue of the maximum eigenvalue for infinite-dimensional
matrices, while making no assumptions as to whether the matrix
defines a bounded operator. The structure of the paper is as follows.
In the next two sections we collect some preliminary results. In §4
and § 5 we consider nonnegative solutions to the two sets of inequ-
alities

(la) r^Xitv^Xj (jeJ)
i

(lb) r Σ ivy, ^Vi (ie J)
3

(2a) r X x^j ^ % (j e J)
i

(2b) r Σ UM ^Vi (ie J)
3

where 0 < r < CXD. The importance of these inequalities in treating
the finite case is evident from, say, the discussion of Wielandt ([20]);
in the infinite case they have been discussed by Sidak ([12]-[14]),
Pruitt ([10]) and also in the author's thesis ([16]). Although some
of the results we shall obtain here are covered by these writers, the
techniques we shall use are different, and lead to some lemmas that
will be needed in the later sections; it also seems worthwhile to present
a unified treatment.

In § 6 we turn to a problem which has no real analogue in the finite-
dimensional case: to determine conditions on the sequences {%f}, {Vi}
sufficient to ensure that the sums

Qi(n; r) = X ttfv/r*
3

and

S(n; r) = Σ Σ ufo^r*
i 3

exhibit the same limiting behaviour as the individual sequences (tli?rn).
Some results in this direction were proved by Kingman ([8]), but the
theorems we shall develop here appear to be essentially new, and lead
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to some new applications to Markov chains (see [11], [19]).
Finally, in §7, we apply the earlier results to discussing the ex-

istence and uniqueness of eigenvectors on the boundary of the disc
I z I = 1/jβ, recovering in particular the conclusions of the Perron-
Frobenius theorem for finite-dimensional matrices.

2* Definitions and preliminary results* In this section we
collect together, with a brief indication of their proofs, some prelimin-
ary theorems on the properties of infinite, nonnegative matrices. A
fuller discussion, and some further results, will be found in the author's
earlier paper [17].

The following extension of Theorem A is also a consequence of
irreducibility.

THEOREM B. For any real value of r > 0, and all i, j e J,
(i) the series J^n t\frn are either all convergent or all divergent',
(ii) as n—>oo through the appropriate residue class, either all

or none of the sequences {tlfrn} tend to zero.

It is clear from the definition of R that in fact the series

must be convergent for r < R, and divergent for r > Rf so that the
classification implied by this theorem is of nontrivial significance only
when r = R. These remarks prompt the following definitions.

(i) The matrix; T is R-transient or R-recurrent according as
the series J^n t\fRn are convergent or divergent;

(ii) an J2-recurrent matrix is R-null or R-positive according as
all or none of the sequences {t\fRn} tend to zero.

The quantity R defined by Theorem A will be called the conver-
gence parameter of the matrix T, and its reciprocal the convergence
norm (see [17]).

From the definition above the iϋ-positive case might seem to include
a wide variety of possible behaviours; in fact (see Theorem D below)
it exhibits the most regular behaviour of all three groups.

Note that the convergence parameter of the stochastic matrix as-
sociated with a recurrent Markov chain is equal to unity, and that
the matrix is "1-positive" or "1-null" according as the Markov chain
is positive recurrent or null recurrent in the usual sense. In a
transient Markov chain, however, the convergence parameter may be
greater than unity; Kingman has called this the case of "exponential
transience".

One slight extension of the above terminology will be useful. If
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it is given that the series J^n t\frn are convergent, but it is not
specified that r = R, we shall say that the matrix is r-transient (using
a lower case r). This will allow us to condense the phrase "either
r < R or r = R and the matrix is ^-transient" into the phrase "the
matrix is r-transient".

In order to make a deeper study of the behaviour described in the
preceding theorems, it is necessary to appeal to renewal-type argu-
ments. Exactly as in the probability case, the stage is set for such
arguments by introducing analogues to "first-entrance" and "last-exit"
probabilities. In the general case, these can be defined by repeated
summation. We set / $ = 0, / # = tiό and define recursively

J ii — ZΛ τikj kj yro — 1 , Δ, •; ,
k^j

similarly, we set 1$ = 0, V$ = tiά and

«5+1> = Σ W ί w (n = l , 2 f . . . ) .
kφi

The exact duality between these two sets of quantities is some-
what obscured in the probability case by the asymmetrical condition

Since it is clear that flf ^ t\f, 1$ ^t$, the generating functions
Fait) = Σn flfz* and Liά(z) = ^ n l[fzn are certainly convergent for
I 2 I < R, and may in fact be convergent over wider regions.

Of the many important identities connecting these and similar
quantities, we note

Fκ(z) = Lti(z)

( 3) T«(z) = 1/(1 - Fu(z)) = 1/(1 - Lu(z))

( 4 ) Tφ) = Td^Lφ) - Fis(z)TSi(z) (ί Φ j) .

The equations are given in the first place for \z\ < iϋ, but may
be extended to any region for which either side has an analytic con-
tinuation. It should also be noted that the sequences {flf} and {l\f}
have the same periodic behaviour as the corresponding sequence {tlf}.

Standard renewal arguments (in particular the Erdδs-Feller-Pollard
theorem; see Chung, [3] p. 27) applied to equation 3 now yield the
following deeper characterization of behaviour at the point z = R.

THEOREM C. For 0 ^ r ^ R, Fi{(r) <£ 1, with strict inequality
except, perhaps, when r = R. Moreover,

(i) the series Σntu]Rn converges or diverges according as

FU(R) < 1 or FU(R) = 1
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(ii) even if the series Σ tWR* is divergent, its terms are bounded,
and the sequence {t%d)Rnd} is convergent, with

lim t%d)Rnd = d/RF'u(R) ,

(where the limit is to be taken as zero if the ifirst moment'

μi = Σ nf$R*

is infinite).

