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ON A THEOREM OF ORLICZ AND PETTIS

CHARLES W. MCARTHUR

In this paper a direct proof of the following theorem of
Orlicz, Pettis, and Grothendieck is given.

THEOREM 1. In a locally convex Hausdorff space each
subseries of a series converges with respect to the initial
topology of the space if and only if each subseries of the
series converges with respect to the weak topology of the
space.

In a second theorem each of three additional conditions
is shown to be equivalent to subseries convergence in complete
locally convex Hausdorff spaces. Two of these equivalence
are known for Banach spaces. The third condition, a weak
compactness condition on the unordered partial sums of the
series, is new even for Banach spaces. It is a consequence
of the first theorem that a weak unconditional basis for a
weak sequentially complete locally convex Hausdorff space is
an unconditional basis.

Theorem 1 was first proved by Orlicz [8, Satz 2] for weakly
sequentially complete Banach spaces. Banach [1, p. 240] noted the
hypothesis of weak sequential completeness was unnecessary. A proof
of Theorem 1 for Banach spaces was given by Pettis [9, Th. 2.32],
Grothendieck [4, Cor. 2, p. 141] obtains Theorem 1 for locally convex
spaces as a special case of a theorem on vector valued integrals.

The proof of Lemma 3 was suggested by the referee in place of
a longer proof by the author. It uses a result of a paper of James
[5] which appeared after this paper was submitted.

For clarity we now state the basic definitions in more detail. If
E is a Hausdorff linear topological space with topology ^~ then a
series ΣΓ=A in E is subseries convergent relative to ^7~ if and only
if:

(A) Corresponding to each subseries ΣΓ=i^ there is an element
xeE such that lim% Σ L A ; — x> the convergence being relative to ^~.

Let E* denote the space of ^-continuous linear functional on
E. Then ΣΓ=Λ is weak subseries convergent if and only if:

(B) Έtΐ=iχi is subseries convergent relative to the w{E,E*)
topology for E.

For a series ΣΓ=t^ in a linear topological space (E, ^~) let
S = {Σiieσ%i: β finite} and consider the following conditions where
sp{#i} denotes the closure, relative to J7~, of the linear span of {#J:

(C) S is totally bounded relative to
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(D) Whenever {fn} is an equicontinuous sequence in E* such
that fn(x) —* 0 for all x e sp {x̂ } then fn(x) —> 0 uniformly on S.

(E) The w{E,E*) closure of S is w(E,E*) compact.
In this paper we also prove,

THEOREM 2. For a series in a locally convex, complete, Hausdorff
space the conditions (A), (B), (C), (D), and (E) are equivalent.

The equivalence of (A), (B), (C), and a variant of (D) for series
in Banach spaces is known (see, e.g., [7]).

2* Proof of Theorem 1*

LEMMA 1. If ΣΓ=Λ is a series in a locally convex Hausdorff
space E which satisfies the condition (D) then it is subseries Cauchy.

Proof. We first observe that if I c £ , then M is bounded if,
whenever {fn} is an equicontinuous sequence in E* such that
lim fn(x) = 0 for all xeE, it follows that lim fn(x) = 0 uniformly
on M. For if M is not bounded and U is a closed convex circled
neighborhood of zero that does not absorb M, then for each integer
n there is an fneE* and an xneM such that |/Λ(α0| ^ Vn o n U
and fn{xn) έ 1. The sequence {fn} is equicontinuous and limfn(x) — 0
on E but not uniformly on M. We observe further that if ΣΓ=A
satisfies condition (D) then S is bounded from which it follows that
ΣΓ=i I /(«*) | < + °° for each feE*.

We now prove Lemma 1 by showing that if ΣΓ=i %% is not subseries
convergent and ΣΓ=i I /(#*) | < + °° f or each feE* then condition (D)
does not hold. Suppose there exists a subseries ΣΓ=i%; whose sequence
of partial sums {Σ?=i ̂ ΛJ ^S n o ^ a Cauchy sequence. Thus there exists
a closed convex circled neighborhood V of zero and an increasing
sequence {pn} of positive integers such that for each n,

sn = "Σ! χki ί v.

