MULTIPLY TRANSITIVE GROUPS OF TRANSFORMATIONS

James V. Whittaker

Abstract

A group G of homeomorphisms of a topological space X onto itself is called n-transitive if any set of n points in X can be mapped onto any other set of n points by some member of G. In this paper, we investigate the transitivity of G when X is euclidean m-space E^{m} or real projective m-space Π^{m}, and G properly contains the group A_{m} of affine transformations or the group P_{m} of projective transformations, respectively. We show that $G \supset A_{1}$ implies that G is at least 3 -transitive, $G \supset P_{1}$ implies that G is at least 4 -transitive, and, for a fairly wide class of groups, G is n-transitive for every n. For higher dimensional spaces, our information is considerably more meager. We show that $G \supset A_{m}$ or $G \supset P_{m}$ implies that G is at least 3 -transitive, and that if some member of G leaves fixed the points of some open set, then G is n-transitive for every n.

2. Multiple transitivity. Let X be a topological space and $H(X)$ the group of all homeomorphisms of X onto itself. The identity of $H(X)$ will be denoted by e. For each $h \in H(X)$, we set $K(h)=$ $\{x \in X: h(x)=x\}$, and observe that

$$
K\left(h_{1} h_{2}\right) \supset K\left(h_{1}\right) \cap K\left(h_{2}\right), \quad K\left(h_{1} h_{2} h_{1}^{-1}\right)=h_{1}\left(K\left(h_{2}\right)\right) .
$$

For any subgroup G of $H(X)$ and any $x \in X$, we call $G(x)=\{g(x): g \in G\}$ an orbit of G and note that orbits are either coincident or disjoint. When n is a positive integer, we define G to be n-transitive if, for any subsets $\left\{x_{1}, \cdots, x_{n}\right\},\left\{y_{1}, \cdots, y_{n}\right\}$ of n distinct points in X, we can find $g \in G$ such that $g\left(x_{i}\right)=y_{i}(i=1, \cdots, n)$. If g is unique, we call G strictly n-transitive. If G is n-transitive for every n, we will call $G \omega$-transitive. When X is a connected, locally euclidean manifold of dimension $m \geqq 2$, then $H(X)$ is clearly ω-transitive, but $H\left(E^{1}\right)$ is only 2 -transitive, and $H\left(\Pi^{1}\right)$ is only 3 -transitive under the above definition. To remedy this, we will modify the definition in these two cases by requiring that as i increases from 1 to n, x_{i} should move in the positive sense of orientation, and y_{i} should move in either the positive or negative sense. Thus $H(X)$ is also ω-transitive when $X=E^{1}$ or Π^{1}. The group $H^{+}(X)$ of orientation-preserving homeomorphisms of X evidently sends any positively oriented n-tuple into any other positively oriented n-tuple for every n. We will say that a subgroup G of $H^{+}(X)$ is n-transitive relative to $H^{+}(X)$ if G sends any positively oriented n-tuple into any other positively oriented n-tuple.

Lemma 1. Let X be a topological space and G a subgroup of $H(X)$. Suppose that, for each subset L of n points in X and each $x \in X-L$, the orbit $G_{0}(x)$ of the group $G_{0}=\{g \in G: L \subset K(g)\}$ has a nonempty interior in X. Then $G_{0}(x)$ contains a connected component of $X-L$.

Proof. Let $U \subset G_{0}(x)$ be an open subset of X, and $y \in G_{0}(x)$ be arbitrary. Then we can find $g_{1}, g_{2} \in G_{0}$ with the properties $g_{1}(x) \in U$ and $g_{2}(x)=y$. Thus $y=g_{2}(x) \in g_{2} g_{1}^{-1}(U) \subset G_{0}(x)$, and y lies in the interior of $G_{0}(x)$, so that $G_{0}(x)$ is open. The orbits of G_{0} are either coincident or disjoint, and no two of them can intersect the same connected component of $X-L$ unless they coincide. Since $e \in G_{0}$, we have $x \in G_{0}(x)$, and the orbits $G_{0}(x)$ cover $X-L$. Hence, each of them contains a connected component.

Lemma 2. With the same hypotheses as in Lemma 1, suppose X is a connected, locally euclidean manifold of dimension $m \geqq 2$, and G is n-transitive for some n. Then G is $(n+1)$-transitive.

Proof. To show that G is $(n+1)$-transitive, it is evidently sufficient to show that, for any points $x_{1}, \cdots, x_{n+1}, y_{n+1} \in X$, there is a $g \in G$ satisfying $g\left(x_{i}\right)=x_{i} \quad(i=1, \cdots, n)$ and $g\left(x_{n+1}\right)=y_{n+1}$. Since $X-\left\{x_{1}, \cdots, x_{n}\right\}$ is connected, this is precisely the conclusion of Lemma 1.

Lemma 3. With the same hypotheses as in Lemma 1, suppose $X=E^{1}, G$ is n-transitive for some $n \geqq 2$, and the condition " $x \in X-L$ " is replaced by " x lies to the right of L ". Then G is $(n+1)$-transitive. If $G \subset H^{+}\left(E^{1}\right)$ is n-transitive $(n \geqq 0)$ relative to $H^{+}\left(E^{1}\right)$, then G is ($n+1$)-transitive relative to $H^{+}\left(E^{1}\right)$.

Proof. Let $x_{1}<\cdots<x_{n+1}$ and either (i) $y_{1}<\cdots<y_{n+1}$ or (ii) $y_{1}>\cdots>y_{n+1}$ be given. In case (i), we choose $g_{1} \in G$ so that $g_{1}\left(x_{i}\right)=y_{i}$ $(i=1, \cdots, n)$. Since g_{1} is order-preserving, we have $g_{1}\left(x_{n+1}\right)>y_{n}$, and the same argument as in the proof of Lemma 1 shows that the orbit $G_{0}\left(g_{1}\left(x_{n+1}\right)\right)$ is the open interval $\left(y_{n}, \infty\right)$, where $G_{0}=\{g \in G$: $\left.\left\{y_{1}, \cdots, y_{n}\right\} \subset K(g)\right\}$. Thus we can find $g_{2} \in G_{0}$ satisfying $g_{2}\left(g_{1}\left(x_{n+1}\right)\right)=$ y_{n+1}, so that $g_{2} g_{1}\left(x_{i}\right)=y_{i}(i=1, \cdots, n+1)$. This also suffices to prove the last statement in the Lemma. In case (ii), we choose $g_{3} \in G$ so that $g_{3}\left(x_{i}\right)=y_{i}(i=2, \cdots, n+1)$. From $n \geqq 2$ we infer that g_{3} is order-reversing, whence $g_{3}\left(x_{1}\right)>y_{2}$, and we can find $g_{4} \in G$ satisfying $y_{i} \in K\left(g_{4}\right)(i=2, \cdots, n+1)$ and $g_{2}\left(g_{3}\left(x_{1}\right)\right)=y_{1}$. Thus $g_{4} g_{3}\left(x_{i}\right)=y_{i}$ ($i=1, \cdots, n+1$).

If, in the hypothesis of Lemma 3, " x lies to the right of L " is replaced by " x lies to the left of L ", then an argument similar to the preceding one yields the same conclusions.
3. Extensions of finite sets. Let L be a finite subset of an arbitrary subset M of a topological space X, and G a subgroup of $H(X)$. We set $M_{0}=M$ and, for $i \geqq 0$,

$$
M_{i+1}=\bigcup\left\{g\left(M_{i}\right) \cup g^{-1}\left(M_{i}\right): g \in G \text { and } g(L) \subset M_{i}\right\}
$$

Since $e \in G$ and $L \subset M_{0}$, we have $M_{0} \subset M_{1}$ and, in general, $M_{i} \subset M_{i+1}$. Thus $\left\{M_{i}\right\}$ is an increasing family of sets, and we shall call its union N the extension of M with respect to L and G. We observe that if $g \in G$ and $g(L) \subset N$, then $g(N)=N$. For $g(L)$ is finite and so is contained in some M_{k}, whence $g\left(M_{i}\right) \subset M_{i+1}$ and $g^{-1}\left(M_{i}\right) \subset M_{i+1}$ for each $i \geqq k$. Hence, $g(N) \subset N, g^{-1}(N) \subset N$, and $g(N)=N$.

Lemma 4. Suppose X is a Hausdorff space, L has n points, G is n-transitive and has the property that, for any net $\left\{g_{k}\right\}$ in G and any $g \in G, \lim _{k} g_{k}(x)=g(x)$ for all $x \in L$ implies

$$
\lim _{k} g_{k}(x)=g(x), \quad \lim _{k} g_{k}^{-1}(x)=g^{-1}(x), \quad x \in X
$$

Then $g(L) \subset \bar{N}$ implies $g(\bar{N})=\bar{N}$, where \bar{N} is the closure of N.
Proof. If $L=\left\{x^{1}, \cdots, x^{n}\right\}$ and $g(L) \subset \bar{N}$, then we can find a net $\left\{\left(x_{k}^{1}, \cdots, x_{k}^{n}\right)\right\}$ of n-tuples in N such that $\lim _{k} x_{k}^{i}=g\left(x^{i}\right)(i=1, \cdots, n)$. The n-transitivity of G implies that there are elements $g_{k} \in G$ satisfying $g_{k}\left(x^{i}\right)=x_{k}^{i}$ for each i and k. Thus

$$
\lim _{k} g_{k}\left(x^{i}\right)=\lim _{k} x_{k}^{i}=g\left(x^{i}\right), \quad i=1, \cdots, n
$$

implies

$$
\lim _{k} g_{k}(x)=g(x), \quad \lim _{k} g_{k}^{-1}(x)=g^{-1}(x), \quad x \in X
$$

From the remark preceding the lemma, $g_{k}(L) \subset N$ implies $g_{k}(x)$, $g_{k}^{-1}(x) \in N$ for $x \in N$, whence $g(x), g^{-1}(x) \in \bar{N}$ for $x \in N$. Consequently, $g(N) \subset \bar{N}, g(\bar{N}) \subset \bar{N}, g^{-1}(N) \subset \bar{N}, g^{-1}(\bar{N}) \subset \bar{N}$, and $g(\bar{N})=\bar{N}$.