From this theorem we have the following alternative criteria for
the matrix properties defined earlier:

(i) the matrix is R-transient or iϋ-recurrent according as

Fti(R) < 1 or F«(R) = 1

(ii) an j?~recurrent matrix is i?-positive or i?-null according as
FU(R)< oo, or FU(R)= <*>.

It follows, of course, from the "solidarity" behaviour described by
the two earlier theorems, that relationships such as Fra(R) < ©o must
hold either for all values of i or for none, so that, just as with the
previous criteria, it is sufficient to investigate them for a single index.

We shall also need the following partial converse to the first
statement of the theorem.

LEMMA 2.1. // the series ^nfu
]rn is convergent, and Fu(r) <; 1,

then r <̂  R.

Proof. Since R is a singularity of Tu(z) it is either a singul-
arity of Fu(z) or a point at which Fu(z) = 1. The monotonic character
of Fn(x), taken with the assumptions of the lemma, precludes either
of these circumstances from occurring at any point x in the range
0 < x < r.

For the sake of completeness, we include a final theorem characteriz-
ing in more detail the behaviour of i?-positive matrices (most of these
properties will be recapitulated in the sequel).

THEOREM D. // T is R-positive, there exist unique, positive, left
and right eigenvectors for the eigenvalue 1/R, say {ak}, {βk} respec-
tively, such that 2 akβk < ooy and as n—+ °° through the appropriate
residue class,

The left and right eigenvectors figuring in this theorem can be
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shown to be proportional to the vectors {Lik(R)} (i fixed), {Fkj(R)}
(j fixed), respectively. The multiplicative form of the limit follows
from a corresponding multiplicative property for these quantities, and
can be viewed as a statement of the fact that the C-l limit matrix
is idempotent of unit rank.

3* Basic relations satisfied by the generating functions Tiό(z).
If the matrix T is finite dimensional or defines a bounded operator,
the Neumann expansion for the resolvent operator of T,

( 6 ) Rλ(T) = (XI - T)-1 = I/X + T/λ2 + T2/λ3 + .

(which is valid for | X | greater than the spectral radius of T) shows
that for small values of z we can identify the generating function
zTij(z) with the i-j element of Rllz(T). The use of these functions
therefore goes beyond the desire for a convenient tool; they embody
many of the most striking algebraic and analytic properties of the
matrix itself.

Even if the matrix T does not define an operator, the matrix R(z)
with elements Tiά(z) is certainly defined for \z\ < R, and within this
disc we might expect it to exhibit many properties of the resolvent
operator. This expectation is well fulfilled, as the next two lemmas
show. The first asserts that the matrix R(z) satisfies the defining
equations R(z)[I — zT] = / = [ / — zT]R(z), and the second that it
satisfies the "resolvent equation"

zxR(zx) - z2R(z2) = (z± - z2)R(z1)R(z2) .

LEMMa 3.1. // I z I ̂  r, and T is r-transient, the quantities
Tij(z) satisfy the identities

( 7 ) Tiά{z) = z Σ Tίk(z)tkj + δ) (i fixed, all j e J)
k

( 8 ) TiS(z) = zΣitik Tkj(z) + 3) (j fixed, all i e J)

Proof. The identities (7) can be obtained formally by multiply-
ing by zn and summing over the defining equations

Taking z = r, the convergence of the series on the right of (7), and
the equality of the two sides of this equation, follow from the con-
vergence of the series defining Tiό{r) and the fact that all terms in
the sum are nonnegative. The identity can then be extended onto the
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disc I z I ̂  r by absolute convergence. The dual equations are proved
in an analogous manner.

LEMMA 3.2. If zλ, z21 and z all lie within the disc \z\ < R, then

( 9 ) (zλ - z2) Σ TMTufa) = z1Tij(z1) - z2Ti3 (z2). (all ieJJeJ)

(10) Σ Tik(z)Tkj(z) = Tis(z) + zT'iS{z) (all ieJJeJ) .

Proof. To each value of n (n — 0,1, 2, •) corresponds an equation

4-{r)-j.{n—r)c,r/yn—r +{n) SΓ^ ~r,
. . ^ik^kj 6χώ2 — iij J^όj*

k r—0 r—0

An argument similar to that in the previous lemma shows that
the series obtained by summing these equations over n are absolutely
convergent whenever | zλ \ < R and \z2\ < R. Equation (10) follows on
writing z1 = z2 = z, and equation (9) on substituting

2-ir=o ZχZ2 — \Zλ — Z2) \Zλ -f- Z2 )

in the right hand expression, and multiplying through by (zλ — z2).
There is a difficulty about extending these identities onto the

boundary of the disc | z \ ̂  R even when T is ϋJ-transient, because the
derivative on the right side of (10) may be infinite. When it is finite,
however, the equations may be extended as in the previous lemma.

In general, it is not possible to assert that the solutions to the
equations

(Π)

(12)

άj — Oj

V< = *•

+

+

z y, χkt
k

z v ί t t ] y* (i

fixed,

fixed,

all j

all i

eJ)

eJ)

given by Lemma 3.1 are unique (although they may be so). Such an
assertion would imply there were no solutions to the corresponding
homogeneous equations, but this is in general false. It is not even
true that equations (11) and (12) have unique nonnegative solutions
when z is real and positive, for the solutions to the homogeneous
equations may themselves be nonnegative.

Nevertheless, the solutions Ti5(z) possess a number of distinguish-
ing properties. For the present, we shall prove only the minimality
property stated in the lemma below. A number of further pro-
perties follows from the discussion of the homogeneous equations in
§ 5; we mention in particular, that for real positive values r of z,
the vectors {xk = Tik(r)} and {yk = Tkj(r)} are the only joint solutions
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of (11) and (12), respectively, satisfying the condition Σkxkyk < ^.

