TENSOR PRODUCTS OF GROUP ALGEBRAS

Bernard R. Gelbaum

Let G, H, K be locally compact abelian groups where K is noncompact and both the quotient G / N^{G} where N^{G} is a compact (normal) subgroup and the quotient H / N^{H} where N^{H} is a compact (normal)' subgroup. Then in a natural fashion the group algebras $L_{1}(G)$ and $L_{1}(H)$ are modules over $L_{1}(K)$ and

$$
L_{1}(G) \boldsymbol{\bigotimes}_{L_{1}(K)} L_{1}(H) \cong L_{1}(K)
$$

In [2, 3, 4, 5] there are discussions of tensor products of Banach spaces and Banach algebras over the field © of complex numbers and over general Banach algebras. We note the following results to be found in these papers:
(i) If A, B, C are commutative Banach algebras and if A and B are bimodules over C (where $\|c a\| \leqq\|c\|\|a\|,\|c b\| \leqq\|c\|\|b\|, a \in A$, $b \in B, c \in C$) then the space \mathfrak{M}_{p} of maximal ideals of $D \equiv A \otimes_{0} B$ may be identified with a subset of $\mathfrak{M}_{A} \times \mathfrak{M}_{B}$ as follows:

$$
\mathfrak{M}_{D}=\left\{\left(M_{A}, M_{B}\right): M_{A} \in \mathfrak{M}_{A}, M_{B} \in \mathfrak{M}_{B}, \mu\left(M_{A}\right)=\nu\left(M_{B}\right) \neq \text { null map }\right\} .
$$

(Here μ and ν are continuous mappings of \mathfrak{M}_{A} and \mathfrak{M}_{B} into $\mathfrak{M}_{C}^{\circ}=$ the maximal ideal space of C with the null map adjoined. These maps are defined as follows: If $a \in A, b \in B, c \in C$ then

$$
\begin{aligned}
a^{\wedge}\left(M_{A}\right) c^{\wedge}\left(\mu\left(M_{A}\right)\right) & =c a^{\wedge}\left(M_{A}\right) \\
b^{\wedge}\left(M_{B}\right) c^{\wedge}\left(\nu\left(M_{B}\right)\right) & =c b^{\wedge}\left(M_{B}\right) .
\end{aligned}
$$

Finally

$$
\begin{aligned}
c(a \otimes b)^{\wedge}\left(M_{A}, M_{B}\right) & =c^{\wedge}\left(\mu\left(M_{A}\right)\right) a^{\wedge}\left(M_{A}\right) b^{\wedge}\left(M_{B}\right) \\
& =c^{\wedge}\left(\nu\left(M_{B}\right)\right) a^{\wedge}\left(M_{A}\right) b^{\wedge}\left(M_{B}\right) .
\end{aligned}
$$

[3].)
(ii) If G, H, K are locally compact abelian groups and if $\theta_{G}: K \rightarrow G$, $\theta_{H}: K \rightarrow H$ are continuous homomorphisms with closed images, then $L_{1}(G)$ and $L_{1}(H)$ are $L_{1}(K)$-bimodules according to the formulas:

$$
\begin{aligned}
& c a(\xi)=\int_{K} a\left(\xi-\theta_{G}(\zeta)\right) c(\zeta) d \zeta, a \in L_{1}(G), c \in L_{1}(K) \\
& c b(\eta)=\int_{K} b\left(\eta-\theta_{H}(\zeta)\right) c(\zeta) d \zeta, b \in L_{1}(H), c \in L_{1}(K)
\end{aligned}
$$

Furthermore the mappings μ and ν of (i) are simply the dual mappings

$$
\begin{aligned}
& \theta_{G}^{\widehat{G}}: G^{\wedge} \rightarrow K^{\wedge} \\
& \theta_{H}^{\wedge}: H^{\wedge} \rightarrow K^{\wedge}
\end{aligned}
$$

of the character groups in question, [3, 4]. Finally,

$$
L_{1}(G) \boldsymbol{\otimes}_{L_{1}(K)} L_{1}(H) \cong L_{1}(\mathbb{S})
$$

where

$$
\text { (3) }=G \times H /\left(\theta_{G} \times \tilde{\theta}_{H}\right) \text { diagonal }(K \times K) \text { and } \tilde{\theta}_{H}(\zeta)=\theta_{H}(-\zeta) .
$$

Loosely phrased, this says that the tensor product of group algebras is the group algebra of the tensor product of the groups.