Lemma 5. Let X be m-dimensional euclidean space E^{m}, G the group A_{m} of affine transformations defined on E^{m}, L consist of $m+1$ points which do not lie on any $(m-1)$-dimensional hyperplane, and $M \supset L$ consist of $m+2$ points. Then N is dense in E^{m}.

Proof. We recall that the elements a of A_{m} have the form
$a(x)=t+T x$, where $t \in E^{m}$, and T is a nonsingular linear transformation of E^{m} onto itself. Moreover, A_{m} is strictly ($m+1$)-transitive on ($m+1$)-tuples which do not lie on any ($m-1$)-dimensional hyperplane. We first consider the case $m=1$. The hypothesis of Lemma 4 is clearly satisfied with $n=2$. Let $L=\left\{x_{1}, x_{2}\right\}$ and $M=\left\{x_{1}, x_{2}, x_{3}\right\}$. Evidently we can arrange the indices so that either (i) $x_{1}<x_{2}, x_{1}<x_{3}$ or (ii) $x_{1}>x_{2}, x_{1}>x_{3}$. We will complete the proof for case (i); case (ii) is handled in exactly the same way. Choose $a_{1} \in A_{1}$ so that $a_{1}\left(x_{1}\right)=x_{1}$ and $a_{1}\left(x_{2}\right)=x_{3}$. Then $a_{1}(L) \subset N$, and the remark preceding Lemma 4 implies that $a_{1}(N)=N$. Indeed, $a_{1}^{k}(N)=N$ for any integer k, where a_{1}^{k} is the k-th iterate of a_{1}. Now a_{1} is order-preserving and has just one fixed point at x_{1}, so that $\left\{a_{1}^{k}\left(x_{2}\right):-\infty<k<+\infty\right\}$ has x_{1} and $+\infty$ as limit points. In other words, N contains a sequence which converges to x_{1} from the right and another which converges to $+\infty$. If $\bar{N} \neq E^{1}$, then $E^{1}-\bar{N}$ is the union of disjoint open intervals. Let $I=(\lambda, \mu)$ be one of these, where we allow $\lambda=-\infty$ or $\mu=+\infty$. If $\lambda \neq-\infty$, we can find $a_{2} \in A_{1}$ satisfying $a_{2}\left(x_{1}\right)=\lambda$ and $\lambda<a_{2}\left(x_{2}\right) \in N$, whence a_{2} is order-preserving, $a_{2}(L) \subset \bar{N}, a_{2}(\bar{N})=\bar{N}$, and $a_{2}^{-1}(I) \subset E^{1}-\bar{N}$. But $a_{2}^{-1}(\lambda)$ is the left endpoint of $a_{2}^{-1}(I)$, while $a_{2}^{-1}(\lambda)=x_{1}$ has a sequence in \bar{N} converging to it from the right, so that part of this sequence must lie in $\alpha_{2}^{-1}(I)$, which is impossible. If $\lambda=-\infty$, then $\mu \leqq x_{1}$, and we choose $a_{3} \in A_{1}$ so that $a_{3}\left(x_{2}\right)=x_{2}, x_{1}<a_{3}\left(x_{1}\right) \in N$, and $a_{3}\left(x_{1}\right)<x_{2}$. Thus a_{3} is order-preserving, $a_{3}(L) \subset N, a_{3}(N)=N$, and $a_{3}(I) \subset E^{1}-\bar{N}$. But $a_{3}(\mu)>\mu$, and $a_{3}(\mu)$ is the right endpoint of $a_{3}(I)$, whence $\mu \in a_{3}(I)$, which is impossible. Therefore, $\bar{N}=E^{1}$.

We now proceed by induction on m. Suppose the lemma has been proved in all dimensions less than a certain m,

$$
L=\left\{x_{1}, \cdots, x_{m+1}\right\} \subset\left\{x_{0}, x_{1}, \cdots, x_{m+1}\right\}=M \subset E^{m}
$$

and L does not lie on any $(m-1)$-dimensional hyperplane. We can arrange the indices in L so that either (i) x_{0} lies on the ($m-1$)dimensional hyperplane X determined by x_{2}, \cdots, x_{m+1}, or (ii) x_{0} and x_{1} lie on the same side of X. To see this, we set up a coordinate system in E^{m} in which the points of L are the origin and unit points on the coordinate axes. If each point of L lay on the side opposite x_{0} of the ($m-1$)-dimensional hyperplane through the remaining points of L, then all the coordinates of x_{0} would be negative, while x_{0} lay on the side opposite the origin of the hyperplane through the unit points, which is impossible. In case (ii), choose $a_{0} \in A_{m}$ so that $a_{0}\left(x_{1}\right)=x_{0}$ and $a_{0}\left(x_{i}\right)=x_{i}(i=2, \cdots, m+1)$. We will show that $x_{1}, a_{0}\left(x_{1}\right)$, and $a_{0}^{2}\left(x_{1}\right)$ are collinear. Since $K\left(a_{0}\right)=X$, we can refer $a_{0}(x)=t_{0}+T_{0} x$ to a coordinate system in E^{m} relative to which $x_{1}=(0, \cdots, 0,1), X$ is the set of points with last coordinate $0, t_{0}=(0, \cdots, 0)$, and T_{0} has
the form

$$
T_{0}=\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & \alpha_{1} \\
0 & 1 & 0 & \cdots & \alpha_{2} \\
0 & 0 & 1 & \cdots & \alpha_{3} \\
\cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & \alpha_{m}
\end{array}\right)
$$

$$
\alpha_{m}>0
$$

Thus we have

$$
\begin{aligned}
& a_{0}\left(x_{1}\right)=\left(\alpha_{1}, \cdots, \alpha_{m-1}, \alpha_{m}\right), \\
& a_{0}^{2}\left(x_{1}\right)=\left(\alpha_{1}\left(1+\alpha_{m}\right), \cdots, \alpha_{m-1}\left(1+\alpha_{m}\right), \alpha_{m}^{2}\right) \\
& a_{0}\left(x_{1}\right)-x_{1}=\left(\alpha_{1}, \cdots, \alpha_{m-1}, \alpha_{m}-1\right), \\
& a_{0}^{2}\left(x_{1}\right)-a_{0}\left(x_{1}\right)=\left(\alpha_{1} \alpha_{m}, \cdots, \alpha_{m-1} \alpha_{m},\left(\alpha_{m}-1\right) \alpha_{m}\right) \\
& \quad=\alpha_{m}\left(a_{0}\left(x_{1}\right)-x_{1}\right),
\end{aligned}
$$

whence $x_{1}, a_{0}\left(x_{1}\right)=x_{0}$, and $a_{0}^{2}\left(x_{1}\right)=a_{0}\left(x_{0}\right)=y_{0}$ are collinear, and $y_{0} \neq x_{0}, x_{1}$. We will show next that there is a subset L^{\prime} of M which contains x_{0}, x_{1}, and $m-1$ of the remaining m points of L, but which does not lie on any ($m-1$)-dimensional hyperplane. If $L^{\prime}=\left\{x_{0}, x_{1}, \cdots, x_{m}\right\}$ will not work, then let k be the least integer such that $2 \leqq k \leqq m$ and $\left\{x_{0}, x_{1}, \cdots, x_{k}\right\}$ lies on some ($k-1$)-dimensional hyperplane, and set $L^{\prime}=M-\left\{x_{k}\right\}$. Now if L^{\prime} lay on an $(m-1)$-dimensional hyperplane X_{m-1}, then the unique ($k-1$)-dimensional hyperplane through $\left\{x_{0}, x_{1}, \cdots, x_{k-1}\right\}$ must contain x_{k} and lie in X_{m-1}, so that $M \subset X_{m-1}$, which is impossible. Hence, $L^{\prime}=M-\left\{x_{k}\right\}$ satisfies our condition. Let x_{j} be a fixed element of $L^{\prime}-\left\{x_{0}, x_{1}\right\}, Y$ be the ($m-1$)-dimensional hyperplane through $L^{\prime \prime}=L^{\prime}-\left\{x_{j}\right\}, M^{\prime \prime}=L^{\prime \prime} \cup\left\{y_{0}\right\}$, and $a_{1} \in A_{m}$ map L onto L^{\prime}. Since $\left\{y_{0}, x_{0}, x_{1}\right\}$ is collinear, and $x_{0}, x_{1} \in L^{\prime \prime}$, we have $M^{\prime \prime} \subset Y$. Now $L^{\prime \prime}$ contains m points, $M^{\prime \prime}$ contains $m+1$ points, and the group B of elements in A_{m} which fix x_{j} and map Y onto itself acts on Y exactly like A_{m-1}. By our induction hypothesis, the extension $N^{\prime \prime}$ of $M^{\prime \prime}$ with respect to $L^{\prime \prime}$ and B is dense in Y. We will show that $\cup M_{i}^{\prime \prime}=N^{\prime \prime} \subset N=\bigcup M_{i}$ by showing inductively that $M_{i}^{\prime \prime} \subset N$. First, $a_{0}(L) \subset M$ implies $y_{0}=a_{0}\left(x_{0}\right) \in a_{0}(M) \subset N$, so that $M_{0}^{\prime \prime}=M^{\prime \prime} \subset N$. Suppose now that $M_{i}^{\prime \prime} \subset N$ for some i, and $b\left(L^{\prime \prime}\right) \subset M_{i}^{\prime \prime}$ for some $b \in B$. Then $a_{1}(L)=L^{\prime} \subset M$ implies $a_{1}(N)=N$, and

$$
b a_{1}(L)=b\left(L^{\prime}\right)=\left\{x_{j}\right\} \cup b\left(L^{\prime \prime}\right) \subset\left\{x_{j}\right\} \cup M_{i}^{\prime \prime} \subset N
$$

