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ESTIMATES FOR THE TRANSFINITE DIAMETER
WITH APPLICATIONS TO CONFORMAL MAPPING

MeLVYN KLEIN

Let f(z) be a member of the family S of functions regular
and univalent in the open unit disk whose Taylor expansion
is of the form: f(2) =2 + ax* 4 ---. Let D, be the image of
the unit disk under the mapping: w = f(2). An inequality for
the transfinite diameter of n compact sets in the plane {T})T is
established, generalizing a result of Renngli:

d(Tyn Tp)-d(Ty U Te) < d(Ty)-d(Ty) .

This inequality is applied to derive covering theorems for D,
relative to a class of curves issuing from w = 0, arcs on the
circle: |w|= R as well as other point sets.

I. Preliminary considerations.

DerFiNITION (1.1). Let E be a compact set in the plane. Set:

n

V(zly""zn):H(zk—zl) ngzy zieEy

k>1

V.= V.(E) = max | V(ziy + 0+, 2,) |

21

and
d, = d,(E) = Vi1,
The transfinite diameter of E is then defined by: d = d(¥) = lim d,.

n—ro0

A full discussion of the transfinite diameter and related constants
can be found in [2, Chapter 7].
The following is a theorem of Hayman [3]:

THEOREM (1.2). Suppose f(z) is a function meromorphic in the
unit disk with a simple pole of residue k at the origin, i.e., the
expansion of f(z) about the origin is of the form:

f(z):%+ao-|—a1z+°--.

Let D,, denote the tmage of |z2| < 1 under the mapping w = f(2) and
let E, denote the complement of D, in the w-plane. Then: d(E,) < k
with equality if and only if f(2) is untvalent.

Using Hayman’s theorem is easy to prove the following:

267



268 MELVYN KLEIN

THEOREM (1.3). Let w(R) = kz + a,2® + a:2* + -+ be a function
untvalent in [z| <1 and D, the image of |z| < 1 under w(z). Then
the complement of the image of D, under the mapping: { = ljw,
which we denote by E;, has transfinite diameter: 1/k. In particular,
of wiR) =2+ a2t + -+ then d(E;) = 1.

We will need to know the transfinite diameter of several specific
sets.

LEMMA (1.4). Let E be the set union of:

(i) amn arc of central angle 6, 0 < 0 < 2 lying on |w| = 1 with
midpoint: w = 1.

(ii) a linear segment [a,b], 0 < a <1 <0b. Then the transfinite
diameter of E expressed as a function of a,b and 6 is given by

/2
cos® -Z—[(l + b)(l + a* — 2a cos —Z—)l

dE) = + @+ a4 b —2eos 1)

0 \?
2[(1+a)-|—<1+a2—2acos—2-> ]

x [(1 ) — (1 + b — 2bcos %)’]

where positive roots are taken throughout.

Proof. A wunivalent mapping, w = f(z), of |[z2| <1 onto the
complement of K with a simple pole at z = 0 will be constructed.
According to Theorem (1.2) the residue of the mapping function is the
transfinite diameter of E. Define:

wi(?) = (2 + )/(L + az)

d—c+csel [(d—c—i—csci)2 J”z
4 4
a = — -1 ,
¢ c

d>1, 2¢—d>0.

where:

Define:
wzzé(wl—f--l—) w; = c(w, +1) — d

cot% + w,
w, = (w; — 1)V Wy =

cot-Z— — w,



ESTIMATES FOR THE TRANSFINITE DIAMETER 269

The composition of these five mappings is given by:

/
eoti+{lc<z+“ + 1+“z+2>—d]2—1}”
4 2 \1 + az z 4+«

/
coti_{ig(z-l—a+1+az+2>_d]z_1}1z
4 2 \1+ az 2+ a

w(R) =

w(z) maps |z| < 1 onto the exterior of E (upon proper choice of the
parameters ¢ and d, to be made presently); it has a simple pole at
the origin of residue:

4

csc—Z— + 2(d — ¢) seczI -} tan%sec —Z—(ol2 + 1 — 2¢d) |

This is the transfinite diameter of E. To express it in terms of a,b
and 6 we note that the point w = b is the image of w, = 1, and the

point w = a is the image of w, = —1. TUsing this to solve for ¢ and
d we find:
g Tz
[a2 + 1 — 2a cos —]
d= ~ 2
a + 1) sin —
(@ + 1) sin 1
1/2 /
[(JLZ + 1 — 2a cos %] [b2 + 1 — 2b cos —g-]lz
¢ = -+
2(a + 1) sin % 2(b + 1) sin %

Substituting these values in the above expression for the residue we
arrive at the expression given in the statement of the lemma.