The above results lead to the study of a similar (somewhat dual) situation described as follows:

Let G, H, K be locally compact abelian groups and let $\theta^{\theta}: G \rightarrow K$, $\theta^{H}: H \rightarrow K$ be continuous open homomorphisms with closed images. In what circumstances can $L_{1}(G)$ and $L_{1}(H)$ be made $L_{1}(K)$-bimodules relative to the mappings θ^{G} and θ^{H} ? When these circumstances obtain, what is \mathfrak{M}_{D}, where $D=L_{1}(G) \boldsymbol{\otimes}_{L_{1}(\mathbb{K})} L_{1}(H)$? Is there a group $(\mathbb{S}$ such that $D=L_{1}(\mathbb{S})$?

We shall give answers to these questions in the following sections.
2. Examples. (i) Let G and K be compact abelian groups and let $\theta^{\theta}: G \rightarrow K$ be epic. Then define $L_{1}(G)$ as an $L_{1}(K)$-bimodule by:

$$
c a(\xi)=\int_{G} a\left(\xi-\xi_{1}\right) \widetilde{c}\left(\xi_{1}\right) d \xi_{1}
$$

where $a \in L_{1}(G), c \in L_{1}(K) \quad$ and $\quad \widetilde{c}(\xi)=c\left(\theta^{a}(\xi)\right), \widetilde{c}(\eta)=c\left(\theta^{H}(\eta)\right)$. (The above is defined first for continuous functions and then for arbitrary integrable functions by standard extension techniques.) Then

$$
\|c a\|=\|\widetilde{\boldsymbol{c}} * a\| \leqq\|\widetilde{\boldsymbol{c}}\|\|a\|
$$

However, the map $F: c \rightarrow \int_{G} \widetilde{c}\left(\xi_{1}\right) d \xi_{1}$ is a translation-invariant integral on $L_{1}(K)$. Thus we may and do assume

$$
\int_{G} \widetilde{c}\left(\xi_{1}\right) d \xi_{1}=\int_{K} c(\zeta) d \zeta
$$

and we conclude: $\|c a\| \leqq\|c\|\|a\|$.
(ii) Let $G=K=\mathfrak{R}=$ the set of real numbers. Let $\theta^{G}(\xi)=2 \xi$. Then for $c \in L_{1}(K)$ and $a \in L_{1}(G)$ let

$$
c a(\xi)=\int_{-\infty}^{+\infty} a\left(\xi-\xi_{1}\right) c\left(2 \xi_{1}\right) d \xi_{1} .
$$

In this case $\|c a\| \leqq \frac{1}{2}\|c\|\|a\|$.
(iii) If θ^{θ} is not epic $F: L_{1}(K) \rightarrow(\mathbb{S}$ as defined in (i) need not be an invariant integral. For example, if $G=\{0\}$ and if K is an arbitrary nontrivial compact abelian group, then, for c continuous,

$$
F(c)=\int_{\theta} \widetilde{c}(\xi) d \xi=c(0)
$$

If $\zeta_{0} \in K$ and if $c_{0}(\zeta)=c\left(\zeta+\zeta_{0}\right)$, then

$$
F\left(c_{0}\right)=c_{0}(0)=c\left(\zeta_{0}\right)
$$

Thus, choosing c continuous and such that $c(0) \neq c\left(\zeta_{0}\right)$ we find F is not translation-invariant.
(iv) If G is not compact, if K is compact and even if θ^{G} is epic, then the action of $L_{1}(K)$ on $L_{1}(G)$ is not definable in the manner considered. Indeed, if $c(\zeta) \equiv 1$, and if $a \in L_{1}(G)$ we see

$$
\begin{aligned}
c a(\xi) & =\int_{G} \alpha\left(\xi-\xi_{1}\right) \widetilde{c}\left(\xi_{1}\right) d \xi_{1} \\
& =\int_{G} \alpha(\xi) d \xi
\end{aligned}
$$

since $\widetilde{\boldsymbol{c}}\left(\xi_{1}\right)=c\left(\theta^{G}\left(\xi_{1}\right)\right) \equiv 1$. If, as we may, we choose a so that

$$
\int_{G} a(\xi) d \xi \neq 0
$$

then $c a \notin L_{1}(G)$.
Remark. Even if both G and K are not compact but if F is an invariant integral, the kernel of θ^{g} is compact. To prove this we assume, as we may, that Haar measures are adjusted so that

$$
\int_{K} c(\zeta) d \zeta=\int_{G} \widetilde{c}(\xi) d \xi=\int_{H} \widetilde{c}(\eta) d \eta .
$$