LEMMA 3.3. // {xk} is a nonnegative solution of (11) with z — r,
then T is r-transient, and xk ^ Tik(r).

Proof. We show by induction that if a solution exists, then for
all jeJ and for N = 0,1, 2, . ., xό ^ ΣJ1O t$rn. For N = 0 this
follows immediately from (11) and the assumption x3- ̂  0. Then if the
induction hypothesis holds true for N, we obtain on substituting
χj = Σin=otifrn in the right hand side of (11),

Thus the induction holds for all N, and letting N tend to infinity we
see first that the series on the right is convergent (so that T is
necessarily r-transient), and then that x3- ̂  Ti3-(r).

There is, of course, a dual result for equation (12), but here, as
in the sequel, we shall omit an explicit statement of the dual result
when it is sufficiently obvious.

4* Subinvariant vectors* For this section and the greater part
of § 5 we shall restrict attention to nonnegative vectors. A nonnega-
tive solution to the inequalities (1) will be called a subinvariant
vector, or a left (or right) r-subinvariant vector when it is desired
to specify the inequality more precisely.

It is a trivial consequence of Lemma 3.1 that r-subinvariant vectors
exist whenever the matrix is r-transient; in this case, it is sufficient
to take xk = Tik(r), where i is fixed but arbitrary. Moreover, the
subinvariant vectors obtained in this way are "almost invariant", in
the sense that strict inequality holds for just one component (the ΐ'th);
from this it follows that no one such vector can be expressed as a
finite linear combination of the others. In fact, therefore, when T is
r-transient there are at least as many linearly independent left r-sub-
invariant vectors as there are values of i. Exactly similar remarks
apply to the right equations.

In order to obtain a clearer picture of the behaviour of these
solutions as r approaches the radius of convergence R, it is convenient
to rewrite the identities of the previous section in terms of the func-
tions Fi3-(z) and Li3>{z) defined in § 3. For example, on substituting
for Ti3 (z) from (3) and (4), equation (7) takes the form

(13) Lφ) = zΣ Lίk(z)tkj + ztti(l - Lu(z)) (i fixed, j e J)
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while (8) becomes

(14) F i d ( z ) = z Σ t i k F k j ( z ) + z t { j ( l - F3Ί(z)) (j f i x e d , i e J ) .

Now put z = r and let r ] R in these equations. Taking i = j in
equation (13), we see first that since LU(R) <g 1 (Theorem C), the
quantities Lik(R) must be finite for all values of k for which tki > 0.
Using irreducibility, it is easy to show that in fact this property ex-
tends to all values of k. Then it is evident that the quantities xk =
Lik(R) will form a left R-invariant vector (a solution to the strict
equations corresponding to the inequalities (la), with r = R) if, and
only if, the matrix is i?-recurrent.

It is now necessary to discuss whether the solutions obtained in
this way are unique. At this stage it is possible to note that if T is
i?-recurrent, the matrix P, with elements

Pij = RtidF, k0(R)/Fik0(R) (k0 fixed) ,

is stochastic, and to appeal to the corresponding theorems for Markov
chains, which can often be established by probabilistic arguments. We
shall prefer, however, to give a direct analytical proof, based on the
lemma below, from which the Markov chain results follow as coroll-
aries.

LEMMA 4.1. If for some r > 0, the left inequalities r^kxktkj ^ x5

have a nonnegative, nonzero solution {Xj} then for all i,jeJ, x{ > 0,
the series y\n l\frn are convergent, and

(15) Xj/Xi ^ L{j(r) .

A similar result holds for the corresponding right inequalities,
with Fjiir) in place of Li:j(r).

Proof. We consider only the left inequalities. Since the solution
is nonzero, it has at least one nonzero component, say xio, and there
will be no loss of generality in supposing xiQ = 1. Imitating the proof
of Lemma 3.3, we easily prove by induction that for each N and all
j e J, Xj ̂  ]>̂ Lo ϊ $ r Λ ^ s ^ ^ ° ° > th e series defining LiQJ(r) is con-
vergent for each j and x3- ^ Lio3-(r) > 0, the strict inequality following
from irreducibility. The proof is completed by noting that it is now
legitimate to replace ί0 by any arbitrary value of i.

For Markov chains, the corresponding inequality was noted by
Chung ([3] p. 38).

COROLLARY 1. There are no nontrivial r-subinvariant vectors
for r > R.
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Proof. For any value of r for which such a vector exists, we
have, on taking i = j in (15), that the series defining Lu(r) is con-
vergent, and Lair) ^ 1. The corollary follows from Lemma 2.1.

COROLLARY 2. If the matrix is R-recurrent, there are no R-
subinvariant vectors which are not R-invariant, and the nonnegative
R-invariant vectors are unique up to constant factors.

Proof. Let {xj be any nonzero, i?-subinvariant vector. Then

) tki ^ RΣ Ljk(R)tkj = L3j(R) = 1

which shows that whenever tkj > 0 the inequality xk/x3 Ξ> Ljk(R) of
the lemma must in fact be an equality. Since similar inequalities hold
with tkj replaced by tι

k

nj, it follows from irreducibility that in fact
xk/xj = Ljk(R) for all j , k e J. Thus the vector {xk} is proportional to
the vector {Ljk(R)} (j fixed), and this shows both that it is strictly
invariant, and that the invariant vector is unique up to constant
factors. (We consider here only nonnegative vectors: some criteria
which apply also to complex vectors will be described at the end of
§5).