Then, [6, 14.4, p. 119] for each n there exists an element fneE*
such that fn(sn) = 1 and sup {| fn(x) \ : x e V} < 1. Thus the sequence
{fn} is equicontinuous. Since {/J is equicontinuous it is pointwise
bounded on E. Using this and the diagonal process we select a subse-
quence {fnm} which has [6, 17.4, p. 155] a w*-cluster point f0 with the
property that limm fnm(x) = fo(x), % e sp [Xi], From the hypothesis (D)
we have that limm fnjx) = fo(x) uniformly for x e S. Given ε > 0
there exists N such that
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Σ l -f ί<v \ I / c/9

Thus, for m sufficiently large, | fo(sUm) \ < e/2. Now there exists
N' > N such that if m ^ N' then | fnjx) - fo(x) \ < e/2 for all xeS.
Thus, for m sufficiently large,

I fnjsnj I ̂  I fnjsnj - fo(snj I + I fo(snj I < ε

but this contradicts fnm(snm) = 1 for all m.
It is well known [6, 17.8, p. 156] that each weakly compact

subset of a locally convex space is complete. The proof of the
following lemma follows the same line of argument as the above
mentioned result, so is omitted.

LEMMA 2. Let (E, J^7~) be a locally convex space. If {xa} is a
Cauchy net in E relative to the topology ά7~ and if xe E is a
w(E, E*)-cluster point of {xa} then xa-^x in the topology J7~.

Proof of Theorem 1. It is clear that (A) implies (B). We now
assume (B) and show that (A) follows. It is clear that when (B)
holds we have ΣΓ=i I/(&*) I < + ^ for each feE*, i.e., {/(^)}Γ=i is
an element of (I) for each feE*. The space (I) here is either real
or complex depending on whether the scalar field of E is real or
complex. For either real or complex (I) sequential convergence in the
w((£)> (0*) topology for (I) implies convergence in the norm topology
of (I) and elements of the form {εj, where e< = ± 1 or 0, are funda-
mental in (£)*. Let {fn} be an arbitrary sequence in E* such that
limw/w(a0 = 0 for all αjespfo}. Let λw = {fn(Xi)}ieω- We will show,
following Pettis [9], that

(F) lim% ΣT=i I f»(®i) I = Of i e > λ Λ - + 0 in the norm topology of
(i), by showing that

for each sequence {εj, where ^ = ± 1 or 0. For such a sequence {e<}

let σ+ = {i : ε̂  ^ 0} and σ— = {i : e4 < 0}. By (B) there exist xσ+ and

xσ_ such that f(xσ+) = Σ , 6 σ + /(»<) and f(xσ_) = Σ<eσ-/(α<) for all

feE*. Now xσ+ and xσ__ are elements of sp[x;]. Suppose xσ4.

Then there exists feE* such that f(xσ+) Φ 0 and f(x) = 0 f or x e

This, however, implies the contradiction f(xσ+) = 0 since /(&«,+) =

Σ<eσ+/(^i) where ^ G s p ^ ] . Hence, it follows that

l i m Σ Sifn(Xi) = lim/Λ(a?β + - α?σ_) = 0 .
n i=l n
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Thus we have shown that (F) holds, from which it is evident that
limnfn(x) = 0 uniformly for x e S. It now follows, by Lemma 1, that
ΣΓ=1X; is subseries Cauchy. Then from (B) and Lemma 2, ΣΓ=i^ί is
subseries convergent.

3* Proof of Theorem 2*

LEMMA 3. Let E be a complete Hausdorff locally convex space
and let Eo be a closed separable subspace of E. Let M be a subset
of Eo such that whenever {fn} is an equicontinuous sequence in E*
such that lim% fn{x) = 0 for all xe Eo it follows that limw fn(x) — 0
uniformly for xeM. Then the weak closure of M is w(E,E*)
compact.

Proof. If the weak closure of M is not weakly compact then,
by the result of James [5, Condition (9), p. 104], there is a positive
number ε, an equi-continuous sequence {/J, and a sequence {zn} from
the weak closure of M such that

\fn(zk)\ >e i f n^k a n d fn(zk) = 0

if n > k. Let {xn} denote a sequence in Eo which is dense in Eo.
Using the diagonal technique we select a subsequence {fn.} of {fn}
which has a iί;*-cluster point f0 such that limdfn.(xm) = /0(#m), tn, e w.
Hence, limy fnj(x) = fo(x) for all xeE0. We then have from the
uniformity hypothesis that lim^ fn.(x) = fo(x) uniformly for xe M and
hence uniformly for x in the weak closure of M. Since zk is in the
weak closure of M this contradicts the fact that | fn.{zk) \ > ε if
n5 ^ k and fn.(zk) = 0 if % < k.