implies $b a_{1}(N)=N$. Thus $b(N)=b\left(a_{1}(N)\right)=N, b\left(M_{i}^{\prime \prime}\right) \cup b^{-1}\left(M_{i}^{\prime \prime}\right) \subset N$, and $M_{i+1}^{\prime \prime} \subset N$, so that $N^{\prime \prime} \subset N$. Suppose $\left\{y_{1}, \cdots, y_{m-1}\right\}$ is a subset of $N^{\prime \prime}$ which does not lie in any ($m-3$)-dimensional hyperplane. Since $L^{\prime \prime}$ does not lie on any ($m-2$)-dimensional hyperplane, we can find
an $x_{i} \in L^{\prime \prime}$ such that $\left\{x_{i}, y_{1}, \cdots, y_{m-1}\right\}$ does not lie on any $(m-2)$ dimensional hyperplane. Then $\left\{x_{i}, x_{j}, y_{1}, \cdots, y_{m-1}\right\}$ does not lie on any ($m-1$)-dimensional hyperplane, and we can find an $a_{2} \in A_{m}$ which maps L^{\prime} onto $\left\{x_{i}, x_{j}, y_{1}, \cdots, y_{m-1}\right\}$ in such a way that $a_{2}\left(x_{i}\right)=x_{j}$ and $a_{2}\left(x_{j}\right)=x_{i}$. From $a_{2} a_{1}(L)=a_{2}\left(L^{\prime}\right) \subset N$, we infer that $a_{2} a_{1}(N)=N$ and $a_{2}(N)=a_{2}\left(a_{1}(N)\right)=N$, so that $a_{2}\left(N^{\prime \prime}\right) \subset N$. Now $a_{2}\left(N^{\prime \prime}\right)$ is a dense subset of $a_{2}(Y)$, and $a_{2}(Y)$ is an ($m-1$)-dimensional hyperplane through $\left\{x_{j}\right\}$ and $\left\{y_{1}, \cdots, y_{m-1}\right\}$. The union of such hyperplanes as $\left\{y_{1}, \cdots, y_{m-1}\right\}$ ranges over $N^{\prime \prime}$ is clearly dense in E^{m}, whence N is dense in E^{m}, and our main induction step is complete for case (ii). For case (i), the preceding argument becomes considerably simpler. We set

$$
L^{\prime \prime}=\left\{x_{2}, \cdots, x_{m+1}\right\}, \quad M^{\prime \prime}=\left\{x_{0}, x_{2}, \cdots, x_{m+1}\right\}
$$

and let B be the set of elements in A_{m} which fix x_{1} and map X onto itself. Then $N^{\prime \prime} \subset N$, and $N^{\prime \prime}$ is dense in X. The last part of the argument with $L^{\prime}=L, Y=X$, and $x_{j}=x_{1}$ shows that N is dense in E^{m} in this case as well.

Lemma 6. The conclusion of Lemma 5 remains valid if, in the hypothesis, we set $m=1$ and replace A_{1} with the group A_{1}^{+}of orderpreserving elements in A_{1}.

Proof. We observe that all of the elements in A_{1} which appear in the proof of Lemma 5 are order-preserving. The only other lemma used in that proof was Lemma 4 which assumes that G is 2 -transitive. Although A_{1}^{+}is only 2 -transitive relative to $H^{+}\left(E^{1}\right)$, the net $\left\{g_{k}\right\}$ can still be found, if we recall that any pair of points which lies sufficiently close to a positively oriented pair is also positively oriented.

Lemma 7. Let X be a topological space, L consist of n points, $L \subset M, f \in H(X), G$ and G^{\prime} be subgroups of $H(X)$, and G^{\prime} have the property that if $g^{\prime} \in G^{\prime}$ and $K\left(g^{\prime}\right)$ contains n points, then $g^{\prime}=e$. Suppose that, for every $g \in G$, there is a $g^{\prime} \in G^{\prime}$ such that $f g(x)=g^{\prime} f(x)$ for all $x \in M$. Then $f g(x)=g^{\prime} f(x)$ for all x in the extension N of M with respect to L and G.

Proof. We will prove the result inductively for the sets $M=$ $M_{0}, M_{1}, M_{2}, \cdots$. Suppose that, for every $g \in G$, there is a $g^{\prime} \in G^{\prime}$ such that $f g(x)=g^{\prime} f(x)$ for all $x \in M_{i}$, and $g_{1}(L) \subset M_{i}$, where $g_{1} \in G$. If $y \in L$, then $g_{1}(y) \in M_{i}$ and

$$
\begin{equation*}
f g\left(g_{1}(y)\right)=g^{\prime} f\left(g_{1}(y)\right), \quad y \in L \tag{1}
\end{equation*}
$$

We know that there are elements $g_{1}^{\prime}, g_{2}^{\prime} \in G^{\prime}$ satisfying

$$
\begin{equation*}
f g_{1}(y)=g_{1}^{\prime} f(y), \quad f g g_{1}(y)=g_{2}^{\prime} f(y), \quad y \in M_{i} \tag{2}
\end{equation*}
$$

Combining (1) and (2) and recalling that $L \subset M_{i}$, we obtain

$$
g_{2}^{\prime} f(y)=f g g_{1}(y)=g^{\prime} f g_{1}(y)=g^{\prime} g_{1}^{\prime} f(y), \quad y \in L
$$

Thus $f(y) \in K\left(g_{2}^{\prime-1} g^{\prime} g_{1}^{\prime}\right), f(L) \subset K\left(g_{2}^{\prime-1} g^{\prime} g_{1}^{\prime}\right)$, and $f(L)$ contains n points, so that $g_{2}^{\prime-1} g^{\prime} g_{1}^{\prime}=e$ and $g_{2}^{\prime}=g^{\prime} g_{1}^{\prime}$. From (2) we have

$$
f g g_{1}(y)=g_{2}^{\prime} f(y)=g^{\prime} g_{1}^{\prime} f(y)=g^{\prime} f g_{1}(y), \quad y \in M_{i}
$$

that is, $f g(x)=g^{\prime} f(x)$ for all $x \in g_{1}\left(M_{i}\right)$. To see that $f g(x)=g^{\prime} f(x)$ for all $x \in g_{1}^{-1}\left(M_{i}\right)$, we observe that $L \subset M_{i}$ implies

$$
\begin{equation*}
f g g_{1}^{-1}(y)=g^{\prime} f g_{1}^{-1}(y), \quad y \in g_{1}(L) \tag{3}
\end{equation*}
$$

We can also find elements $g_{3}^{\prime}, g_{4}^{\prime} \in G^{\prime}$ satisfying

$$
\begin{equation*}
f g_{1}^{-1}(y)=g_{3}^{\prime} f(y), \quad f g g_{1}^{-1}(y)=g_{4}^{\prime} f(y), \quad y \in M_{i} \tag{4}
\end{equation*}
$$

From (3), (4), and $g_{1}(L) \subset M_{i}$ we obtain

$$
g_{4}^{\prime} f(y)=f g g_{1}^{-1}(y)=g^{\prime} f g_{1}^{-1}(y)=g^{\prime} g_{3}^{\prime} f(y), \quad y \in g_{1}(L)
$$

Thus $f g_{1}(L) \subset K\left(g_{4}^{\prime-1} g^{\prime} g_{3}^{\prime}\right)$ and $g_{4}^{\prime}=g^{\prime} g_{3}^{\prime}$. Finally, from (4) we have

$$
f g g_{1}^{-1}(y)=g_{4}^{\prime} f(y)=g^{\prime} g_{3}^{\prime} f(y)=g^{\prime} f g_{1}^{-1}(y), \quad y \in M_{i}
$$

in other words, $f g(x)=g^{\prime} f(x)$ for all $x \in g_{1}^{-1}\left(M_{i}\right)$. Therefore, $f g(x)=$ $g^{\prime} f(x)$ for all $x \in M_{i+1}$, and the induction step is complete.

Lemma 8. With the same hypotheses as in Lemma 7, suppose $G=G^{\prime}$ and $f(x)=x$ for all $x \in M$. Then $f(x)=x$ for all $x \in N$.

Proof. Again we proceed by induction on the sets M_{i}. Suppose $f(x)=x$ for all $x \in M_{i}$, and $g_{1}(L) \subset M_{i}$, where $g_{1} \in G$. Then we can find $g_{1}^{\prime} \in G$ such that

$$
f g_{1}(x)=g_{1}^{\prime} f(x)=g_{1}^{\prime}(x), \quad x \in M_{i}
$$

Since $L, g_{1}(L) \subset M_{i}$, we have

$$
g_{1}(y)=f g_{1}(y)=g_{1}^{\prime}(y), \quad y \in L
$$

whence $L \subset K\left(g_{1}^{-1} g_{1}^{\prime}\right)$ and $g_{1}=g_{1}^{\prime}$. Thus $f g_{1}(x)=g_{1}(x)$ for all $x \in M_{i}$, that is, $f(z)=z$ for all $z \in g_{1}\left(M_{i}\right)$. Similarly, there is a $g_{2}^{\prime} \in G$ satisfying

$$
\begin{array}{cr}
f g_{1}^{-1}(x)=g_{2}^{\prime} f(x)=g_{2}^{\prime}(x), & x \in M_{i}, \\
g_{1}^{-1}(y)=f g_{1}^{-1}(y)=g_{2}^{\prime}(y), & y \in g_{1}(L),
\end{array}
$$

so that $g_{1}^{-1}=g_{2}^{\prime}$ and $f g_{1}^{-1}(x)=g_{1}^{-1}(x)$ for all $x \in M_{i}$. Therefore, $f(z)=z$ for all $z \in M_{i+1}$, and the induction step is complete.

Theorem 1. Suppose $X=E^{1}, L$ consists of two points, M of three points, $f \in H^{+}\left(E^{1}\right)$, and, for every $a \in A_{1}^{+}$, there is an $a^{\prime} \in A_{1}^{+}$ such that $f a(x)=a^{\prime} f(x)$ for all $x \in M$. Then $f \in A_{1}^{+}$.