REMARK. The reader who is familiar with the probability con-
text will note that in the case of a stochastic matrix this proof re-
places Derman's proof of uniqueness using the "time-reversed" chain
(see [4]). A careful scrutiny of Derman's proof shows that it hinges
on the equality F{j (1) = 1 for a recurrent Markov chain, which, from a
purely analytical point of view, can be regarded as a special case of
the preceding argument (put x5 — 1 and use the right equations).
Thus both proofs can be brought back to the minimality property.
The use of the time-reversed chain is essentially a device for show-
ing that the property Fiά(ΐ) = 1 is equivalent to uniqueness, and for
transferring the discussion from right to left invariant vectors.

COROLLARY 3. For < R, the quantities Li:i(r) are finite, and

Lik(r)Lkj(r) ^ Liό{r)

with equality if r — R and the matrix is R-recurrent.

Proof. The finiteness of the L{j(r) was discussed in the preamble
to Lemma 4.1. It is evident from equation (13) that for fixed i, the
Lίk(r) form an r-subinvariant vector, and the corollary follows on
substituting xk = Lik(r) in (15), and from Corollary 2 above.

By extending the arguments in Vere-Jones [17], it is possible to
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show that the inequality in Corollary 3 is strict if the matrix is r-
transient.

COROLLARY 4. The following criteria define the parameter R
and the property of r-transience (and hence of r-recurrence) in terms
of solutions to inequalities (1):

Criterion I. The value R is the greatest value of r for which
there exist nonzero r-subinvariant vectors.

Criterion II. The matrix is r-transient if and only if the non-
zero r-subinvariant vectors are not unique (up to constant factors).

Criterion II appears to be the best that is available in general.
If, however, (as in the stochastic case) there exists a nontrivial right
r-invariant vector, say {yk}, and the vector is normalized so that y{ = 1,
the quantities zk — yk — Fki(r) satisfy the equalities

r

J b 6 Σ ***** = zi UeJ- W)

In this case, therefore, a necessary condition for the matrix to
be r-transient is that these equations have a nonzero, nonnegative
solution with zk ^ yk. The condition is also sufficient, for if such a
solution exists, the quantities θk = yk — zk (k Φ i), 04 = yt = 1, form a
second r-subinvariant vector for T, which is therefore r-transient by
criterion II.

This property corresponds to a well-known criterion for the
transience of a Markov chain (see Feller [5], p. 365).

To complete this section, we summarize the results concerning
subinvariant vectors in the form of a single theorem (cf. Pruitt, [10],
Theorem 1).

THEOREM 4.1. If the matrix T is r-transient and infinite
dimensional, there are infinitely many linearly independent
r-subinvariant vectors. If the matrix is R-recurrent, there are
unique left and right R-subinvariant vectors which are in fact R-
invariant and proportional to the vectors {L{j(R)} (i fixed, jeJ),
{Fi:j(R)} (j fixed, ieJ) respectively. If r > R, there are no non-
trivial r-subinvariant vectors.

5* Superinvariant vectors* By analogy with the preceding
section, we call a nonnegative solution to the inequalities (2) a super-
invariant vector, or, when more precision is needed, a left (or right)
r-superinvariant vector.
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Except for finite-dimensional matrices, the theory of superinvariant
vectors does not form a precise mirror-image of the discussion in the
preceding section. Consider first the region 0 < r ^ R. The "mirror-
image" result would be that there were no r-superinvariant solutions in
this region. This, however, is not true in general. Interesting counter-
examples are provided by the branching-process matrices (see [11]),
which possess nonnegative eigenvectors for all values in the range
1 <L r <; R. In general we can only prove results for superinvariant
vectors subject to certain restrictions. The nature of these restric-
tions will become clear from the lemma below.

LEMMA 5.1. If T is r--transient, there are no nonzero left r-
superinvariant vectors satisfying the condition ΣkχkTkj(r) < °o for
any j .

Proof. Suppose that {xk} is a nonnegative r-superinvariant vector
satisfying the condition ^kxkTkj{r) < oo for some j . Then we have

r Σ χktkj ^ a?,-
k

and for n — 1, 2,

rn+1

Σ AT Σ
k k

Summing over n, from 0 to N, we obtain

/N+l \ / N \
Xk[ 2-1 lkj T = ^ i T 2 J

 Xk[ 2-i lkj r j
k \n=0 J k \n=Q J

As N —•> co y both of the sums in this inequality tend to the same
finite, limit Σ Λ ^ C ^ S O that xό ^ 0, and hence xά = 0.

To complete the proof it is sufficient to show that if the sum
ΣkχkTkj(r) is convergent for some value of j , then it must necessarily
converge for all values of j . This follows from irreducibility after
summing over equations (8), and we omit the details.

COROLLARY. If T is r'-transient, there are no nonzero left r-
superinvariant vectors satisfying the condition Σ χkβk < °° for any
nonzero right r-subinvariant vector {βk}.

Proof. From Lemma 4.1, {βk} must be strictly positive, and so
there is no loss of generality in taking, say, βι = 1, so that βk ^ Fki(r)
for all k. Since also Tki(r) = Fki(r)/(1 - Fu(r)) if T is r-transient
(equations (3) and (4)), it follows that Σ& χkβk < °° implies
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and so the corollary follows directly from the lemma.
Since the vector {Tki(r)} (i fixed) is itself an r-subinvariant vector,

the lemma and the corollary are in fact equivalent.
The next stage in the discussion is to consider the case when

r = R and T is iϋ-recurrent. Here we follow Sidak [12].

LEMMA 5.2. // {yk} is any nonzero, right r-subinvariant vector
and {xk} is a left r-superinvariant vector such that Σ * xkyk < co f

then either {xk} is the zero vector, or both {xk} and {yk} are positive
and strictly r-invariant.

Proof. Consider the inequalities

ΣχkVk ^ ^ Σ % Σ t k h V h = rΣVhΣχktkh ^ ΣχhVh .
k k h h k h

Since the extreme members are equal, and yh > 0 for all h (Lemma
4.1), we must have r^kxktkh = xh for all h. If {xh} is not the zero
vector, it must then be positive, and applying the same argument
again, r Σ» tkhyh = yk for all k.