When a = b = 1 the set E is simply an arc of central angle 6 on
the unit circle. Using the lemma we find: d(1, 1, §) = sin /4.

LEvMMA (1.5). Let E be the set union of two linear segments
issuing from the origin at an angle 2zma, 0 < a < 1/2, each of
length: 4a*(1 — a)'=*. Then: d(E) = 1.

Proof. The mapping of |2| < 1 onto the exterior of K is given
by the Schwarz-Christoffel formula:

(z + )z — 1)z — 1 + 2a — 2[a® — a]¥?)
* X (2 — 1+ 2a + 2[a® — al'?) dz
0 22
e (z + 1)2—2a(z _ l)Za
?z

w=c-|
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The residue of this function (the transfinite diameter of E) is e.
Noting that the map carries 2z =1 — 2a + 2(¢* — a)¥®* onto w =
4041 — a)—¢"™ we find that d(F) = |¢| = |e™/(=1)*| = 1.

Finally, we describe two types of symmetrization.

Steiner symmetrization of a plane set E with respect to a straight
line 7 in the plane transforms E into a set E’ characterized by the
following:

(i) E’ is symmetric with respect to .

(ii) Any straight line orthogonal to I that intersects one of the
sets K or E' also intersects the other. Both intersections have the
same linear measure, and

(iii) The intersection with E’ consists of just one line segment,
and may degenerate to a point.

Circular symmetrization of a plane set E with respect to the
positive real axis transforms E into a set E’ characterized by the
following:

(i) E’' is symmetric with respect to the real axis.

(ii) Any circle [z] =7, 0 < < « that intersects one of the
gsets K or E’' also intersects the other. Both intersections have the
same linear measure, and

(iii) The intersection with E’ consists of just one arc with its
midpoint on the positive real axis, and may degenerate to a point.

The following theorem describes the effect of these symmetrizations
on the transfinite diameter [5; p. 6 and Note A]:

THEOREM (1.6). Neither Steiner mnor circular symmetrization
increase the transfinite diameter.

II. Estimates for the transfinite diameter. A recent result of
Renngli [6] is the following:

THEOREM (2.1). If T, and T, are compact sets in the plane, then
d(Tl U Tz)’d(Tl n Tz) = d(Tl)'d(Tz) .

We will now generalize this to obtain an inequality for » compact
sets.

THEOREM (2.2). If T, T, ---, T, are compact sets in the plane,
let C, be the set of all points contained in at least k of the T,’s.
Then:

(1) T dc) < LTy
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Proof. For m =1 this is a triviality. For n = 2 it is identical
with Renngli’s result:

AT U T)-d(TiN T) = d(T)-d(Ty) .

Suppose the theorem is already established for n — 1 sets. Let B, be
the set of all points lying in at least k& of the sets T, T,, ++-, T,_..
Obviously: B,,cB,,c --- < B;,. Also:

(2) Cn:Bn—-lan, ClzBluTn’
(3) Co=B, U{BiuNT} (k=23,+-+,n—1).

If dB,.N T, = d(C,) =0, (1) is certainly true.
If d(B,_,N T,) = 0, then, a fortiori,

dB.,NT)#0 (k=1,2+++,n—1).

By (2), (8) and Renngli’s inequality:
d(C,) = d(B,_..N T,

ACy-d(B, N T,) = d(C) (B N Bea N 1) < A(By) - d(Bis N Th)
(k=2 ,n—1)

d(Cy)-d(B. N T,) = d(By)-d(T,) .

Multiplying these inequalities and dividing both sides by [17-. d(B, N T,)
yields

flac,) < T dBoa(r,)

k=1

and the theorem is proved, since by the induction hypothesis
T d(B) = [T AT .

DeFINITION (2.8). A point set T will be called a broken ray
provided

(i) for every r = 0 there is a point ze T such that: [z| = r.

(i) the set of numbers » = 0 for which there is more than one
point ze T such that: |z| = r is a set of measure zero.

DeFINITION (2.4). Let T be a subset of a broken ray. The point
sets: n T, n,T, -+, n, T where {1}’ are the n-th roots of unity, will be
called symmetric images of T. The point set: {Ui=1 7T} will be
called the set of n-fold symmetry generated by T and will be denoted
by T™. Subsets of 7™ will be denoted by T™.
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DEFINITION (2.5). Let T be a subset of a broken ray, T the
set of n-fold symmetry generated by T and 7™ a subset of T™, We
define the circular projection of 7™ as a subset, 7™, of the set of
n-fold symmetry, ™, generated by the positive real axis, z. A point
z = 1,-r will belong to the projection 7 if and only if there is a
point: {en,-TN T™ such that || = 7.