Furthermore, we may assume Haar measures on K and on $\operatorname{ker}\left(\theta^{\theta}\right) \equiv N^{G}$ have been adjusted so that for $a \in L_{1}(G)$

$$
\int_{G} a(\xi) d \xi=\int_{K}\left(\int_{N^{G}} a(\xi+\rho) d \rho\right) d \zeta
$$

where ζ is the variable of integration on $K=G / N^{a}$. Since

$$
\int_{N^{G}} a(\xi+\rho) d \rho
$$

is constant on cosets of N^{G}, it may be regarded as a function of ζ. Then we find for any nontrivial nonnegative c in $L_{1}(K)$:

$$
\begin{aligned}
\int_{G} \widetilde{c}(\xi) d \xi & =\int_{K}\left(\int_{N^{G}} c\left(\theta^{G}(\xi+\rho)\right) d \rho\right) d \zeta \\
& =\int_{K} c(\zeta) d \zeta \cdot \int_{N^{G}} 1 d \rho
\end{aligned}
$$

since $\rho \in \operatorname{ker} \theta^{\theta}$. Hence N^{G} must be compact, since otherwise

$$
\int_{N^{G}} 1 d \rho=+\infty=\int_{G} \widetilde{c}(\xi) d \xi=\int_{K} c(\zeta) d \zeta,
$$

a contradiction.
3. The main formula. In view of the conclusions of the preceding section, we posit the following situation:
(i) G, H, K are locally compact abelian groups.
(ii) $\theta^{\theta}: G \rightarrow K, \theta^{H}: H \rightarrow K$ are continuous open epimorphisms.
(iii) $\quad L_{1}(G)$ and $L_{1}(H)$ are bimodules over $L_{1}(K)$ according to the actions:

$$
\begin{aligned}
& c a(\xi)=\widetilde{c} * a \\
& c b(\eta)=\widetilde{c} * b
\end{aligned}
$$

where $a \in L_{1}(G), b \in(H)$ and $c \in L_{1}(K)$. (Recall that

$$
\left.\widetilde{c}(\xi)=c\left(\theta^{G}(\xi)\right), \widetilde{c}(\eta)=c\left(\theta^{H}(\eta)\right) .\right)
$$

(iv) Haar measures are adjusted so that the functionals

$$
\begin{aligned}
& F_{G}: c \rightarrow \int_{G} c\left(\theta^{\theta}(\xi)\right) d \xi=\int_{\theta} \widetilde{c}(\xi) d \xi \\
& F_{H}: c \rightarrow \int_{H} c\left(\theta^{H}(\eta)\right) d \eta=\int_{H} \widetilde{c}(\eta) d \eta
\end{aligned}
$$

are translation-invariant integrals.
The argument used in the remark following (iv) of §2 shows:
If F is an invariant integral then

$$
\int_{G}|\widetilde{c}(\xi)| d \xi+\int_{H}|\widetilde{c}(\eta)| d \eta<+\infty
$$

if and only if N^{G} and N^{H} are compact.
In effect, we assume G, H, K are locally compact abelian groups and K is a noncompact quotient of both G and H by compact (normal) subgroups N^{G} and N^{H}.

Thus there is a wealth of concrete examples of the type that concerns us, e.g., $G=K \times N^{G}, H=K \times N^{H}$ where N^{G} and N^{H} are compact, K is locally compact and not compact and all groups are abelian.

In these circumstances

$$
D \equiv L_{1}(G) \boldsymbol{\otimes}_{L_{1}(K)} L_{1}(H) \cong L_{1}(K)
$$

The formula is the conclusion of a sequence of lemmas. We recall that an interpretation of the results quoted in $\S 1$ may be given as follows:
(a)

$$
\begin{aligned}
\mathfrak{M}_{L_{1}(G)} & =G^{\wedge} \\
\mathfrak{M}_{L_{1}^{\prime}(H)} & =H^{\wedge} \\
\mathfrak{M}_{L_{1}(K)} & =K^{\wedge}
\end{aligned} .
$$

(b) There are mappings

$$
\begin{aligned}
& \mu: G^{\wedge} \rightarrow K^{\wedge} \cup\{\text { null map }\} \\
& \nu: H^{\wedge} \rightarrow K^{\wedge} \cup\{\text { null map }\}
\end{aligned}
$$

and

$$
\mathfrak{M}_{D}=\left\{(\alpha, \beta): \alpha \in G^{\wedge}, \beta \in H^{\wedge}, \mu(\alpha)=\nu(\beta) \neq \text { null map }\right\} .
$$