Proof. The hypotheses of Lemma 7 are evidently satisfied when $n=2$ and $G=G^{\prime}=A_{1}^{+}$, whence $f a(x)=a^{\prime} f(x)$ for all $x \in N$. By Lemma $6, N$ is dense in E^{1}, and the continuity of a, a^{\prime}, and f implies that $f a=a^{\prime} f$, that is, $f A_{1}^{+} f^{-1} \subset A_{1}^{+}$. If we choose $a_{1} \in A_{1}^{+}$so that $a_{1}(0)=f(0), a_{1}(1)=f(1)$, and set $f_{1}=a_{1}^{-1} f$, then $0,1 \in K\left(f_{1}\right)$ and $f_{1} A_{1}^{+} f_{1}^{-1} \subset A_{1}^{+}$. In particular, if we define $a_{2}(x)=1+x$ for $x \in E^{1}$, then $a_{3}=f_{1} a_{2} f_{1}^{-1} \in A_{1}^{+}$. Now $K\left(a_{3}\right)=f_{1}\left(K\left(a_{2}\right)\right)=f_{1}(\varnothing)=\varnothing$, so that a_{3} is also a translation, and $a_{3}(0)=1$ implies $a_{3}=a_{2}$. Thus $2=a_{3}(1)=$ $f_{1} a_{2} f_{1}^{-1}(1)=f_{1}(2)$, and $0,1,2 \in K\left(f_{1}\right)$. Setting $M=\{0,1,2\}$ in Lemmas 6 and 8 , we conclude that $f_{1}=e$ and $f=a_{1} \in A_{1}^{+}$.
4. 3-transitive groups containing A_{m} and P_{m}. We are now ready to investigate the transitivity of groups of homeomorphisms of euclidean m-space E^{m} or real projective m-space Π^{m} which contain the affine group A_{m} or the projective group P_{m}, respectively, as a proper subgroup. The groups which we will consider are all obtained by adjoining some homeomorphism to A_{m} or P_{m} and generating the smallest group containing them. Any larger group will obviously have at least as high a degree of transitivity. In the case $m=1$, we will obtain slightly sharper results by adjoining an element of $H^{+}\left(E^{1}\right)$ or $H^{+}\left(\Pi^{1}\right)$ to A_{1}^{+}or P_{1}^{+}, respectively, and considering transitivity relative to $H^{+}\left(E^{1}\right)$ or $H^{+}\left(\Pi^{1}\right)$. Then if an orientation-reversing element of A_{1} or P_{1} is added, the resulting group will clearly have the same degree of transitivity relative to $H\left(E^{1}\right)$ or $H\left(\Pi^{1}\right)$, respectively.

Theorem 2. If $f \in H^{+}\left(E^{1}\right)-A_{1}$, then the group G generated by f and A_{1}^{+}is 3-transitive relative to $H^{+}\left(E^{1}\right)$.

Proof. Given any three points $x_{1}<x_{2}<x_{3}$ in E^{1}, let $L=\left\{x_{1}, x_{2}\right\}$ and $M=\left\{x_{1}, x_{2}, x_{3}\right\}$. For each $a \in A_{1}^{+}$, we can find $a^{\prime} \in A_{1}^{+}$satisfying $\alpha^{\prime}\left(f\left(x_{i}\right)\right)=f a\left(x_{i}\right) \quad(i=1,2)$. If $a(x)=\alpha+\beta x$ and $a^{\prime}(x)=\alpha^{\prime}+\beta^{\prime} x$, then α^{\prime} and β^{\prime} must satisfy the equations

$$
\begin{aligned}
& \alpha^{\prime}+\beta^{\prime} f\left(x_{1}\right)=f\left(\alpha+\beta x_{1}\right), \\
& \alpha^{\prime}+\beta^{\prime} f\left(x_{2}\right)=f\left(\alpha+\beta x_{2}\right),
\end{aligned}
$$

so that α^{\prime} and β^{\prime} are continuous functions of α and β. We can identify
A_{1}^{+}with the set of pairs (α, β) of real numbers, where $\beta>0$. If we give A_{1}^{+}the euclidean topology of a half-plane and hold $x \in E^{1}$ fixed, then the mapping $a \rightarrow \alpha(x)$ or $(\alpha, \beta) \rightarrow \alpha+\beta x$ from A_{1}^{+}into E^{1} is evidently continuous. Since f and f^{-1} are continuous, so also is the mapping $a \rightarrow \varphi(\alpha)=f^{-1} a^{\prime-1} f a\left(x_{3}\right)$ from A_{1}^{+}into E^{1}. From Theorem 1, we know that there is at least one $a_{0} \in A_{1}^{+}$such that $a_{0}^{\prime} f\left(x_{3}\right) \neq f a_{0}\left(x_{3}\right)$, for otherwise $f \in A_{1}^{+}$, contrary to our hypothesis. Thus $\varphi\left(a_{0}\right) \neq x_{3}$ while $\varphi(e)=x_{3}$. From the connectedness of A_{1}^{+}we infer that $\varphi\left(A_{1}^{+}\right)$ is a nondegenerate interval and so contains an open set. Moreover, $f^{-1} a^{\prime-1} f a \in G$ and $x_{1}, x_{2} \in K\left(f^{-1} a^{\prime-1} f a\right)$. By Lemma 3, G is 3 -transitive relative to $H^{+}\left(E^{1}\right)$.

Theorem 3. If $m \geqq 2$ and $f \in H\left(E^{m}\right)-A_{m}$, then the group G generated by f and A_{m} is 3-transitive.

Proof. We know that A_{m} maps any noncollinear triple onto any other noncollinear triple. If we can show that G maps every collinear triple onto some noncollinear triple, then we will have established that G is 3 -transitive. Let M be a collinear triple, $L \subset M$ consist of two points, X be the line through M, and suppose that, for every $a \in A_{m}$, $f a(M)$ is a collinear triple. The group B of all those elements in A_{m} which map X onto itself behaves exactly like A_{1} on X. By Lemma 5 , the extension N of M with respect to L and B is dense in X. We will show by induction on the sets M_{i} that, for every $a \in A_{m}$, $f a(N)$ is a collinear set. Suppose $f a\left(M_{i}\right)$ is a collinear set for each $a \in A_{m}$, and $b(L) \subset M_{i}$ for some $b \in B$. Then $f a\left(b\left(M_{i}\right)\right)=f a b\left(M_{i}\right)$ and $f a\left(b^{-1}\left(M_{i}\right)\right)=f a b^{-1}\left(M_{i}\right)$ are each collinear, and

$$
\begin{align*}
& f a\left(M_{i}\right) \cap f a\left(b\left(M_{i}\right)\right) \supset f a(b(L)), \\
& f a\left(M_{i}\right) \cap f a\left(b^{-1}\left(M_{i}\right)\right) \supset f a(L) . \tag{5}
\end{align*}
$$

Since $f a(b(L))$ and $f a(L)$ each contain two points, the sets $f a\left(M_{i}\right)$, $f a\left(b\left(M_{i}\right)\right)$, and $f a\left(b^{-1}\left(M_{i}\right)\right)$ all lie on the same line, so that $f a\left(M_{i+1}\right)$ is collinear, and the induction step is complete. From $\bar{N}=X$ we infer that $f a(X)$ is collinear for each $a \in A_{m}$. If Y is any line in E^{m}, then we can choose $a_{0} \in A_{m}$ such that $a_{0}(X)=Y$, whence $f(Y)=f a_{0}(X)$ is also collinear. Since Y is closed, connected, and separated by each of its points, the same must also be true of $f(Y)$ so that $f(Y)$ is a line. Let Y_{1}, Y_{2} be parallel lines and Z a line which meets them both. Then $Y_{1} \cap Y_{2}=\varnothing$, and any line which meets Z and Y_{1} in distinct points mush also meet Y_{2}. Since f preserves these incidence relations, we conclude that $f\left(Y_{1}\right)$ and $f\left(Y_{2}\right)$ are parallel. Let L^{\prime} consist of the origin and the m unit points in a coordinate system for E^{m}, and let M^{\prime} be the set of 2^{m} vertices of the unit cube determined by L^{\prime}.

Then $f a\left(M^{\prime}\right)$ is the set of vertices of a parallelotope for each $a \in A_{m}$, and we can find $a^{\prime} \in A_{m}$ satisfying $f a(x)=a^{\prime} f(x)$ for all $x \in M^{\prime}$. If we select $a_{1} \in A_{m}$ so that $a_{1}(x)=f(x)$ for all $x \in M^{\prime}$ and set $f_{1}=a_{1}^{-1} f$, then $M^{\prime} \subset K\left(f_{1}\right)$ and

$$
f_{1} a(x)=a_{1}^{-1} f a(x)=a_{1}^{-1} a^{\prime} f(x)=a_{1}^{-1} a^{\prime} a_{1} f_{1}(x), \quad x \in M^{\prime}
$$

We infer from Lemmas 5 and 8 that $f_{1}=e$ and $f=a_{1}$, which contradicts the hypothesis of our theorem. Hence, $f a(M)$ is not collinear for some $a \in A_{m}$.

The conclusion of Theorem 3 seems especially weak in view of the fact that A_{m} itself is ($m+1$)-transitive on subsets which do not lie on any ($m-1$)-dimensional hyperplane. The difficulty in extending our method to higher transitivity comes from (5). If we knew, for example, that $f a(b(L))$ and $f a(L)$ each contained three points, it would not follow that these triples were noncollinear, and we could not conclude that $f a\left(M_{i}\right), f a\left(b\left(M_{i}\right)\right)$, and $f a\left(b^{-1}\left(M_{i}\right)\right)$ were coplanar.

Lemma 9. Suppose the group F generated by A_{1}^{+}and $f \in H^{+}\left(E^{1}\right)$ is n-transitive relative to $H^{+}\left(E^{1}\right)$. If we extend f to an element \bar{f} of $H^{+}\left(\Pi^{1}\right)$ by making \bar{f} fix the point at infinity, then the group G generated by P_{1}^{+}and \bar{f} is $(n+1)$-transitive relative to $H^{+}\left(\Pi^{1}\right)$.

Proof. An element $p \in P_{1}^{+}=P_{1} \cap H^{+}\left(\Pi^{1}\right)$ has the form $p(x)=$ $(\alpha x+\beta) /(\gamma x+\delta)$, where $\alpha \delta-\beta \gamma>0$. We can identify A_{1}^{+}with the subgroup of P_{1}^{+}which leaves fixed the point ∞ at infinity. Suppose that $\left\{x_{1}, \cdots, x_{n+1}\right\}$ and $\left\{y_{1}, \cdots, y_{n+1}\right\}$ are given such that, as i increases from 1 to $n+1, x_{i}$ and y_{i} each move in the positive sense of orientation. Choose $p_{0}, p_{1} \in P_{1}^{+}$so that $p_{0}\left(x_{1}\right)=\infty$ and $p_{1}\left(y_{1}\right)=\infty$. Then $\left\{p_{0}\left(x_{2}\right), \cdots, p_{0}\left(x_{n+1}\right)\right\},\left\{p_{1}\left(y_{2}\right), \cdots, p_{1}\left(y_{n+1}\right)\right\} \subset \Pi^{1}-\{\infty\}$, and the points in each set increase with i. Thus we can find $g_{0} \in F$ satisfying $g_{0}\left(p_{0}\left(x_{i}\right)\right)=p_{1}\left(y_{i}\right)(i=2, \cdots, n+1)$, and $g_{1}=p_{1}^{-1} \bar{g}_{0} p_{0} \in G$ must satisfy $g_{1}\left(x_{i}\right)=y_{i}(i=1, \cdots, n+1)$.