DEFINITION (2.6). Let 7™ be a set such as described in definition
(2.5). We will use the symbol I, to denote the measure of the set of
real numbers 7, 0 < r < « such that at least k& of the symmetric
images of r lie in 7™,

REMARK (2.7). Let L denote the linear measure of 7™; that is,
the sum of the linear measures of the n legs of ¥, Then

23;1 lk =1L.

The reason is that if I is a set of real numbers which have sym-
metric images on exactly & legs of 7™ the measure of I is included
in: 1, 1, -++,1,; that is, it is counted %k times in: >\, [,.

The following theorem of Fekete is essential to our work [2;
page 259].

THEOREM (2.8). Let E be a compact set and p(z) a polynomial
of degree n:

PR) =2"+ "+ 0 + e,

Let E, be the set of all points z such that p(z) lies in E; we will
call E, a root set of E. Then: d(E,) = d(E)"".

THEOREM (2.9). Suppose T™ is a subset of a set of n-fold sym-
metry with: d(T™) =1, and T™ 4ts circular projection. If 1, (k =
1,2, --+, n) represent the measures defined in (2.6), then:

i, <4.
k=1

A

Equality occurs when T™ is itself a set of m-fold symmetry, con-
sisting of a single component and identical with its circular projec-
tion: T™ = 7™,

Proof. Let T, =7, -T™, (k=1,2,+--,m). Clearly:
(4) AT = d(T™) =1 (k=1,2,-++,m)

since the transfinite diameter is unaffected by rigid motions.
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Let C, be the set of all points contained in at least & of the
Ts; that is, the set of all points z such that at least k of the sym-
metric images of z lie in 7. Each of the sets C, is a set of n-fold
symmetry.

Let <, be the circular projection of C,. In view of our descrip-
tion of the sets C, it is not difficult to see that the measure of a leg
of Yk is lk.

Let B, be the set of which C, is the root set with respect to the
polynomial p(z) = 2. Since C, is a set of n-fold symmetry B, is a
subset of a single broken ray. Let 8, be the set of which v, is the
root set with respect to the polynomial p(z) = z". As above, B, will
be a subset of a single broken ray; in this case the positive real axis.

Since v, is the circular projection of C, it follows that B, is the
circular projection of B,. When n = 1 circular projection is the same
transformation as circular symmetrization. Therefore:

d(C,) = d(By)'" by Theorem (2.8)
= d(B,)'" by Theorem (1.6)

=[] -7

since B, has linear measure no less than: ([,)". So finally we have:

1=dT™) = n AT, by (4)
> kf_I d(C,) by Theorem (2.2)
~ l, _1r

This is the desired result: 4 = T[7_, I,.

This theorem contains as a special case a result of G. Szego [7]; in
our notation his result reads: Suppose that 7™ = 7™ (i.e., it consists
of straight line segments) and that 7™ is a connected set. Then
TI2.. L, < 4 where L, is the linear measure of the k-th leg of T,
k=1,2,+--,n).

Proof. In this case: L, = [,.
The next theorem establishes bounds on the content of a set lying
on a circle as a function of the radius and the transfinite diameter of

the set.

THEOREM (2.10). Let Aj, A}, «-+, A}, A}, 2 AL+ be ¢ nested sequence
of arcs on the circle |z| = R where the central angle swept out by
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L ots 0, 0<0,<2r/n. Let n,7n, +--, 7, denote the n-th roots of
unity and let a(i) be a mapping of the set of integers {1,2, .-+, n}
onto itself. Define:

Ak = 7701(lc)“4;c (k = 1; 2y tty n)
and let: A=A, UA4,U -« UA,. Then:

Proof. d(A) = d(n,-A) (k=1,2,:--,n). Therefore:
(6) (A1 = I dpe-A) .

Let C, be the set of all points contained in at least k& of the sets:
n;+A. It follows from our hypothesis that the sets A} are nested that:

Ck = 771'Ak U 772Ak U M U vnAk

for each &, 1 <k < n. Thus C, is the root set with respect to the
polynomial w(z) = 2" of an arc on the circle |w| = R™ of central angle
%+60,. The transfinite diameter of such an arc is, by virtue of the
equality: d(c-E) = |c|-d(E) (¢ a constant) given by: R”-sin (n-0,/4).
Therefore by Theorem (2.8):

(7) d(Cy) = (R™-sin (nf,/4))"" .
Also, by virtue of Theorem (2.2) we have that:

(8) 1T d(p.-4) = T1 d(C.) .
Combining inequalities (6), (7) and (8) we conclude:
[d(AT" = [L[R*-sin (n 0,/4)]"
or
[d(A)/RT"* = T sin (nd,/4)

as claimed.