Furthermore

$$
\begin{aligned}
c a^{\wedge}(\alpha) & =a^{\wedge}(\alpha) c^{\wedge}(\mu(\alpha)), a \in L_{1}(G), c \in L_{1}(K), \\
c b^{\wedge}(\beta) & =b^{\wedge}(\beta) c^{\wedge}(\nu(\beta)), b \in L_{1}(H), c \in L_{1}(K), \\
\tilde{c}^{\wedge}(\alpha) & =c^{\wedge}(\mu(\alpha)), \tilde{c}^{\wedge}(\beta)=c^{\wedge}(\nu(\beta))
\end{aligned}
$$

Although we need never consider a pair (α, β) such that $\mu(\alpha)=$ $\nu(\beta)=$ the null map sending $L_{1}(K)$ into 0 , we shall have occasion to consider $\mu(\alpha)$ for all α and $\nu(\beta)$ for all β. Thus we shall interpret $c^{\wedge}(\mu(\alpha))$ and $c^{\wedge}(\nu(\beta))$ to be 0 if $\mu(\alpha)=\nu(\beta)=$ the null map, even though, since c^{\wedge} is a function on K^{\wedge}, " $c \wedge$ (null map)" is not defined.

Lemma 3.1. The $\operatorname{map} L_{1}(K) \ni c(\zeta) \rightarrow \widetilde{c}(\xi) \equiv c\left(\theta^{a}(\xi)\right) \in L_{1}(G)$ is an isometric monomorphism. The image $L_{1}(K)^{G}$ of this map is a closed ideal in $L_{1}(G) . \quad$ Finally, $\mu^{-1}($ null map $)=h\left(L_{1}(K)^{\boldsymbol{f}}\right) \equiv$ hull $\left(L_{1}(K)^{\boldsymbol{q}}\right)$.

Proof. The algebraic and metric properties of the mapping are clear. To show $L_{1}(K)^{G}$ is an ideal (as the image of a complete space under an isometry $L_{1}(K)^{G}$ is closed) we consider c in $L_{1}(K)$ and a in $L_{1}(G)$. Then

$$
\begin{aligned}
a * \widetilde{c} & =\int_{G} a\left(\xi-\xi_{1}\right) c\left(\theta^{G}\left(\xi_{1}\right)\right) d \xi_{1} \\
& =\int_{G} a\left(\xi_{2}\right) c\left(\theta^{G}\left(\xi-\xi_{2}\right)\right) d \xi_{2}
\end{aligned}
$$

If $c_{1}(\zeta)=\int_{\theta} a\left(\xi_{2}\right) c\left(\zeta-\theta^{a}\left(\xi_{2}\right)\right) d \xi_{2}$, then c_{1} is in $L_{1}(K)$ and $\widetilde{c}_{1}=a * \tilde{c}$. Finally, if $\mu(\alpha)=$ (null map), then $c^{\wedge}(\mu(\alpha)) \equiv 0$ for all c in $L_{1}(K)$.

However, for a in $L_{1}(K)$ and such that $a^{\wedge}(\alpha) \neq 0$,

$$
c a^{\wedge}(\alpha)=a^{\wedge}(\alpha) c^{\wedge}(\mu(\alpha))=a^{\wedge}(\alpha) \int_{\theta} \widetilde{c}(\xi) \overline{(\xi, \alpha)} d \xi
$$

or

$$
0=\widetilde{c}^{\wedge}(\mu(\alpha))=\widetilde{c}^{\wedge}(\alpha)
$$

Thus $\alpha \in h\left(L_{1}(K)^{g}\right)$, i.e., μ^{-1} (null map) $\subset h\left(L_{1}(K)^{G}\right)$.
Conversely, if $\alpha \in h\left(L_{1}(K)^{f}\right)$, then $\widetilde{c}^{\wedge}(\alpha) \equiv 0$ for all c in $L_{1}(K)$. The above formulas show $c^{\wedge}(\mu(\alpha)) \equiv 0$ for all c in $L_{1}(K)$, whence $\mu(\alpha)=$ (null map) and we conclude μ^{-1} (null map) $=h\left(L_{1}(K)^{G}\right)$.