COROLLARY. Suppose that T is R-recurrent, and {ak}, {βk} denote
respectively the unique left and right R-invariant vectors specified
in Theorem 4.1. Then there are no nontrivial left R-superinvariant
vectors satisfying the condition ^kxkβk<

ooi except, perhaps, the
vector xk = ak. Similarly, there are no nontrivial right R-super-
invariant vectors satisfying the condition Σ akVk < °° except, perhaps,
the vector yk — βk.

The proof follows directly from the lemma above and the fact
that when T is lϋ-recurrent the left and right iϋ-invariant vectors
are unique.

In fact, the only case when there exist nontrivial eigenvectors
satisfying conditions such as Σ& χkfik < °° is when T is iϋ-positive.
This proposition follows from the next lemma and its corollaries.

LEMMA 5.3. A necessary and sufficient condition for the con-
vergence of the series ^kLik(R)Fkj{R) is that one (and hence all)
of the first moments Ffa(R) should be finite.

Proof. Consider first the case i = j. Replacing the terms in
equation (10) by the appropriate expressions involving Fik(z) and Lik(z),
we obtain

(16) Σ Lik(z)Fki(z) = zFIAz) - Fu(z)[l - Fu(z)] .
k
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Putting z = r (real and positive) and letting r j R, the terms in the
left-hand sum are individually finite, and from positivity the series
converges or diverges according as the right side converges or di-
verges. Since FU(R) ̂  1, this is equivalent to the condition of the
lemma. To complete the proof, it is sufficient to show that as i and
j vary, the series ^k Lik(R)Fkj(R) converge or diverge together.
This again follows from irreducibility (either from (13)-(14), or by
using the inequalities in Corollary 3 to Lemma 4.1) and we omit the
details.

COROLLARY. // T is R-recurrent, the series 2 * akβk converges
if and only if T is R-positive, and in this case, as n—+ oo through
the appropriate residue class,

(17) UmttfR* = dβiai/Σakβk.
k

Proof. The first statement of the corollary follows directly from
the lemma, for when T is iϋ-recurrent we can put ak\a{ = Lik(R) and
βk/βi = Fki(R), and the first moment Fύ(R) is finite if and only if T
is iϋ-positive.

Further, since FU(R) = 1 if T is J?-recurrent we have from (16),
RF'τi(R) = Σik akβk/aiβi- (17) now follows from Theorem C when i = j .
For i Φ j , a simple Abelian argument applied to (4) yields

lim t^+ι/R{nd+ί/) = L{j(R) lim t%d)Rnd ,

where the integer v, 1 <Ξ v < d is determined by the periodic subcl-
asses of i and j . Substituting Liό{R) = a^eXi we obtain the general
case of (17). This concludes the proof of the corollary.

Note that we have effectively proved the following condition for
iϋ-positivity:

Criterion III. A necessary and sufficient condition to ensure
that r = R and that T be R-positive is the existence of nonzero, non-
negative left and right r-invariant vectors {ak} and {βk} such that

Indeed, we know from Theorem 4.1 that if such vectors exist,
then r ^ R. On the other hand, it follows from Lemma 5.1 that T
cannot be r-transient, so that we must have r = R and T iϋ-recurrent;
then the fact that T is ^-positive follows from the corollary above.
Note that by Lemma 5.2, the condition of the criterion can be we-
akened to allow one of the vectors to be r-subinvariant and the other
r-super in variant.

Taken in conjunction with criteria I and II following Lemma 4.1,
this result shows that all the matrix properties introduced in the
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first section in terms of convergence behaviour, can also be defined in
terms of solutions to the inequalities (1) and (2).

Finally, we consider the existence of r-superinvariant vectors for
r > R. In this case, by Lemma 2.1, we can always choose an integer
N such that Xf 1$rn > 1. It is now easy to construct an r-super-
invariant vector. Put χi = l,χk = ^ J = 1 V$rn (k Φ i). Then we have

Σ <M*y = rtis + r X ( x lίΐrn)tkS = Σ* l\frn ^ xj (j Φ
k k=£ί \n=l /

JV+1

r V Ύ t — V 7 <*>/>•* \ 1 — rγ
k w = l

and

Since Σ* ΪSΉyίΛ) ^ Σ* S ^ W ^ R~nFiό{R) < - , the vectors con-
structed in this way certainly satisfy the condition γ,k xkβk < oo,
where βk = Fkj(R). It also seems certain that when T is infinite-
dimensional, they must include an infinite set of linearly independent
elements. However, I have not been able to find a proof of this
assertion.

The results we have obtained are summarized in the following
theorem and its corollary.

THEOREM 5.1. // T is r-transient, there are no nonzero left r-super-
invariant vectors satisfying the condition Σ& χkβk < °° for any nonzero
right r-subinvariant vector {βk}. If T is R-recurrent, βk = Fkj(R)
(j fixed, keJ),ak = Lik(R) (i fixed, keJ), there are no nonzero left
R-superinvariant vectors satisfying the condition Σ χiβk < °°, except
the solution xk — ak when T is R-positive. Corresponding dual re-
sults hold with the roles of left and right vectors interchanged,
r-superinvariant vectors exist for all values of r such that r > R.

COROLLARY. Let βk = Fkj(R) (j fixed, k e J) . Then there exist
left r-superinvariant vectors satisfying the condition Σ χuβk < °° if
and only if either r > R or r = R and T is R-positive.