III. Covering theorems. The class of functions regular and
univalent in |z | < 1 whose expansion is of the form: f(z) = 2z + a,2* + - -+
will be denoted by S. Let D, be the image of the unit disk under
the mapping w = f(2) € S. A classical result of Koebe and Bieberbach
states that D,, contains the disk |w| < 1/4 irrespective of the mapping



ESTIMATES FOR THE TRANSFINITE DIAMETER 275

function w = f(2) [2; page 41]. G. Szego later noted that [8]: If
a, 8 are two values lying in the complement of D, and if the segment
connecting « and B passes through the origin, then: |a| + |8 = 1.

Generalizing these results, Michael Fekete made the following con-
jecture: Given m rays issuing from the origin w = 0 at equal angles
27/n, let L denote the linear measure of the intersection of these rays
with D,. Then: L =n-71/4. The theorems of Koebe-Bieberbach
and Szego are the cases » =1 and n = 2. For arbitrary » the in-
equality was proved in 1964 by Marcus [4].

Our first theorem in this section further generalizes these results
by considering a more general class of curves issuing from the origin
in place of the n rays of Fekete’s conjecture. The results of the
preceding section will be used to prove this as well as various other
covering theorems for the class S.

THEOREM (3.1). Let f(z)e S and let D, be the image of the disk
|z] < 1 under the mapping w = f(z). Let S™ be a set of n-fold
symmetry generated by an arbitrary broken ray; S™, a subset of S™
defined by: 8™ = D, N S™ and & the circular projection of S™.
Denote by L the linear measure of 6. Then L = n-7/1/4.

Proof. Let E. represent the image of the complement of D,
under the transformation: { = 1/w. Then by Theorem (1.3) it follows
that: d(E;) = 1. Let T denote the set of n-fold symmetry that is
the image of S™ under the transformation { = 1/w and let 7™ denote
the subset of T™ defined by: T™ = E,n T™. Denote by #™ the
circular projection of 7. It is clear from the definition of the sets
involved that 7™ is the complement with respect to T™ of the
image of S™ under the transformation { = 1/w and consequently,
that 7™ is the complement with respect to 7™ = ¢™ of the image
of 8™ under the transformation: { = 1/w.

Let 1), 1,, -+, 1, be measures defined on 7™ as in definition (2.6);
let ki, Ay, -+ -, kb, be measures defined on ™ in the same way. Since
d(E;) =1 it follows by Theorem (2.9) that: []7-. !, < 4. The points
that contribute to the measure [,_,., are points in the complement of
the image of the set of points contributing to %, under { = 1/w. For
fixed %,, the measure [, .., is minimized when the set whose measure
is h, is the segment [0, z,] in which case: !, .., = 1/h,. Thus:

11 L
k=1

IIV

» 1
oo

and so:

IIV

4z 11 ki or: (11 m)m > ¢T].

B
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Since the arithmetic mean exceeds the geometric mean:
1 ., T
Sz VA

According to Remark (2.7): >»_, h, = L, the linear measure of ™.
Thus: L = n-7/1/4 as claimed.

THEOREM (3.2) Let w(z)e S and D, the image of |z| <1 under
w(z). Suppose D, N {|w| = R} consists of n disjoint arcs {B,}* where

(i) The angle subtended by the arc separating B, and B, 1s
no greater than: 2m/n.

(i) If {Af}r are the m arcs in the complement of Uj-1 B, with
respect to the circle |w| = R the related set of arcs: {n,-Ai}r are
nested.

Let the endpoints of the arc B, be given by: R-e®*-1 qnd R-e*
k=12 .-, m).
Then:

k]i[l sin [n(ﬁzkﬂ - 62k)/4] = an [} 02n+1 =6+ 2r .

Proof. Let A} be the arc lying between B, and B,,;. The central
angle subtended by A} is: 6,,,., — 6,, which by hypothesis is no greater
than 27/n. Let A, be the image of A} under the transformation

¢ = 1/w. The arcs A} all lie in the complement of D,. Hence: 4 =
Ui-1 A, S E; and so d(A) < d(E;) = 1. The sets A, lie on the circle:
|| = 1/R. The central angle subtended by A, is 6,.4, — 6,,; the same
as that subtended by A¥. TFinally, the arcs A, have the nested prop-
erty hypothesized for the sets AF. Since all this is so, Theorem (2.10)
is applicable; therefore:

11 sin 20— B < fa(ay/R)* < B

as claimed.