Let $\hat{\theta}^{G}, \hat{\theta}^{H}$ be the duals of the maps θ^{G}, θ^{H}. Thus, e.g., $\left(\hat{\xi}, \hat{\theta}^{G}(\gamma)\right)=$ $\left(\theta^{G}(\xi), \gamma\right)$ for all $\gamma \in \hat{K}$. If S is a set in G, let $S^{\llcorner }$be the "annihilator" of S, i.e., the set of α in \widehat{G} such that $(s, \alpha)=1$ for all $s \in S$. We prove

Lemma 3.2. (a) $N^{G L}=\hat{\theta}^{G} \hat{K}$;
(b) $\widehat{G}=N^{G \perp} \cup h\left(L_{1}(K)^{G}\right), \emptyset=N^{G \perp} \cap h\left(L_{1}(K)^{G}\right) ;$
(c) $\mu: N^{G_{\perp}} \rightarrow \hat{K}$ is an isomophism [6, p. 103].

Proof. (a) If $\xi \in N^{G}$ then $\theta^{G}(\xi)=$ identity and $\left(\theta^{G}(\xi), \gamma\right)=1$ for all $\gamma \in \hat{K}$. Thus $\hat{\theta}^{G}(\hat{K}) \subset N^{\sigma_{\perp}}$. If $\alpha \in N^{\sigma_{\perp}}$, then for all $\xi \in N^{G},(\xi, \alpha)=1$. If $\alpha \notin \hat{\theta}^{G}(\hat{K})$, then, since $\hat{\theta}^{G}(\hat{K})$ is closed, there is a ξ_{0} such that

$$
\left(\xi_{0}, \alpha\right) \neq 1,\left(\xi_{0}, \hat{\theta}^{G}(\hat{K})\right)=1=\left(\theta^{G}\left(\xi_{0}\right), \hat{K}\right) \text {, i.e., } \xi_{0} \in N^{G},
$$

a contradiction. Thus $\hat{\theta}^{G}(\hat{K})=N^{G \perp}, \mu\left(N^{G_{\perp}}\right)=\mu\left(\hat{\theta}^{G}(\hat{K})\right)=\hat{K}$.
(b) and (c) If $\alpha_{0} \notin N^{G \perp}$ then $\mu\left(\alpha_{0}\right)=$ (null map). For if $\alpha_{0} \oplus N^{G \perp}$, then α_{0} may be regarded as a nontrivial character of the compact group N^{G}. Thus $\int_{N^{G}}\left(\xi+\rho, \alpha_{0}\right) d \rho=\int_{N^{G}}\left(\xi, \alpha_{0}\right)\left(\rho, \alpha_{0}\right) d \rho=0$. Hence if $c \in L_{1}(K)$ then

$$
\begin{aligned}
c^{\wedge}\left(\mu\left(\alpha_{0}\right)\right) & =\int_{G} c\left(\theta^{G}(\xi)\right) \overline{\left(\xi, \alpha_{0}\right)} d \xi \\
& =\int_{K}\left(\int_{N^{G}} c\left(\theta^{G}(\xi+\rho)\right)\left(\xi+\rho, \alpha_{0}\right) d \rho\right) d \xi \\
& =\int_{K} c(\zeta)\left(\int_{N^{G}}\left(\xi+\rho, \alpha_{0}\right) d \rho\right) d \zeta=0 .
\end{aligned}
$$

Thus $\mu\left(\alpha_{0}\right)=$ (null map), and $\hat{G} \backslash N^{G \perp} \subset h\left(L_{1}(K)^{G}\right)$. On the other hand if α is in $h\left(L_{1}(K)^{G}\right)$ then α is not in $N^{G \perp}$. Otherwise, α may be viewed as some γ in \hat{K} and thus for c in $L_{1}(K)$ we have

$$
\begin{aligned}
\widetilde{c}^{\wedge}(\alpha)=0 & =\int_{G} c\left(\theta^{G}(\xi)\right) \overline{(\xi, \alpha)} d \xi \\
& =\int_{K}\left(\int_{N^{G}} c\left(\theta^{G}(\xi+\rho)\right) \overline{(\xi+\rho, \alpha)} d \rho\right) d \zeta \\
& =\int_{K} c(\zeta) \overline{(\zeta, \gamma)} d \zeta \int_{N^{G}} 1 d \rho .
\end{aligned}
$$

Hence $c^{\wedge}(\gamma)=0$ for all c in $L_{1}(K)$, a contradiction. Thus $\hat{G} / N^{a_{\perp}}=$ $h\left(L_{1}(K)^{G}\right)$ and we conclude the truth of (b).