Theorem 4. If $f \in H^{+}\left(\Pi^{1}\right)-P_{1}^{+}$, then the group G generated by f and P_{1}^{+}is 4-transitive relative to $H^{+}\left(\Pi^{1}\right)$.

Proof. Let $f(\infty)=x_{0}$, and choose $p_{0} \in P_{1}^{+}$so that $p_{0}\left(x_{0}\right)=\infty$. Then $p_{0} f(\infty)=\infty$, and the restriction f_{0} of $p_{0} f$ to $\Pi^{1}-\{\infty\}=E^{1}$ belongs to $H^{+}\left(E^{1}\right)$. Theorem 2 says that the group F generated by f_{0} and the set A_{1}^{+}of those elements of P_{1}^{+}which fix ∞ is 3 -transitive relative to $H^{+}\left(E^{1}\right)$, and Lemma 9 gives the desired result.

Theorem 5. If $m \geqq 2$ and $f \in H\left(\Pi^{m}\right)-P_{m}$, then the group G generated by f and P_{m} is 3-transitive.

Proof. Since P_{m} maps any noncollinear triple onto any other noncollinear triple, our result will be proved if we can show that, for any collinear triple M, there is a $p \in P_{m}$ such that $f p(M)$ is noncollinear. Suppose that, for some collinear triple $M=\left\{x_{1}, x_{2}, x_{3}\right\}$ and every $p \in P_{m}$, $f p(M)$ is collinear. Let X be a projective line in $\Pi^{m}, p_{0} \in P_{m}$ map M into X, and Q be the subgroup of P_{m} which maps X onto itself. We know that Q acts like P_{1} on X and is, therefore, 3 -transitive without regard to orientation. Let $x \in X-\left\{p_{0}\left(x_{1}\right), p_{0}\left(x_{2}\right)\right\}$ be arbitrary, and choose $q \in Q$ so that $\left\{p_{0}\left(x_{1}\right), p_{0}\left(x_{2}\right)\right\} \subset K(q)$ and $q\left(p_{0}\left(x_{3}\right)\right)=x$. Then $f q\left(p_{0}(M)\right)$ and $f\left(p_{0}(M)\right.$) are each collinear and have two points in common, so that $f(x)$ lies on the projective line Y through $f\left(p_{0}(M)\right)$, and $f(X) \subset Y$. Since f is a homeomorphism, and X, Y are topological circles, we must have $f(X)=Y$. If Z denotes the ($m-1$)-dimensional projective hyperplane at infinity, then any projective line which meets Z in two points must lie in Z. Moreover, $f(Z)$ must have the same property, for f preserves incidence relations. Hence, $f(Z)$ is a projective hyperplane, and $f(Z)$ has dimension $m-1$. If we choose $p_{1} \in P_{m}$ so that $p_{1}(Z)=f(Z)$ and set $f_{1}=p_{1}^{-1} f$, then $f_{1}(Z)=Z$, and the restriction f_{1}^{*} of f_{1} to $\Pi^{m}-Z=E^{m}$ maps lines onto lines. Following the argument in the proof of Theorem 3, we infer that f_{1}^{*} is affine, $f_{1} \in P_{m}$, and $f \in P_{m}$, which contradicts the hypothesis of our theorem. Therefore, $f p(M)$ is noncollinear for some $p \in P_{m}$.
5. ω-transitive groups. So far, we have not exhibited any f such that the group generated by f and A_{m} is ω-transitive. This we will now do. As before, the results for the case $m=1$ are much stronger than those for $m>1$, and this seems to be due to the fact that a nondegenerate connected subset of E^{1} has a nonempty interior. The conditions which we shall impose on f all have to do with its fixed point set and require, at the very least, that this should have a nonempty interior.

Theorem 6. Suppose $f \in H^{+}\left(E^{1}\right), f \neq e$, and $K(f)$ contains a halfline. Then the group G generated by f and the set B of all translations in A_{1}^{+}is ω-transitive relative to $H^{+}\left(E^{1}\right)$.

Proof. Let $x_{1}<\cdots<x_{n+1}$ be arbitrary points of E^{1}, and suppose $\left(-\infty, x_{0}\right]$ is a connected component of $K(f)$. The case $\left[x_{0},+\infty\right) \subset K(f)$ is handled in the same way. Choose $b_{0} \in B$ so that $b_{0}\left(x_{0}\right)=x_{n+1}$. If we set $f_{0}=b_{0} f b_{0}^{-1}$, then $K\left(f_{0}\right)=b_{0}(K(f))$ has $\left(-\infty, x_{n+1}\right]$ as a connected component. The elements of B have the form $b(x)=\beta+x$, and if we give to B the topology induced by the euclidean topology for β, then the mapping $\varphi(b)=b f_{0} b^{-1}\left(x_{n+1}\right)$ from B into E^{1} becomes continuous. Now $\varphi(e)=f_{0}\left(x_{n+1}\right)=x_{n+1}$, and we can find a connected neighborhood
$U \subset B$ of e so that $b \in U$ implies $b\left(x_{n+1}\right) \in\left(x_{n},+\infty\right)$. Since x_{n+1} is a boundary point of $K\left(f_{0}\right)$, we can find $b \in U$ with the property that $b^{-1}\left(x_{n+1}\right) \in E^{1}-K\left(f_{0}\right)$, whence $\varphi(b) \neq x_{n+1}$. From the connectedness of U we infer that $\varphi(U)$ is a nondegenerate interval which must have a nonempty interior. If we set $G_{0}=\left\{g \in G:\left\{x_{1}, \cdots, x_{n}\right\} \subset K(g)\right\}$, then $b \in U$ implies

$$
K\left(b f_{0} b^{-1}\right) \supset b\left(\left(-\infty, x_{n+1}\right]\right)=\left(-\infty, b\left(x_{n+1}\right)\right] \supset\left(-\infty, x_{n}\right],
$$

so that $b f_{0} b^{-1} \in G_{0}$ and $\varphi(U) \subset G_{0}\left(x_{n+1}\right)$. Lemma 3 tells us that if we know G to be n-transitive relative to $H^{+}\left(E^{1}\right)$, then G is $(n+1)$-transitive. Since G is clearly 0 -transitive, a simple induction argument shows that G is ω-transitive.

Clearly the group G_{2} generated by f and any conjugate $h B h^{-1}$ of B, where $h \in H\left(E^{1}\right)$, is also ω-transitive relative to $H^{+}\left(E^{1}\right)$. For the fixed point set of $f_{1}=h^{-1} f h$ is homeomorphic to that of f, so that the group G_{1} generated by f_{1} and B is ω-transitive by Theorem 6 , and $G_{2}=h G_{1} h^{-1}$. Similar remarks apply to the other theorems in this section. We also observe that some groups generated by $f \in H^{+}\left(E^{1}\right)-A_{1}^{+}$ and B are not even 2-transitive. Choose $b_{0} \in B$ and $f \in H^{+}\left(E^{1}\right)-A_{1}^{+}$ so that $b_{0}(x)=\beta_{0}+x$, where $\beta_{0} \neq 0$, and f has period β_{0} in the sense that $f\left(\beta_{0}+x\right)=\beta_{0}+f(x)$, or $b_{0} f b_{0}^{-1}=f$. Now f and each element of B commutes with b_{0}, so every element of the group G generated by f and B commutes with b_{0}. If any such element maps x into y, then it maps $x+\beta_{0}$ into $y+\beta_{0}$, and G is not 2 -transitive.

THEOREM 7. Suppose $\left\{f_{1}, f_{2}, \cdots\right\} \subset H^{+}\left(E^{1}\right)$, and, for every compact subset C of E^{1}, there is an f_{m} satisfying $E^{1} \neq K\left(f_{m}\right) \supset C$. Then the group G generated by $\left\{f_{1}, f_{2}, \cdots\right\}$ and B is ω-transitive relative to $H^{+}\left(E^{1}\right)$.

Proof. Let $x_{1}<\cdots<x_{n+1}$ be arbitrary points in E^{1}, and f_{m} have the property that $E^{1} \neq K\left(f_{m}\right) \supset\left[x_{1}-1, x_{n+1}\right]$. If $K\left(f_{m}\right)$ contains a half-line, then our result follows from Theorem 6. We will assume, therefore, that the connected component [$\left.y_{0}, y_{1}\right]$ of $K\left(f_{m}\right)$ which contains [$x_{1}-1, x_{n+1}$] is bounded. Choose $b_{0} \in B$ so that $b_{0}\left(y_{1}\right)=x_{n+1}$, set $g_{0}=$ $b_{0} f_{m} b_{0}^{-1}$, and let $\varphi(b)=b g_{0} b^{-1}\left(x_{n+1}\right)$ for each $b \in B$. Then $K\left(g_{0}\right)$ has [y_{2}, x_{n+1}] as a connected component, where $y_{2}=b_{0}\left(y_{0}\right) \leqq x_{1}-1$. As in the proof of Theorem 6, φ is continuous, $\varphi(e)=x_{n+1}$, and we can find a connected neighborhood $U \subset B$ of e such that $b \in U$ implies $b\left(x_{n+1}\right) \in\left(x_{n},+\infty\right)$ and $b\left(y_{2}\right) \in\left(-\infty, x_{1}\right)$. Again there is a $b \in U$ such that $\varphi(b) \neq x_{n+1}$, and if we define G_{0} as before, then $b \in U$ implies

$$
K\left(b g_{0} b^{-1}\right) \supset b\left(\left[y_{2}, x_{n+1}\right]\right) \supset\left[x_{1}, x_{n}\right],
$$

so that $b g_{0} b^{-1} \in G_{0}$ and $\varphi(U) \subset G_{0}\left(x_{n+1}\right)$. The rest of the proof follows that of Theorem 6 .

THEOREM 8. Suppose $f, g \in H^{+}\left(E^{1}\right), E^{1} \neq K(f)$ has a nonempty interior, and $K(g)=\left\{y_{0}\right\}$. Then the group G generated by f, g and B is ω-transitive relative to $H^{+}\left(E^{1}\right)$.