We shall not enter into any detailed discussion of the difficult
problem of determining when there exist r-invariant or r-superinvari-
ant vectors for r <; R, which do not satisfy the condition of the
theorem.1 In this regard, Pruitt [10] has remarked that the criterion
developed by Harris and Veech [6], [15] for the existence of station-
ary measures in a transient Markov chain carries over, mutatis

1 Note added in proof. For a discussion in terms of boundary theory, see Mrs.
S. C. Moy "Ergodic properties of expectation matrices" (to appear in J. Math.
Mech.). This paper also gives a new proof of some of the results of [17] (including
the periodic case) and some results along the lines of §6 of the present paper.
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mutandis, to the context of any r-transient matrix. We mention only
that, in the case there exist no r-invariant vectors, there may exist
no r-superinvariant vectors either, and that in all examples known to us,
if an r-invariant vector exists for some value r0 < R, then r-invariant
vectors exist for all values of r in the range r0 <; r <; R.

The results of Theorems 4.1 and 5.1 can be put together in the
form of the following "minimax" theorem.

THEOREM 5.2. Let T be any irreducible, nonnegative matrix
with convergence parameter R, ak = Lik(R), βk — Fkj(R). Then

sup{inf (Tx)i/Xi} = inί {swp (Tx)i/Xi} = 1/R
x^O i x^O i

provided that in the left hand member the limiting operations are
taken over vectors x ^ 0 satisfying the supplementary condition

This relation seems first to have been pointed out (for finite-
dimensional matrices) by Wielandt [20]; it is related to the minimax
theorem in the theory of games (see, for example, [2]).

The results of this section also have implication for eigenvectors
with complex-valued components. This follows from the observation
that if {Xj} is an eigenvector associated with the eigenvalue 1/z, the
vector with components | xό | is r-superinvariant, where r — \z\. Thus
from Lemmas 5.1 and 5.2, respectively, we obtain the following two
corollaries, which will be used in § 7.

LEMMA 5.4. If \z\ — r and T is r-transient, there are no non-
zero left eigenvectors {x}c} which are associated with the eigenvalue
1/z and also satisfy the condition

Σ <

for any nontrivial right r-subinvariant {βk}.

LEMMA 5.5. // T is R-positive, the solution xk = ak specified
by Theorem 4.1 is up to a constant factor, the unique left eigenvector
which is associated with the eigenvalue 1/R and satisfies the condi-
tion Σ I χk I βk < °° > where βk is the right eigenvector specified by
Theorem 4.1.

From Lemma 5.4 we obtain in turn the following uniqueness
criterion for the nonhomogeneous equations (11).
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LEMMA 5.6. If \z\ — r and T is r-transient, equations (11) have
a unique solution (namely xk = Tik(z)) satisfying the condition of
Lemma 5.4.

Proof. Uniqueness follows immediately from Lemma 5.4 and it
is only necessary to prove that the condition of the lemma, is satisfied
by xk = Tik(z). This follows from Lemma 3.2, which asserts the con-
vergence of the series ^ k Tik(r)Tkj(r) (and hence of the series

Σ * I Tik{z) I Tkj(r))

and from the observation that βk — Tkj(r) is a right r-subinvariant
vector.

The statement in the preamble to Lemma 3.3 can be obtained by
appealing first to Lemma 5.6, and then to its dual.

6* Convergence of the sums Pά(n\ r), Qi(n; r) and S(n; r). Only
two principal modes of behaviour are open to the individual sequences
{t{i ]Rn}: they either tend to finite positive limits or to zero. (We
exclude for the meanwhile the possibility of periodic behaviour, which
will be considered separately in § 7). The behaviour of a sequence of
sums such as {Ps(n; r)} (r ^ R) may be more complicated. Even if
the vector {u3) is nonnegative, it is not necessarily the case that the
sequence tends to a limit, and when the limit does exist it may be
infinite. Examples to illustrate all these possibilities are easily con-
structed using the "renewal" matrices described by Chung ([3],
p. 41-42). The main purpose of this section is to find conditions that
will ensure the convergence of such sequences of sums to finite limits.

We start with a consideration of the sums P^n r), assuming that
r <^ R and that T has period d — 1. The behaviour of these sums is
clarified by the observation that they can always be written in the
form of a convolution: if P^z) = XΓ=o-Pi( ;̂ 2) = ΣkUkTkj(z), then from
equations (3) and (4) we have

(18) Ps(z) = Φs(z)TSi(z)

where

The behaviour of the terms tι$ figuring in the second part of the
convolution is well-known; hence by imposing simple conditions on the
terms in the first part it is possible to ensure regular behaviour of
the convolution as a whole.

LEMMA 6.1. Suppose that T is aperiodic, r <^ R, and that the
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vector {uk} has nonnegative elements. Then a sufficient condition to
ensure that the sums Pd(n; r) are finite and tend to finite limits is
that ^k ukFkj(r) < oo for some (and hence for all) j .

Proof. Since the terms {tιffrn} tend to a finite limit (which may,
of course, be zero) if r ^ R, a basic Abelian theorem asserts that the
terms in the convolution will tend to a limit whenever the terms in
the other sequence entering into the convolution have a finite sum.
Recalling the representation of Φ(z), this is in fact precisely the con-
dition of the lemma; "Fubini's theorem" shows that the individual
terms must also be finite. A standard irreducibility argument now
completes the proof of the lemma.

A condition equivalent to that of the lemma is that X ukβk < oo
for some nonzero r-subinvariant vector βk. For if βk is any such
vector, then from Lemma 4.1, Fkj(r) <L βk/β3 and so X ukβk < oo
implies ^k ukFkj(r) < oo conversely, if the condition of the lemma is
satisfied, we simply put βk = Fkj(r). In the sequel, we shall prefer
this alternative form of the condition.

The argument of the lemma can be extended to evaluate the
limit, for the same Abelian theorem ensures that (under the conditions
of the lemma)

lim Pά{n\ r) = ΦQ{r) lim (ί# rn) .