This past theorem takes no account of the fact that the comple-
ment of D, is a continuum containing the point at infinity. A sharpened
version which takes this into account is the following:

a(0,1, 6, — 0,)- T sin s — O < g
k=2

where d(a, b, ) is as defined in §1. Actually, both Theorems (3.1) and
(8.2) are generalized (in a sense, combined) in the following theorem,
which takes the above fact into account. The techniques used to
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prove the theorem are essentially the same as those of the foregoing
proofs and so just a statement of the result will be given.

THEOREM (3.3). Let f()eS and D, be the tmage of |z]| <1
under w = f(z). Let C be a circle of radius B, 0 < R< « and n
an arbitrary natural number. Let {B,}* be a sequence of arcs on the
cirele C satisfying the conditions of Theorem (3.2), S™ a set of n-fold
symmetry generated by a broken ray and S™ a subset of S™ defined
by: S = S™ 0D, N {{w| £ R}. Let ™ denote the circular projec-
tion of S™ and {h,}r a sequence of measures on & such as defined in
definition (2.6).

Then:

d(o, [f’ ] n[fs — 02]>-k]i[2 d<1, [h L ] W [Boers — 02,,]> < R"™.

n n—k+1

One final application will be given.

THEOREM (3.4). Let f(z)e S and D, the image of the disk |z| <1
under w = f(z). Let L,, L, denote straight lines intersecting at w = 0
at an angle of ra, 0 < « <1, Let L = L(D,N{L, N L,} denote the
linear measure of D, N{L, U L,}. Then:

2
aa/Z(l _ a)(l—-a)/Z *

Proof. There is no loss in generality in assuming L, and L, are
symmetric images of one-another with respect to the real axis.

A set of four points on the four legs determined by L, U L,, each
lying at a distance », from the origin, will be called a “radially
symmetric set”; the points themselves will be called radially symmetric
images of one-another and of the point w = 7.

We define %, (k =1,2,8,4) as the measure of the set of real
numbers 7, 0 < r < « such that at least k& of the radially symmetric
images of » (in L, U L,) lie in D,. Then:

(9) L(Dw N {Ll U Lz}) = Z?c:lkk .

Map by = 1/w and let E; represent the complement of the image
of D, under this map. Then d(E;) = 1. Notice that L, U L, is mappped
onto itself. Let !, be the measure of the set of real numbers r such
that at least & of the radially symmetric images of = (in L, U L,) lie
in E;. Then:

L1
L

N

(10) [

\%

k

I
b
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Let T, =E;N{L,U L,}; let T, be the reflection of T, in the
imaginary axis; let T, be the reflection of T, in the real axis; let T,
be the reflection of T, in the imaginary axis. Clearly:

(11) d(T)) = d(Ty) = d(Ts) = d(T)) .

Let C, be the set of all points contained in at least k of the T’s.
The set C, is a radially symmetric set; that is, it consists of all
radially symmetric images of those points { such that at least k of
radially symmetric images of { lie in T,. Thus the measure of a leg
of C, is l,. Let B, be the set consisting of four segments lying on
the four rays determined by L, U L,, each of length [,, the intersection
of the four being the point { = 0. Since the shift of segments that
transforms C, into B, can only bring extremal points closer together,
it follows that: d(C,) = d(B,). Using the mapping lemma (1.5) and
Fekete’s theorem (2.8) the transfinite diameter of B, can be calculated:

l
Ad(By) = zaa/z(l __k ) -l :
We have
= d(E;) = d(T)) since: T, S E;
4 1/4 4 1/4
— [El d(Tk)] > [kI:I d(Ck)] by Theorem (2.2)
4 1/4 4 Z 1/4
g [}¢H=1 d(Bk)] = [,E a/z(l ___k )(1—-0{)/2]

- 2aa/2(1 _ a)(l—a)/z
= 1 .
- 26(“/2(1 _ a)(l—a)lz Z?c:l kk

since the arithmetic mean exceeds the geometric mean;
= [2/(e*"*(1 — a)*~=")]-(1/L) .
This sequence of inequalities means:

L = [2/(@l - @)=")].

REMARK. When « = 1/2 that is, when L, U L, is a set of 4-fold
symmetry, the result of the theorem reads: L = 2/(1/4)V* = 4(1/4)"* in
agreement with Theorem (3.1).

I am grateful to the referee for supplying an abbreviated proof
for Theorem (2.2).
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