Next, if $\hat{\theta}^{G}(\gamma)=\alpha$ then for c in $L_{1}(K)$ and a in $L_{1}(G)$

$$
\begin{aligned}
c a^{\wedge}(\alpha) & =a^{\wedge}(\alpha) \int_{G} c\left(\theta^{G}(\xi)\right) \overline{\left(\xi, \hat{\theta}^{G}(\gamma)\right)} d \xi \\
& =a^{\wedge}(\alpha) c^{\wedge}(\gamma)
\end{aligned}
$$

Hence, $c^{\wedge}(\mu(\alpha))=\imath^{\wedge}(\gamma)$ and $\mu(\alpha)=\gamma=\mu \hat{\theta}^{G}(\gamma)$.
Clearly

$$
\begin{aligned}
\mu\left(\hat{\theta}^{G}\left(\gamma_{1}\right) \hat{\theta}^{G}\left(\gamma_{2}\right)\right) & =\mu\left(\hat{\theta}^{G}\left(\gamma_{1} \gamma_{2}\right)\right)=\gamma_{1} \gamma_{2} \\
& =\mu \hat{\theta}^{G}\left(\gamma_{1}\right) \mu \hat{\theta}^{G}\left(\gamma_{2}\right)
\end{aligned}
$$

Thus μ is an epimorphism of $\hat{\theta}^{G}(K)^{\wedge}$ onto K^{\wedge} and $\mu \hat{\theta}^{G}$ is the identity. It follows that μ is one-to-one on $\hat{\theta}^{G}(K)$ and furthermore that $\hat{\theta}^{G} \mu$ is the identity on $\hat{\theta}^{G} K: \hat{\theta}^{G} \mu\left(\hat{\theta}^{G}(\gamma)\right)=\hat{\theta}^{G}(\gamma)$.

Combining our results to this point we see that

$$
\mathfrak{M}_{D}=\operatorname{diag}\left(K^{\wedge} \times K^{\wedge}\right) \cong K^{\wedge} .
$$

It follows that K is a reasonable candidate for the group (8) such that $D \cong L_{1}(\mathbb{S})$. Indeed, if \mathfrak{G} is such a group then $\mathscr{S H}^{\wedge}=\mathfrak{M}_{D}$. Since $\mathfrak{M}_{D}=K^{\wedge}$, we conclude $(\mathfrak{G}=K$.

We shall now define a map $T: D \rightarrow L_{1}(K)$. As usual T is defined on

$$
\begin{aligned}
\mathfrak{F} & \equiv F_{L_{1}(K)}\left(L_{1}(G), L_{1}(H)\right) \\
& =\left\{f: f: L_{1}(G) \times L_{1}(H) \rightarrow L_{1}(K),\|f\|\right. \\
& \left.\equiv \sum_{(a, b)}\|f(a, b)\|\|a\|\|b\|<\infty, f(0, b)=f(a, 0)+0\right\}
\end{aligned}
$$

[2, 3]. Thus if $c(a, b)$ is the function taking the value c at (a, b) we set

$$
T(c(a, b))=\int_{N^{G}} c a(\xi+\rho) d \rho * \int_{N^{H}} b(\eta+\sigma) d \sigma
$$

where $N^{H}=\operatorname{ker}\left(\theta^{H}\right)$. We note that each of the integrals above is a function on K and hence so is the indicated convolution. It is a simple matter to verify that when T is extended by linearity it is a
bounded epimorphism of the algebra \mathfrak{F} onto $L_{1}(K)$ and that T annihilates the reducing ideal I, modulo which the algebra \mathfrak{F} is D. (The surjectivity of T follows from the fact that the integrals $\int_{N^{G}} \equiv T_{G}$ and $\int_{N^{H}} \equiv T_{H}$ are epimorphisms, from a simple application of approximate identities and from P. J. Cohen's factorization theorem [1, 3, 4].)

We show now for T, which may be regarded as a mapping of D onto $L_{1}(K)$,

Lemma 3.3. T is an isomorphism if and only if D is semisimple.
Proof. Clearly, if T is an isomorphism then D is semisimple.
Conversely, if D is semisimple and if $T(z)=0$, where $z=$ $\sum_{n=1}^{\infty} c_{n}\left(a_{n} \otimes b_{n}\right)[2,3]$, then for any γ in $K^{\wedge}, T^{\wedge}(z)(\gamma)=0$. Thus

$$
\begin{aligned}
T^{\wedge}(z)(\gamma) & =\sum_{n=1}^{\infty} \widehat{\left.T_{G}\left(c_{n} a_{n}\right)(\gamma) \widehat{T_{H}\left(b_{n}\right)}\right)(\gamma)} \\
& \left.\left.=\sum_{n=1}^{\infty} \widehat{c_{n}}(\gamma) \widehat{T_{G}\left(a_{n}\right)}\right)(\gamma) \widehat{T_{H}\left(b_{n}\right.}\right)(\gamma)=0
\end{aligned}
$$