Proof. Choose $y_{1}, y_{2} \in E^{1}$ and $b_{0} \in B$ so that $\left[y_{1}, y_{2}\right] \subset K(f)$ and $b_{0}\left(y_{0}\right)=y_{1}$. If we set $g_{0}=b_{0} g b_{0}^{-1}$, then $K\left(g_{0}\right)=\left\{y_{1}\right\}$, and if we define $g_{1}=g_{0}$ in case $g_{0}\left(y_{2}\right)>y_{2}$ and $g_{1}=g_{0}^{-1}$ in case $g_{0}^{-1}\left(y_{2}\right)>y_{2}$, then $g_{1}^{m}\left(y_{2}\right) \rightarrow$ $+\infty$ as $m \rightarrow+\infty$. Finally, let $b_{m}(x)=\beta_{m}+x$ and

$$
f_{m}=b_{m}^{-1} g_{1}^{m} f g_{1}^{-m} b_{m}
$$

Then

$$
\begin{aligned}
K\left(f_{m}\right) & =b_{m}^{-1} g_{1}^{m}(K(f)) \supset b_{m}^{-1}\left(\left[y_{1}, g_{1}^{m}\left(y_{2}\right)\right]\right) \\
& =\left[-\beta_{m}+y_{1},-\beta_{m}+g_{1}^{m}\left(y_{2}\right)\right]
\end{aligned}
$$

If we choose $\beta_{m}=g_{1}^{m}\left(y_{2}\right) / 2$, then any compact subset of E^{1} will eventually lie in some $K\left(f_{m}\right)$, and our result follows from Theorem 7.

Corollary. With the same hypotheses as in Theorem 8, the group generated by f and A_{1}^{++}is ω-transitive relative to $H^{+}\left(E^{1}\right)$.

Theorem 9. Suppose $\left\{f_{1}, f_{2}, \cdots\right\} \subset H^{+}\left(\Pi^{1}\right)$, and there is a point $y_{0} \in \Pi^{1}$ such that, for every neighborhood U of y_{0}, we can find an f_{m} satisfying $\Pi^{1} \neq K\left(f_{m}\right) \supset \Pi^{1}-U$. Then the group G generated by $\left\{f_{1}, f_{2}, \cdots\right\}$ and Q is ω-transitive relative to $H^{+}\left(\Pi^{1}\right)$, where Q is the group of "rotations" $q \in P_{1}^{+}$of the form $q(x)=(\alpha x-\beta) /(\beta x+\alpha)$ with α, β real and not both 0 .

Proof. The name "rotation" for an element of Q is suggested by the fact that Q is strictly 1-transitive, so that e is the only one of its elements with fixed points. We can identify Q with the set of ordered pairs (α, β), excluding $(0,0)$, but we must also identify (α, β) with $(\lambda \alpha, \lambda \beta)$ for each real $\lambda \neq 0$. Thus Q is topologically equivalent to Π^{1}, that is, a circle. The action of Q on Π^{1} is, therefore, the same as that of the group of real numbers modulo 2π on itself by means of left translation. We will show, first of all, that the group G_{1} of those elements in G which fix ∞ is ω-transitive relative to $H^{+}\left(E^{1}\right)$. Let $x_{1}<\cdots<x_{n+1} \in E^{1} \subset \Pi^{1}$ be arbitrary, $q_{0} \in Q$ map y_{0} into $x_{n+1}+1$, and f_{m} have the property that

$$
\Pi^{1} \neq K\left(f_{m}\right) \supset \Pi^{1}-q_{0}^{-1}\left(\left(x_{n+1}, x_{n+1}+2\right)\right)
$$

Setting $f=q_{0} f_{m} q_{0}^{-1}$, we have $\Pi^{1} \neq K(f) \supset \Pi^{1}-\left(x_{n+1}, x_{n+1}+2\right)$. Let y_{1} be the right-hand endpoint of the connected component D of $K(f)$ which contains $\Pi^{1}-\left(x_{n+1}, x_{n+1}+2\right)$, where Π^{1} is oriented so as to agree with the ordering of E^{1}. If we choose $q_{1} \in Q$ so that $q_{1}\left(y_{1}\right)=x_{n+1}$ and set $g_{1}=q_{1} f q_{1}^{-1}$, then $q_{1}(D)$ is a connected component of $K\left(g_{1}\right)$ which contains $\Pi^{1}-\left(x_{n+1}, x_{n+1}+2\right)$. We define $\varphi(q)=q g_{1} q^{-1}\left(x_{n+1}\right)$ for each $q \in Q$, and observe that φ is continuous, $\varphi(e)=x_{n+1}$, and there is a connected neighborhood $V \subset Q$ of e such that $q \in V$ implies $q\left(\left(x_{n+1}, x_{n+1}+2\right)\right) \subset\left(x_{n},+\infty\right)$. As before, $\varphi(V)$ has a nonempty interior, and $q \in V$ implies

$$
K\left(q g_{1} q^{-1}\right) \supset q\left(\Pi^{1}-\left(x_{n+1}, x_{n+1}+2\right)\right) \supset \Pi^{1}-\left(x_{n},+\infty\right),
$$

so that $q g_{1} q^{-1} \in G_{1}$. If we set $G_{0}=\left\{g \in G_{1}:\left\{x_{1}, \cdots, x_{n}\right\} \subset K(g)\right\}$, then $G_{0}\left(x_{n+1}\right)$ has a nonempty interior, and Lemma 3 implies that G_{1} is ω-transitive relative to $H^{+}\left(E^{1}\right)$. To show that G is ω-transitive relative to $H^{+}\left(\Pi^{1}\right)$, we can apply the argument in the proof of Lemma 9 with P_{1}^{+}replaced by Q, for only the 1-transitivity of P_{1}^{+}was used in that case.

Theorem 10. Suppose $f, g \in H^{+}\left(\Pi^{1}\right), \Pi^{1} \neq K(f)$ has a nonempty interior, and $K(g)=\left\{y_{0}\right\}$. Then the group G generated by f, g and Q is ω-transitive relative to $H^{+}\left(\Pi^{1}\right)$.

Proof. Choose $y_{1}<y_{2}$ in $E^{1} \subset \Pi^{1}$ and $q_{0}, q_{1} \in Q$ so that $\left[y_{1}, y_{2}\right] \subset K(f)$, $q_{0}\left(y_{0}\right)=\infty$, and $q_{1}\left(y_{1}\right)=\infty$. Then $g_{0}=q_{0} g q_{0}^{-1}$ has only one fixed point at ∞, and $f_{0}=q_{1} f q_{1}^{-1}$ leaves fixed the points of $\left[-\infty, y_{3}\right]$, where $y_{3}=q_{1}\left(y_{2}\right)$ and, for the sake of our interval notation, we identify $-\infty$ and $+\infty$ with ∞. Now $\left\{g_{0}^{k}\left(y_{3}\right):-\infty<k<+\infty\right\}$ has $+\infty$ as a limit point, and, for every neighborhood U of ∞, we can find an integer k satisfying

$$
\Pi^{1}-U \subset\left[-\infty, g_{0}^{k}\left(y_{3}\right)\right] \subset K\left(g_{0}^{k} f_{0} g_{0}^{-k}\right)
$$

Our result now follows from Theorem 9.
Corollary. With the same hypotheses as in Theorem 10, the group generated by f and P_{1}^{+}is ω-transitive relative to $H^{+}\left(\Pi_{1}\right)$.

Theorem 11. Suppose X is a locally compact, locally connected metric space which can not be separated by any finite set,

$$
\left\{f_{1}, f_{2}, \cdots\right\} \subset H(X)
$$

and $y_{0} \in X$ has the property that $\left\{X-K\left(f_{k}\right)\right\}$ is a base for the neighborhoods of y_{0}. Let $R \subset H(X)$ be a 1-transitive group of
isometries of X, and $R_{0}=\left\{r \in R: r\left(y_{0}\right)=y_{0}\right\}$. Suppose there is a continuous mapping σ from $[0,1]$ into R with the topology of uniform convergence on compact sets such that $\sigma(0) \in R_{0}, \sigma(1) \in R-R_{0}$, and, for each $y \in X, R_{0}(y)$ is the sphere containing y with center at y_{0}. Then the group G generated by $\left\{f_{1}, f_{2}, \cdots\right\}$ and R is ω-transitive.

Proof. Let $x_{1}, \cdots, x_{n+1} \in X$ be given, and

$$
G_{0}=\left\{g \in G:\left\{x_{1}, \cdots, x_{n}\right\} \subset K(g)\right\} .
$$

If we can show that $G_{0}\left(x_{n+1}\right)$ has a nonempty interior, then our result will follow by induction from Lemma 1 . Since G is 1 -transitive, we may assume that $x_{n+1}=y_{0}$. For let $g_{0} \in G \operatorname{map} x_{n+1}$ into y_{0}, and

$$
G_{0}^{\prime}=\left\{g^{\prime} \in G:\left\{g_{0}\left(x_{1}\right), \cdots, g_{0}\left(x_{n}\right)\right\} \subset K\left(g^{\prime}\right)\right\}
$$