The only case which presents any real interest is that in which r = R
and T is i?-positive, for in all other cases the limit will be zero. In
this case, if {ak} and {βk} denote the unique 22-invariant vectors speci-
fied by Theorem 4.1, we have Fkj(R) = βk/β3 and

lim t{^Rn = (xjβj/Σ^βk ,
n—ioo

so that

(19) limPjin; R) = (us + Σ uφ.lβ^aβ^akβk) = α,(Σ «*&/Σ «*&)
k£j

In this case, the condition of the lemma is also necessary, for other-
wise, taking into account that {uk} is a nonnegative vector, it is
easily shown that the terms in the convolution must diverge to infinity.

We can now formulate a more comprehensive theorem.

THEOREM 6.1. Let T be aperiodic, r < R. Then sufficient con-
ditions to ensure the convergence to finite limits of the sequences
{Pj(n; r)}, {Qi(n; r)} are respectively the convergence of the series
Σι\uk\βk for some nonzero right rsubinvariant vector {βk}, &nd the
convergence of the series ^j ock \ vk | for some nonzero left r-subinvari-
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ant vector {ak}. When the conditions are fulfilled.

(20) lim Pj{n) r) = lim ( Σ ̂ tftvΛ = Σ u/lim ί^r

(21) lim Qάn; r) = lim ( Σ *<? v*rΛ>) - £ (lim ί
k

// the vectors are nonnegative and the matrix is R-positive, r — R,
the conditions are necessary as well as sufficient.

Proof. It follows as before that the convergence of the sum Σ I uk I βk
is equivalent to the convergence of the sums Σ f c | uk \ Fkj(r). It re-
mains to prove that this condition implies the convergence of the
sequence {Pj(n; r)} (where the vector {uk} is not necessarily nonnega-
tive) and to justify the interchange of limits in (20). The dual results
follow by exactly analogous arguments, and we shall not give the
details.

To establish the first proposition we write the vector {uk} as the
sum of real and imaginary parts, and then write each of these as
the difference of two nonnegative vectors. It is easy to verify that
the sum Σ& I uk I Fkj(r) converges if and only if the corresponding
sums for each component vector converge. Thus Lemma 6.1 applies
to each part separately, and the result follows on recombining the
four parts after passing to the limit.

Consider next the interchange of limits in (20). This is trivial
(since both sides are zero) except in the case that T is JK-positive and
r = R. Then, evaluating the right hand side of (20) from the result

lcotWRn = ctjβilΣkttkβk (Lemma 5.3, Corollary 1), we have

Σ " * ( l i m ί # .
k \7i->oo

and comparing this with (19) we obtain the desired result.
The necessity of the condition of the theorem when r = R, T is

iϋ-positive and the vector {uk} is nonnegative, has already been men-
tioned, and this completes the proof of the theorem.

The next result is concerned with the possibility of extending
Theorem 6.1 to the sequence of double sums {S(n; r)}. Theorem 6.1
suggests that this sequence will be convergent whenever both

ΣχUkFki(r) < oo and Σ.L\Vvk < oo,Σχ

but in fact it appears that stronger conditions may be necessary.
The best result that we have been able to obtain is stated in the
theorem below.
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THEOREM 6.2. Sufficient conditions for the convergence of the
sequence of double sums S(n; r) (r 5g R) are the existence of left and
right r-subίnvariant vectors {ak}, {βk} respectively such that

( i ) Σ I w* I βk < oo

( ϋ ) Σι<**\Vk\ < -

(iii) either (a) | uk | ^ Cak for some C < oo, k e J

or (b) \vk\^ C'βk for some C" < oo, k e J ,

When these conditions are fulfilled,

(22) lim S(rc; r) - lim ( Σ Σ %^^-rΛ = Σ Σ ^(lim ίtf

If r — R, the matrix is R-positive, and the vectors are nonnegative,
conditions (i) and (ii) are necessary.

Proof. Suppose that conditions (i), (ii) and (iiia) are satisfied;
the case when conditions (i), (ii) and (iiib) are satisfied will then follow
on interchanging the roles of left and right vectors.

As in the proof of Theorem 6.1, we note that the conditions on
the vectors {uk}, {vk} imply similar conditions on each of the four non-
negative parts into which these vectors can be decomposed. It is
therefore sufficient to suppose that the vectors {uk} and {vk} are non-
negative.

From condition (iiia),

P3(n; r) = Σ uώfr* ^ C Σ ^Άfrn ^ Caό .
i i

Consequently the sums Σ ; PAn'> T)VJ a r e dominated by the sum Σ ajvji
which is convergent by (ii). The sums Σ i P%(n\ r)vj a r e therefore
uniformly convergent with respect to n, and letting n—*oo under
the summation sign, we obtain

lim Σ Pj(n; r)vά = Σ (Mm Ps(n\ r))vs ^ C Σ ^ Λ < °°
n—»oo j j n—><» j

where from condition (i) and Theorem 6.1 the limits of the Ps{n; r)
exist and are finite. Since all terms in the summations are nonnega-
tive, the quantities Σ i Pj(n'> r)vj c a n be identified with the double
sums S(n; r); and on evaluating the limits lim^oo P3 (n; r) from Theorem
6.1 (equation (20)) and again using nonnegativity, the quantity

can be identified with the right hand side of (22).
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It remains to prove the necessity of conditions (i) and (ii) when
r == R and the matrix is i?-positive. Since the vectors {uk} and {vk}
are assumed to be nonzero, there exists an index j for which vά > 0.
For this value of j , the limit of the sum P3(n; R) (which must exist,
though it may be infinite—see the remark preceding Theorem 6.1) must
in fact be finite; then from the necessity part of Theorem 6.1 it
follows that there must exist a nonnegative right JK-subinvariant {βk}
such that J^kukj3k < °°. Thus condition (i) holds, and a dual argu-
ment establishes condition (ii).