However,

$$
\begin{aligned}
T_{G}^{\wedge}(\alpha)(\gamma) & =\int_{K} T_{G}(\alpha)(\zeta) \overline{(\zeta, \gamma)} d \zeta \\
& =\int_{K}\left(\int_{N^{G}} a(\xi+\rho) d \rho\right) \overline{(\zeta, \gamma)} d \zeta \\
& =\int_{K}\left(\int_{N^{G}} \alpha(\xi+\rho) \overline{(\xi+\rho, \gamma)} d \rho\right) d \zeta \\
& =a^{\wedge}(\alpha)
\end{aligned}
$$

where $\alpha=\hat{\theta}^{G}(\gamma)$. After similar arguments about T_{H} we find

$$
T^{\wedge}(z)(\gamma)=\sum_{n=1}^{\infty} \hat{n}_{n}^{\wedge}(\gamma) \widehat{a_{n}}(\alpha) b_{n}^{\wedge}(\beta)
$$

where $\beta=\hat{\theta}^{B}(\gamma)$. In other words $T^{\wedge}(z)(\gamma)=z^{\wedge}(\alpha, \beta)$ where $\mu(\alpha)=$ $\gamma(\beta)$ and (α, β) corresponds to an element of \mathfrak{M}_{D}. Since $T^{\wedge}(z)(\gamma) \equiv 0$ for all γ, we find $z^{\wedge}(\alpha, \beta) \equiv 0$ for all (α, β) corresponding to elements of \mathfrak{M}_{D}. The semisimplicity assumption now shows $z=0$ and hence that T is an isomorphism.

We now conclude by proving
Lemma 3.4. D is semisimple.
Proof. Let z belong to the radical of D. As in [3, 4] we may assume that z is of the form $\sum_{n=1}^{\infty} c_{n}\left(\alpha_{n} \otimes b_{n}\right)$ where, for fixed compact
sets U, V, W in $G^{\wedge}, H^{\wedge}, K^{\wedge}$ and for all n, support $\widehat{a_{n}}(\alpha) \subset U$, support $b_{n}^{\hat{}}(\beta) \subset V$, and support $\widehat{c_{n}}(\gamma) \subset W$. Furthermore, we may assume that each c_{n} is of the form $c_{n 1} * c_{n 2} * c_{n 3}$ and thus in effect that

$$
z=\sum_{n=1}^{\infty} c_{n 1}\left(c_{n 2} a_{n} \otimes c_{n 3} b_{n}\right)
$$

where support $\widehat{\hat{n 1}_{11}}(\gamma) \subset W$.
Since $L_{1}(K)^{G}$ is an ideal in $L_{1}(G)$ and since there is a corresponding statement for $L_{1}(K)^{H}$, we conclude that there are elements $d_{n 2}, d_{n 3}$ in $L_{1}(K)$ such that $\widetilde{d}_{n 2}(\xi)=c_{n 2} a_{n}(\xi), \widetilde{d}_{n 3}(\eta)=c_{n 3} b_{n}(\eta)$.

Furthermore, $\widetilde{d}_{n_{2}}^{\wedge}(\alpha)=d_{n 2}(\mu(\alpha)), \widetilde{d}_{n_{3}}^{\wedge}(\beta)=d_{n 3}(\nu(\beta))$, and $d_{n_{2}}^{\wedge}(\gamma) \neq 0$, or $d_{n 3}^{\widehat{ }}(\gamma) \neq 0$ implies $d_{n 2}^{\wedge}\left(\mu \hat{\theta}^{G}(\gamma)\right)=\widetilde{d}_{n_{2}}\left(\hat{\theta}^{G}(\gamma)\right) \neq 0$, etc., i.e., that $\gamma \in \mu$ (support $\widetilde{d}_{n 2}$), etc. Thus there is a fixed compact set Y containing the supports of all $\widehat{c_{n 1}}, \widehat{c_{n 2}}, \widehat{c_{n 3}}, \widehat{d_{n 1}}, \widehat{d_{n 2}}, \widehat{d_{n 3}}$. Hence there is a fixed c in $L_{1}(K)$ such that $c^{\wedge}(\gamma) \equiv 1$ on Y, support $c^{\wedge}(\gamma)$ is compact and

$$
0 \leqq c^{\wedge}(\gamma) \leqq 1
$$

For this c it is true that $c_{n j}=c_{n j} * c, d_{n j}=d_{n j} * c, j=1,2,3$. Thus we find