Then $g \in G_{0}$ implies $g_{0} g g_{0}^{-1} \in G_{0}^{\prime}$, and $g^{\prime} \in G_{0}^{\prime}$ implies $g_{0}^{-1} g^{\prime} g_{0} \in G_{0}$, whence $g_{0}^{-1} G_{0}^{\prime} g_{0}=G_{0}$. If we know that $G_{0}^{\prime}\left(y_{0}\right)$ has a nonempty interior, then

$$
G_{0}\left(x_{n+1}\right)=g_{0}^{-1} G_{0}^{\prime} g_{0}\left(x_{n+1}\right)=g_{0}^{-1}\left(G_{0}^{\prime}\left(y_{0}\right)\right)
$$

also has a nonempty interior. Hence, we can assume that $x_{n+1}=y_{0}$. If we set $\sigma(t)=r_{t}$ for $t \in[0,1]$, then $\alpha=\rho\left(r_{1}\left(y_{0}\right), y_{0}\right)>0$, where ρ is the metric for X. Let β be the shortest distance from y_{0} to $\left\{x_{1}, \cdots, x_{n}\right\}, U_{\varepsilon}$ the open ball with center y_{0} and radius $\varepsilon=\min (\alpha, \beta / 2)$, and f_{k} such that $y_{0} \in X-K\left(f_{k}\right) \subset U_{\varepsilon}$. Since $\varepsilon \leqq \alpha$, and $\rho\left(r_{t}\left(y_{0}\right), y_{0}\right)$ is a continuous function of t, we can find $\delta \in[0,1]$ satisfying $\rho\left(r_{t}\left(y_{0}\right), y_{0}\right) \leqq \varepsilon$ for $t \in[0, \delta]$ and $\rho\left(r_{\delta}\left(y_{0}\right), y_{0}\right)=\varepsilon$. This also implies that $\rho\left(y_{0}, r_{t}^{-1}\left(y_{0}\right)\right) \leqq \varepsilon$ for $t \in[0, \delta]$. If we set

$$
G_{1}=\left\{s r_{t}^{-1} f_{k} r_{t} s^{-1}: t \in[0, \delta], s \in R_{0}\right\},
$$

then $G_{1} \subset G_{0}$. For

$$
\begin{aligned}
K\left(s r_{t}^{-1} f_{k} r_{t} s^{-1}\right) & =s r_{t}^{-1}\left(K\left(f_{k}\right)\right) \supset X-s r_{t}^{-1}\left(U_{\varepsilon}\right) \supset X-s\left(U_{2 \varepsilon}\right) \\
& =X-U_{2 \varepsilon} \supset\left\{x_{1}, \cdots, x_{n}\right\}
\end{aligned}
$$

Moreover,

$$
r_{t}^{-1} f_{k} r_{t}\left(y_{0}\right) \in r_{t}^{-1} f_{k}\left(\bar{U}_{\varepsilon}\right) \subset r_{t}^{-1}\left(\bar{U}_{\varepsilon}\right) \subset \bar{U}_{2 \varepsilon}
$$

and if we hold t fixed and let s vary, then

$$
s r_{t}^{-1} f_{k} r_{t} s^{-1}\left(y_{0}\right)=s\left(r_{t}^{-1} f_{k} r_{t}\left(y_{0}\right)\right)
$$

is a sphere with center y_{0} and radius

$$
\theta(t)=\rho\left(y_{0}, r_{t}^{-1} f_{k} r_{t}\left(y_{0}\right)\right), \quad t \in[0, \delta]
$$

Since $r_{\delta}\left(y_{0}\right)$ lies on the boundary of \bar{U}_{ε}, we have $r_{\delta}^{-1} f_{k} r_{\delta}\left(y_{0}\right)=y_{0}$, and
since $r_{0}\left(y_{0}\right)=y_{0} \in X-K\left(f_{k}\right)$, we have $r_{0}^{-1} f_{k} r_{0}\left(y_{0}\right) \neq y_{0}$. Thus $\theta(0) \neq 0$, and $\theta(\delta)=0$. Now the local compactness and local connectedness of X implies that the mapping $h \rightarrow h^{-1}$ is continuous, and $(h, x) \rightarrow h(x)$ is jointly continuous in the topology of uniform convergence on compact sets [1], so that $\theta:[0, \delta] \rightarrow E^{1}$ is continuous, and $\theta([0, \delta])$ is a nondegenerate interval. Hence, $G_{1}\left(y_{0}\right)$ contains all spheres with center y_{0} and radius less than some positive number, and $G_{1}\left(y_{0}\right) \subset G_{0}\left(y_{0}\right)$ has a nonempty interior.

Corollary 1. With the same hypotheses as in Theorem 11, suppose that we have $f, g \in H(X)$ with the property that $\left\{g^{k}(X-K(f)): k \geqq 0\right\}$ is a base for the neighborhoods of y_{0}. Then the group generated by f, g, and R is ω-transitive.

Proof. We set $f_{k}=g^{k} f g^{-k}$ and apply Theorem 11.
Corollary 2. Suppose $X=E^{m}(m \geqq 2), R$ is the group of rigid motions of $E^{m}, y_{0} \in E^{m}$, and $\left\{f_{1}, f_{2}, \cdots\right\}$ is as in the hypothesis of Theorem 11. Then G is ω-transitive.

Proof. For the mapping σ, we set $r_{t}(x)=t x_{0}+x$, where $x_{0} \neq 0$ is a fixed point of E^{m}.

Corollary 3. Suppose $X=\Pi^{m}(m \geqq 2), R$ is the set of elements in P_{m} which can be represented by $(m+1)$-th order unitary matrices, $y_{0} \in \Pi^{m}$, and $\left\{f_{1}, f_{2}, \cdots\right\}$ is as in the hypothesis of Theorem 11. Then G is ω-transitive.

Proof. If we regard Π^{m} as the unit sphere in E^{m+1} with antipodal points identified and the metric induced by E^{m+1}, then the elements of R are isometries of Π^{m}. For the mapping σ, we choose a oneparameter subgroup of rotations about some axis which does not pass through y_{0}.

Lemma 10. Let X be a topological space, G a subgroup of $H(X)$, φ a homeomorphism from E^{1} onto a closed subset Y of X, and $F=$ $\{g \in G: g(Y)=Y\}$. Suppose $\varphi^{-1} F \varnothing$ contains A_{1}, and there is a $g_{0} \in G$ with the properties $K\left(g_{0}\right) \supset \varphi([0,1])$ and $g_{0}(Y)-Y \neq \varnothing$. Then for any interval $I=[\alpha, \beta]$ in E^{1} and any $y \in Y-\varphi(I)$, we can find a $g \in G$ such that $K(g) \supset \varphi(I)$ and $g(y) \in X-Y$.

Proof. Let $G_{0}=\{g \in G: \varphi(I) \subset K(g)\}$ and $Y_{0}=\left\{y \in Y: G_{0}(y)-Y \neq \varnothing\right\}$. Clearly Y_{0} is open in Y. If $a \in A_{1}$ and $a(I) \supset I$, then we will show that $a \varphi^{-1}\left(Y_{0}\right) \subset \varphi^{-1}\left(Y_{0}\right)$. We first choose $f \in F$ so that $\varphi^{-1} f \varphi=a$. For each
$t \in \varphi^{-1}\left(Y_{0}\right)$, there is a $g \in G_{0}$ satisfying $g \varphi(t) \in X-Y$. Then

$$
K\left(f g f^{-1}\right)=f(K(g)) \supset f \varphi(I)=\varphi a(I) \supset \varphi(I)
$$

implies that $f g f^{-1} \in G_{0}$. From

$$
f g f^{-1}(\varphi \alpha(t))=f g f^{-1}(f \varphi(t))=f g \varphi(t) \in f(X-Y)=X-Y
$$

we infer that $a(t) \in \varphi^{-1}\left(Y_{0}\right)$ and $a \varphi^{-1}\left(Y_{0}\right) \subset \varphi^{-1}\left(Y_{0}\right)$. Since we can always find an $a \in A_{1}$ such that $a(I) \supset I$, and a maps any point in $E^{1}-I$ into any other point further away from I, it follows that if $\varphi^{-1}\left(Y_{0}\right) \neq \varnothing$, then $\varphi^{-1}\left(Y_{0}\right)$ is the union of two half-lines, that is, $E^{1}-\varphi^{-1}\left(Y_{0}\right)=[\gamma, \delta] \supset[\alpha, \beta]=I$. We will show that $\varphi^{-1}\left(Y_{0}\right) \neq \varnothing$ and $[\alpha, \beta]=[\gamma, \delta]$ by deriving a contradiction from the assumption $\gamma<\alpha$. The case $\delta>\beta$ is handled in a similar manner. Let C be the connected component of $\varphi^{-1}\left(K\left(g_{0}\right)\right)$ which contains [0, 1]. Then C is a closed interval with at least one endpoint ε, and we can find an $a_{0} \in A_{1}$ so that $a_{0}(C) \supset I$ and $a_{0}(\varepsilon)=\alpha$. If $f_{0} \in H(X)$ is an extension of $\varphi a_{0} \varphi^{-1}$, and $g_{1}=f_{0} g_{0} f_{0}^{-1}$, then

$$
K\left(g_{1}\right)=f_{0}\left(K\left(g_{0}\right)\right) \supset \varphi a_{0} \varphi^{-1}\left(K\left(g_{0}\right)\right) \supset \varphi a_{0}(C) \supset \varphi(I)
$$

implies that $g_{1} \in G_{0}$ and $a_{0}(C)$ is a connected component of $\varphi^{-1}\left(K\left(g_{1}\right)\right)$. Choose $y_{0} \in Y$ so that $g_{0}\left(y_{0}\right) \in X-Y$. From $g_{1}\left(f_{0}\left(y_{0}\right)\right)=f_{0} g_{0}\left(y_{0}\right) \in X-Y$ we infer that $Y_{0} \neq \varnothing$ and $\varphi^{-1}\left(Y_{0}\right) \neq \varnothing$. Evidently $t \in[\gamma, \alpha]$ implies $g_{1} \varphi(t) \in Y$, and we can find $t_{0} \in(\gamma, \alpha)$ so close to α that $t_{0} \neq$ $\varphi^{-1} g_{1} \varphi\left(t_{0}\right) \in(\gamma, \alpha)$. We may assume, in fact, that $\varphi^{-1} g_{1} \varphi\left(t_{0}\right)<t_{0}$; for if $\varphi^{-1} g_{1} \varphi\left(t_{0}\right)>t_{0}$, then we would work with g_{1}^{-1}. Choose $a_{1} \in A_{1}^{+}$so that $a_{1}(I) \supset I, a_{1}\left(t_{0}\right)=\gamma$, and let $f_{1} \in H(X)$ be an extension of $\varphi a_{1} \varphi^{-1}$. As we have already seen, $g_{2}=f_{1} g_{1} f_{1}^{-1} \in G_{0}$. Now

$$
\begin{aligned}
\varphi^{-1} g_{2} \varphi(\gamma) & =\varphi^{-1} f_{1} g_{1} f_{1}^{-1} \varphi(\gamma)=a_{1} \varphi^{-1} g_{1} \varphi a_{1}^{-1}(\gamma) \\
& =a_{1} \varphi^{-1} g_{1} \varphi\left(t_{0}\right)<a_{1}\left(t_{0}\right)=\gamma
\end{aligned}
$$

implies that $g_{2} \varphi(\gamma) \in Y_{0}$, and we can find $g_{3} \in G_{0}$ satisfying $g_{3}\left(g_{2} \varphi(\gamma)\right) \in$ $X-Y$. Since $g_{3} g_{2} \in G_{0}$, we conclude that $\varphi(\gamma) \in Y_{0}$ which contradicts our hypothesis. Hence, $\gamma=\alpha$, and our result is proved.