REMARK. If r = R and the matrix is ϋί-positive, the left and
right subinvariant vectors are unique, invariant, and satisfy the con-
dition ^ α f c f t < oo. In this case, therefore, condition (iiia) implies
condition (i), and condition (iiib) implies condition (ii).

COROLLARY. If P is the stochastic matrix associated with an
irreducible, aperiodic, positive-recurrent Markov chain, the matrix
iterates tend weakly (and therefore also strongly) to their ergodic
limit.1

Proof If the matrix is stochastic, the vector {1,1, •••} is right
invariant, so that condition (i) is satisfied by any lx vector u and con-
dition (iiia) by any m-vector v. Since the chain is assumed to be
positive recurrent, condition (iiia) implies condition (ii), as in the
remark. Hence, adapting an obvious notation, the quantities (Pnu,v)
tend to their ergodic limits for all vem, i.e. the vectors Pun tend
weakly to their ergodic limits. The equivalence of weak and strong
convergence in lx is well-known, and this completes the proof.

The proof of Theorem 6.2 was suggested by the proof of an anal-
ogous property for continuous time chains given by Kendall and
Reuter [7] (see especially pp. 130-132).

7* Periodic matrices and eigenvalues* In this section we
briefly summarize the eigenvalue properties of periodic matrices, and
indicate the changes that must be made to the limit theorems of the
preceding section in the periodic case.

Consider first the structure of an eigenvector when T is periodic.
There is no loss of generality in supposing here that the correspond-
ing eigenvalue is equal to unity.

1 The terms weak and strong convergence refer to convergence of operators
on the sequence space h; it is easily verified that any stochastic matrix defines
such an operator.
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LEMMA 7.1. Let T have period d, periodic subclasses Cu(v =
1, " ,d), and suppose that oc = ̂ ί=Ύocv where the components of av

are zero outside Cv and

(23) TθCv — 0(v + l)mod(d)

for each m — 1, 2, , d.
Moreover, the vector a[m) = Xί=i ave

2πmuίId is an eigenvector asso-
ciated with the eigenvalue e2πmild.

Proof It is sufficient to set (au)k = ak(k e CJ), (av)k = O(fcί C»).
Equation (23) then follows from the definition of the periodic subcl-
asses and the equation Ta — a, and the other assertions are trivial
to verify.

COROLLARY. // T is R-recurrent with period d, each of the
points λm = (1/22) e2πmίld is an eigenvalue of T.

If T is i?-positive, more precise results are available (Pruitt, [10]
Sidak [12]-[14l)

THEOREM 7.1. Let T have period d, periodic subclasses Cu, and
suppose that T is R-positive with left and right R-invariant vectors
{ak} and {βk}. Then

(24) Σ aφk = Σ *hβk = . . . = Σ akβk < -
ueo keo2 keou

and for each of the eigenvalues λm the eigenvector constructed as in
Lemma 7.1 is the unique eigenvector satisfying the condition

Σ I Xk I βk < oo

these are the only eigenvectors satisfying this condition and associated
with eigenvalues on the boundary of the disc \ λ | = 1/2?, or outside it.

Proof. The proof follows readily from our earlier results, in
particular Lemmas 5.4 and 5.5, and we omit the details.

COROLLARY. If T is finite-dimensional, the conclusions of the
Perron-Frobenius theorem hold.

Proof. To establish the Perron-Frobenius theorem, we have to
incorporate in some way the compactness property of operators on
finite-dimensional spaces. The most obvious way of doing this is to
recall that any singularity of the resolvent is necessarily a pole. It
then follows, in particular, that 1/2? is a pole, and so the matrix must
be 2?-positive (in the other two cases the singularity is worse than a
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pole). Moreover, the pole must be simple (i.e. 1JR must be a simple
zero of the characteristic equation) because

lim(s - R)Tiό{z) = -(l/FUB))FiS(B) < -
Z-*R

(note that the inequality Fiά(R) < co makes essential use of irreduci-
bility). The remaining assertions are subsumed under the theorem
above.

Next we indicate the changes that must be made in Theorems
6.1 and 6.2 when the matrix is periodic. The only essential differences
occur when the matrix is R-positive, and we shall restrict attention
to this case.

Consider first the behaviour of the sum P3 (n; R) = Pj(n). This
sum will take one of d different forms according as n is of the form
md + 1, md + 2, , md. If n = v mod d, and if j e Ca, the summa-
tion defining Pά(n) is effectively over the set of states Cβ, where
β = (a — v) (mod d), all the remaining terms vanishing. The ap-
propriate generalization of Theorem 6.1 consists therefore of d separate
statements, one for each value of v. Denoting the left and right
invariant vectors of the iϋ-positive matrix T by {ak}, {βk} respectively,
we have

THEOREM 7.2. // T is R-positive and has period d > 1, and if
j eCa, the necessary and sufficient condition that the sequence Pά{md-\-v)
should tend to a finite limit as m —> co is that Σkeoa I uk I βk < °° >
where β = (a — v) (mod d); moreover, when the condition is satisfied,

Σ
lim P^md + v) = J ) ^

kecβ

COROLLARY. Under the same conditions, the necessary and suf-
ficient condition that the C — 1 limit of the sequence Pό{n) should
exist and be finite is that Ύ^kej ukβk < oo the value of the limit
when it exists is equal to (Σik

Finally, we state an extended form of Theorem 6.2, putting
S(n; R) = S(n).

THEOREM 7.3. Suppose that T is R-positive and has period d ^ 1,
and also that the conditions of Theorem 6.2 are satisfied. Then for
v = 0,l, ,d-l

limS(md + v) =
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where Ua = Σιkβoa uΦk and Va = Σ,keoa °^kVk.

COROLLARY. Under the same conditions,

C - 1 lim S(n) = f Σ ukβk)
n-^oo \keJ J
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