$$
\begin{aligned}
z & =\sum_{n=1}^{\infty} c_{n}\left(d_{n} \otimes b_{n}\right)=\sum_{n=1}^{\infty} c_{n 1}\left(c_{n 2} a_{n} \otimes c_{n 3} b_{n}\right) \\
& =\sum_{n=1}^{\infty} c_{n 1}\left(d_{n 2} \otimes d_{n 3}\right)=\sum_{n=1}^{\infty} c_{n 1}\left(d_{n 2} c \otimes d_{n 3} c\right) \\
& =\left(\sum_{n=1}^{\infty} c_{n 1} d_{n 2} d_{n 3}\right)(c \otimes c) .
\end{aligned}
$$

However, for all γ in K^{\wedge}

$$
c_{n 1} \widehat{d_{n 2}} d_{n 3}(\gamma)=\widehat{c_{n 1}}(\gamma) d_{m_{2}}(\gamma) d_{n 3}(\gamma) .
$$

Furthermore

$$
\begin{aligned}
& d_{n 2}(\zeta)=\int_{G} a_{n}(\xi) c_{n 2}\left(\zeta-\theta^{G}(\xi)\right) d \xi \\
& d_{n 3}(\zeta)=\int_{B} b_{n}(\eta) c_{n 3}\left(\zeta-\theta^{H}(\eta)\right) d \eta
\end{aligned}
$$

Thus

$$
\begin{aligned}
{d_{n 2}^{\wedge}}^{(\gamma)} & =\int_{\sigma} \int_{K} a_{n}(\xi) c_{n 2}\left(\zeta-\theta^{G}(\xi)\right) \overline{(\zeta, \gamma)} d \xi d \zeta \\
& =\int_{G} \int_{K} a_{n}(\xi) c_{n 2}\left(\zeta_{1}\right) \overline{\left(\zeta_{1}, \gamma\right)\left(\theta^{G}(\xi), \gamma\right)} d \xi_{1} d \zeta \\
& =\widehat{a_{n}}\left(\widehat{\theta^{G}}(\gamma)\right) c_{n 2}(\gamma)
\end{aligned}
$$

and similarly $\widehat{d_{n 3}}(\gamma)=b_{n}\left(\hat{\theta}^{H}(\gamma)\right) c_{n 3}(\gamma)$. We see then that

$$
\left.\widehat{c_{n 1}}(\gamma) \widehat{d_{n 2}}(\gamma) \widehat{d_{n 3}}(\gamma)=\widehat{c_{n 1}}(\gamma) \widehat{c_{n 2}}(\gamma) \widehat{a_{n}} \widehat{\left(\hat{\theta}^{G}\right.}(\gamma)\right) \widehat{c_{n 3}}(\gamma) \widehat{b_{n}}\left(\widehat{\theta^{B}}(\gamma)\right)
$$

and since $\mu \hat{\theta}^{G}(\gamma)=\nu \hat{\theta}^{B}(\gamma)=\gamma$ we conclude that

$$
\sum_{n=1}^{\infty} \hat{n}_{\hat{n} 1}(\gamma) d_{n 2}^{\widehat{2}}(\gamma) \widehat{d_{n 3}}(\gamma)=\widehat{z^{\wedge}}\left(\left\{\hat{\theta}^{G}(\gamma), \widehat{\theta^{H}}(\gamma)\right\}\right)
$$

which is zero as a consequence of our assumption. Thus $z=0$ and the semisimplicity of D is established.

Hence, in the context indicated above and suggested by the diagram

there obtains the formula

$$
L_{1}(G) \boldsymbol{\otimes}_{L_{1}(K)} L_{1}(H) \cong L_{1}(K)
$$

Bibliography

1. P. J. Cohen, Factorization in group algebras, Duke Math. J. 26 (1959), 199-206.
2. B. R. Gelbaum, Tensor products and related questions, Trans. Amer. Math. Soc. 103 (1962), 525-548.
3. -, Tensor products over Banach algebras, Trans. Amer. Math. Soc. 118 (1965), 131-149.
4. B. Natzitz, Tensor products over groups algebras, Doctoral dissertation, University of Minnesota, 1963 (to be published).
5. D. Spicer, Group algebras of vector-valued functions, Doctoral dissertation, University of Minnesota, 1965 (to be published).
6. A. Weil, L^{\prime} intégration dans les groupes topologiques et ses applications, Paris (1940).

Received July 20, 1966. This research was supported in part by NSF Grant \#5436.
University of California, Irvine