Theorem 12. Let X be a topological space which can not be separated by any finite subset, R a subgroup of $H(X), f \in H(X)$, φ a homeomorphism from E^{1} onto a closed subset Y of X, and $S=\{g \in R: g(Y)=Y\}$. Suppose $\varphi^{-1} S \varphi \supset A_{1}, S_{0}=\{g \in G: Y \subset K(g)\}$ is 1-transitive on $X-Y, K(f) \supset \varphi([0,1])$, and $f(Y)-Y \neq \varnothing$. Then the group G generated by f and R is ω-transitive.

Proof. We proceed by induction on the transitivity and assume that G is n-transitive for some $n \geqq 0$. If $x_{1}, \cdots, x_{n+1} \in X$ are given,
$G_{0}=\left\{g \in G:\left\{x_{1}, \cdots, x_{n}\right\} \subset K(g)\right\}$, and we can show that $G_{0}\left(x_{n+1}\right)$ is an open subset of X, then Lemma 1 will imply that G is $(n+1)$-transitive, and our induction step will be complete. By hypothesis, there is a $g_{0} \in G$ which maps $\left\{x_{2}, \cdots, x_{n}\right\}$ into $\varphi((0,1))$ and x_{n+1} into $\varphi(1)$. We consider three cases for the position of $g_{0}\left(x_{1}\right)$. In case (i), $g_{0}\left(x_{1}\right) \in Y$ and $\varphi^{-1} g_{0}\left(x_{1}\right)<1$. Then we can find an interval $I=[\alpha, \beta]$ which contains $\varphi^{-1} g_{0}\left(x_{1}\right), \cdots, \varphi^{-1} g_{0}\left(x_{n}\right)$ but not $\varphi^{-1} g_{0}\left(x_{n+1}\right)$, and Lemma 10 gives us a $g_{1} \in G$ with the properties $\varphi(I) \subset K\left(g_{1}\right)$ and $g_{1}\left(g_{0}\left(x_{n+1}\right)\right) \in X-Y$. Since $S_{0}\left(g_{1} g_{0}\left(x_{n+1}\right)\right)=X-Y$ is open in X, it follows that

$$
g_{0}^{-1} g_{1}^{-1} S_{0} g_{1} g_{0}\left(x_{n+1}\right)=g_{0}^{-1} g_{1}^{-1}(X-Y)
$$

is open in X. From $g \in S_{0}$ we infer that

$$
K\left(g_{0}^{-1} g_{1}^{-1} g g_{1} g_{0}\right) \supset g_{0}^{-1} g_{1}^{-1}(Y) \supset g_{0}^{-1} g_{1}^{-1} \varphi(I)=g_{0}^{-1} \varphi(I) \supset\left\{x_{1}, \cdots, x_{n}\right\},
$$

whence $g_{0}^{-1} g_{1}^{-1} S_{0} g_{1} g_{0} \subset G_{0}$, and our induction step is complete in case (i). In case (ii), $g_{0}\left(x_{1}\right) \in X-Y$. Now Lemma 10 gives us a $g_{2} \in G$ with the properties $K\left(g_{2}\right) \supset\left\{g_{0}\left(x_{2}\right), \cdots, g_{0}\left(x_{n+1}\right)\right\}$ and $g_{2} \varphi(0) \in X-Y$. We can also find $g_{3} \in S_{0}$ satisfying $g_{3}\left(g_{2} \varphi(0)\right)=g_{0}\left(x_{1}\right)$. Setting $g_{4}=g_{2}^{-1} g_{3}^{-1} g_{0}$, we have

$$
\begin{array}{ll}
g_{4}\left(x_{i}\right)=g_{2}^{-1} g_{3}^{-1} g_{0}\left(x_{i}\right)=g_{0}\left(x_{i}\right), & 2 \leqq i \leqq n+1, \\
g_{4}\left(x_{1}\right)=g_{2}^{-1} g_{3}^{-1} g_{0}\left(x_{1}\right)=\varphi(0) . &
\end{array}
$$

Thus case (ii) can be reduced to case (i) with g_{0} replaced by g_{4}. In case (iii), $g_{0}\left(x_{1}\right) \in Y$ and $\varphi^{-1} g_{0}\left(x_{1}\right)>1$. Again Lemma 10 gives us a $g_{5} \in G$ such that $K\left(g_{5}\right) \supset\left\{g_{0}\left(x_{2}\right), \cdots, g_{0}\left(x_{n+1}\right)\right\}$ and $g_{5}\left(g_{0}\left(x_{1}\right)\right) \in X-Y$. Setting $g_{6}=g_{5} g_{0}$, we have

$$
\begin{array}{ll}
g_{6}\left(x_{i}\right)=g_{5} g_{0}\left(x_{i}\right)=g_{0}\left(x_{i}\right), & 2 \leqq i \leqq n+1 \\
g_{6}\left(x_{1}\right)=g_{5} g_{0}\left(x_{1}\right) \in X-Y &
\end{array}
$$

Thus case (iii) can be reduced to case (ii) with g_{0} replaced by g_{6}, and all the cases relating to the position of $g_{0}\left(x_{1}\right)$ have been disposed of.

Theorem 13. The conclusion of Theorem 12 remains valid if we replace E^{1} by Π^{1}, that is, a circle, and A_{1} by P_{1}.

Proof. The proof of Theorem 12 up to the definition of g_{0} can be carried over unchanged. This time, however, we choose g_{0} so as to map $\left\{x_{1}, \cdots, x_{n}\right\}$ into $\varphi((0,1))$ and consider two cases for the position of $g_{0}\left(x_{n+1}\right)$. In case (i), $g_{0}\left(x_{n+1}\right) \in X-Y$. As we have already seen in the proof of Theorem 12, this implies that $G_{0}\left(x_{n+1}\right)$ is open in X, and our induction step is complete in this case. In case (ii), $g_{0}\left(x_{n+1}\right) \in Y$. By hypothesis, these is some point $y_{0} \in Y-\varphi([0,1])$
satisfying $f\left(y_{0}\right) \in X-Y$. We choose $p_{1} \in P_{1}$ and a neighborhood U of $\varphi^{-1} g_{0}\left(x_{n+1}\right)$ so that $U \subset \Pi^{1}-\left\{\varphi^{-1} g_{0}\left(x_{1}\right), \cdots, \varphi^{-1} g_{0}\left(x_{n}\right)\right\}, p_{1}\left(\varphi^{-1}\left(y_{0}\right)\right)=$ $\varphi^{-1} g_{0}\left(x_{n+1}\right)$, and $p_{1}\left(\Pi^{1}-[0,1]\right) \subset U$. Let $g_{1} \in S$ be an extension of $\varphi p_{1} \varphi^{-1}$, and $g_{2}=g_{1} f g_{1}^{-1}$. Then

$$
\begin{aligned}
K\left(g_{2}\right) & =g_{1}(K(f)) \supset g_{1} \varphi([0,1]) \\
& =\varphi p_{1}([0,1]) \supset \varphi\left(I^{1}-U\right) \supset\left\{g_{0}\left(x_{1}\right), \cdots, g_{0}\left(x_{n}\right)\right\}, \\
g_{2}\left(g_{0}\left(x_{n+1}\right)\right) & =g_{1} f g_{1}^{-1}\left(g_{0}\left(x_{n+1}\right)\right) \\
& =g_{1} f \varphi p_{1}^{-1} \varphi^{-1} g_{0}\left(x_{n+1}\right)=g_{1} f \varphi \varphi^{-1}\left(y_{0}\right) \in g_{1}(X-Y)=X-Y .
\end{aligned}
$$

If we set $g_{3}=g_{2} g_{0}$, then

$$
\begin{aligned}
g_{3}\left(x_{i}\right) & =g_{2} g_{0}\left(x_{i}\right)=g_{0}\left(x_{i}\right), & & 1 \leqq i \leqq n, \\
g_{3}\left(x_{n+1}\right) & =g_{2} g_{0}\left(x_{n+1}\right) \in X-Y, & &
\end{aligned}
$$

and case (ii) can be reduced to case (i) with g_{0} replaced by g_{3}. Thus all the cases relating to the positions of $g_{0}\left(x_{n+1}\right)$ have been disposed of.

Corollary. Suppose R is a subgroup of $H(X), f \in H(X), X \neq K(f)$ has a nonempty interior, and either (i) $X=E^{m}$ and $R=A_{m}$, or (ii) $X=\Pi^{m}$ and $R=P_{m}$. Then the group G generated by f and R is ω-transitive.

Proof. The case $m=1$ has already been verified in Theorems 8 and 10 , so we will assume that $m \geqq 2$. We first consider case (i) and choose points $x_{0} \in \operatorname{int} K(f)$ and $x_{1} \in E^{m}-K(f)$. If $f\left(x_{1}\right)$ does not lie on the line Y through x_{0} and x_{1}, then our result follows from Theorem 12, since $K(f) \cap Y$ contains a nondegenerate interval. If $f\left(x_{1}\right) \in Y$, then we choose a rotation $a_{1} \in A_{m}$ about the point x_{1} through such a small positive angle that $K(f) \cap a_{1}^{-1}(Y)$ contains a nondegenerate interval I. Setting $f_{1}=a_{1} f a_{1}^{-1}$, we have

$$
\begin{aligned}
& K\left(f_{1}\right) \cap Y=a_{1}(K(f)) \cap Y=a_{1}\left(K(f) \cap a_{1}^{-1}(Y)\right) \supset a_{1}(I) \\
& f_{1}\left(x_{1}\right)=a_{1} f a_{1}^{-1}\left(x_{1}\right)=a_{1} f\left(x_{1}\right) \in X-Y
\end{aligned}
$$

and our result again follows from Theorem 12 with f replaced by f_{1}. Case (ii) is handled in exactly the same way, for we can identify E^{m} with the finite part of Π^{m}, and a_{1} can be extended to an element of P_{m}.

References

1. Richard Arens, Topologies for homeomorphism groups, Amer. J. Math. 68 (1946), 593-610.

Received April 11, 1966.
University of British Columbia
Vancouver, Canada