LEMMA 4. For a series ΣΓ=i ®% in a locally convex Hausdorff
space E, (A) implies (C) implies (D) and (E) implies (B).

Proof. (A) implies (C): Subseries convergence implies unordered
convergence [2, p. 59], Let U be a neighborhood of 0. Then there
exists a finite set σ0 of positive integers such that if σ is a finite
subset of positive integers and σ Z) σ0 then

Σ »* - Σ Xi e U.

Let B = {Σieσ Xi: σ cz σ0} \J {0}. Observe that B is a finite set and
for an arbitrary finite subset σ of positive integers

Σ Xi e B + U .
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(C) implies (D): In general totally bounded sets are bounded. Also
[6, 8.17, p. 76] an equicontinuous family of linear functionals on E
which converges pointwise on a totally bounded set to an element
feE* converges uniformly to / on that set. (E) implies (B): If
Σî iEfci is any subseries and y is a w(E,E*) cluster point of {Σii=1xki}9

then y is a w(E,E*) sum of ΣΓ=i%^ since if

and

then

fn \

if n > N.

Proof of Theorem 2. By Lemma 3, (D) implies (E). By Lemma
4, (E) implies (B). Conditions (A) and (B) are equivalent by Theorem 1.
By Lemma 4, (A) implies (C) and (C) implies (D).

4* Applications* Suppose that A is a set, that Σ is a σ-field
of subsets of A, and m is an additive set function defined on Σ w ^ ^
values in a locally convex Hausdorff space E. Then m is weakly
countably additive if and only if

±fm(Ai)=fm(\JAλ
t=l \ * = 1 /

for each feE* and each sequence of disjoint sets At in Σ As an
immediate consequence of Theorem 1, we obtain

COROLLARY 1. A weakly countable additive set function m defined
on a σ-field Σ with values in a locally convex Hausdorff space is
countably additive.

Corollary 1 is a generalization of a theorem of Pettis [9, Th.
2.4; 3, Th. 1, p. 318] for Banach space valued set functions.

A sequence {a?;} in a Hausdorff linear topological space (E, Jf) is
a basis if and only if corresponding to each xeE there is a unique
sequence of scalars {αj such that x = limnΣf=i <&•#<> the convergence
relative to ^". A basis is unconditional if for each xeE every
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rearrangement of the basis expansion for x converges. It is known
that a sequence {x{} in a locally convex, metrizable, complete space
(E, ^") is a basis relative to ^ providing it is a basis relative to
the w(E,E*) topology for E. As a corollary to Theorem 1 we obtain
the following weak basis theorem which applies to a class of linear
topological spaces which includes certain nonmetrizable spaces.

COROLLARY 2. If (E, JT") is a locally convex Hausdorff space
which is sequentially complete in its w(E, E*) topology, then a
sequence {x{} in E is an unconditional basis for (E, ^7~) provided it
is an unconditional basis for E with its w(E,E*) topology. Thus, a
w(E,E*) unconditional basis in a semireflexive space (E,άT~), e.g.,
a Montel space, is an unconditional basis relative to

Proof. Suppose {»<} is a w(E,E*) unconditional basis. For xeE
let {α*} denote the unique sequence of scalars such that for all f eE*
f(x) = X ^ α j f e ) where the convergence of the series is unconditional.
Unconditional convergence of a series of real or complex numbers
implies subseries convergence for that series. It follows, using the
hypothesis of w(E,E*) sequential completeness, that Σ Γ = i ^ i is weak
subseries convergent so by Theorem 1, x = \imn'Σif=1aixi, convergence
relative to ^7~. If x also has the expansion x — limΛΣ?==iδί#*> uncon-
ditional convergence relative to ^ " , then f(x) = *ΣiT=ibif(%i)9 f GE*
where the convergence is unconditional in the scalar field so b{ — aif

ieω, because of the assumed uniqueness of {αj.
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