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MULTIPLY TRANSITIVE GROUPS OF
TRANSFORMATIONS

JAMES V. WHITTAKER

A group G of homeomorphisms of a topological space X
onto itself is called ^-transitive if any set of n points in X
can be mapped onto any other set of n points by some member
of G. In this paper, we investigate the transitivity of G
when X is euclidean m-space Em or real projective m-space
Hm, and G properly contains the group Am of affine transfor-
mations or the group Pm of projective transformations,
respectively. We show that G D A I implies that G is at least
3-transitive, G 3 Px implies that G is at least 4-transitive,
and, for a fairly wide class of groups, G is w-transitive for
every n. For higher dimensional spaces, our information is
considerably more meager. We show that G D i m or G ID Pm

implies that G is at least 3-transitive, and that if some
member of G leaves fixed the points of some open set, then
G is ^-transitive for every n.

2* Mult ip le transitivity • Let X be a topological space and
H(X) the group of all homeomorphisms of X onto itself. The identity
of H(X) will be denoted by e. For each heH(X), we set K(h) =
{x e X: h(x) = x], and observe that

KihA) => K{hx) n K(h2) , K(hAhTl) = hx(K{h2)) .

For any subgroup G of H(X) and any x e X, we call G(x) = {g(x): g eG}
an orbit of G and note that orbits are either coincident or disjoint.
When n is a positive integer, we define G to be ^-transitive if, for
any subsets {xu , xn}, {ylf , yn} of n distinct points in X, we can
find geG such that g(Xi) = y{ (ί = 1, , n). If g is unique, we call
G strictly ^-transitive. If G is ^-transitive for every n, we will call
G ft>-transitive. When X is a connected, locally euclidean manifold of
dimension m ^ 2, then H(X) is clearly ω-transitive, but H{Eι) is only
2-transitive, and H(Πλ) is only 3-transitive under the above definition.
To remedy this, we will modify the definition in these two cases by
requiring that as i increases from 1 to nf xζ should move in the
positive sense of orientation, and y{ should move in either the positive
or negative sense. Thus H(X) is also ω-transitive when X = Eι or
Π1. The group H+(X) of orientation-preserving homeomorphisms of
X evidently sends any positively oriented %-tuple into any other
positively oriented w-tuple for every n. We will say that a subgroup
G of H+(X) is ^-transitive relative to H+(X) if G sends any positively
oriented w-tuple into any other positively oriented %-tuple.
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LEMMA 1. Let X be a topological space and G a subgroup of
H(X). Suppose that, for each subset L of n points in X and each
xe X — L, the orbit GQ(x) of the group Go = {geG: La K(g)} has a
nonempty interior in X. Then G0(x) contains a connected component
of X - L.

Proof. Let U c GQ(x) be an open subset of X, and y e G0(x) be
arbitrary. Then we can find gu g2e Go with the properties gx{x) e U
and gλ(x) = y. Thus y = g2(x) eg2g^(U) aG0(x), and y lies in the
interior of G0(x), so that G0(x) is open. The orbits of Go are either
coincident or disjoint, and no two of them can intersect the same
connected component of X — L unless they coincide. Since e e Go, we
have x e G0(x), and the orbits GQ(x) cover X — L. Hence, each of
them contains a connected component.

LEMMA 2. With the same hypotheses as in Lemma 1, suppose
X is a connected, locally euclidean manifold of dimension m ^ 2,
and G is n-transitive for some n. Then G is (n + l)-transitive.

Proof. To show that G is (n + Intransitive, it is evidently
sufficient to show that, for any points xu , xn+1, yn+1e X, there is a
geG satisfying g(Xi) = x{ (i = 1, , n) and g(xn+1) = yn+1. Since
X — {xl9 * ,xn} is connected, this is precisely the conclusion of
Lemma 1.

LEMMA 3. With the same hypotheses as in Lemma 1, suppose
X = E1, G is n-transitive for some n7^2, and the condition "x e X—L"
is replaced by "x lies to the right of L". Then G is (n + l)-transitive.
If GdH+(E1) is n-transitive (n >̂ 0) relative to H+(E1)1 then G is
(n + Intransitive relative to H+(Eι).

Proof. Let xx < < xn+1 and either (i) yx < < yn+1 or (ii)
2/i > > yn+i be given. In case (i), we choose gx e G so that &(#<) = y4

(i = 1, , n). Since gx is order-preserving, we have gi(xn+1) > yn,
and the same argument as in the proof of Lemma 1 shows that the
orbit G0(flri(a?n+i)) is the open interval (yn, °°), where G0 = {geG:
{Vu , Vn} c K(g)}. Thus we can find g2 e Go satisfying g2(g1{xn+1)) =
yn+1, so that g2gx{Xi) = y{ (i = 1, , n + 1). This also suffices to
prove the last statement in the Lemma. In case (ii), we choose g3eG
so that g3(Xi) = yι (i = 2, , n + 1). From n ^ 2 we infer that g3

is order-reversing, whence gz(xλ) > y2, and we can find g, e G satisfy-
ing yi e K(g,) (i = 2, . . , n + 1) and g^fa)) = yx. Thus gAg^ι) = Vι
(i = 1, ••.,n + 1).
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If, in the hypothesis of Lemma 3, "x lies to the right of L" is
replaced by "x lies to the left of L", then an argument similar to
the preceding one yields the same conclusions.

3* Extensions of finite sets. Let L be a finite subset of an
arbitrary subset M of a topological space X, and G a subgroup of
H{X). We set Λf0 = M and, for i ^ 0,

Mi+1 = U {g(Mi) U g-Wi): 9 e G and #(L) c M, } .

Since e e G and L c MQ, we have Mo c Mι and, in general, M< c Mi+1.
Thus {MJ is an increasing family of sets, and we shall call its union
N the extension of M with respect to L and G. We observe that if
geG and g(L)czNy then g(N) = N. For #(L) is finite and so is
contained in some Mk, whence g{Mι) c Mί+1 and g~\Mi) c M<+1 for
each i^k. Hence, flr(iSΓ) c N, g-\N) c JV, and g(N) = iV.

LEMMA 4. Suppose X is a Hausdorff space, L has n points, G
is n-transitive and has the property that, for any net {gk} in G and
any geG, limfc gk(x) = g(x) for all x e L implies

limgk(x) = g(x) , limg-ζι{x) = ί/""x<α?) , x e l .

g(L) c iV implies g(N) = iV, where N is the closure of N.

Proof. If L = {as1, , #*} and #(L) c JV, then we can find a net

{{x\, , #£)} of w-tuples in N such t h a t limfc x\ = ^(a;*) (i = 1, , n).

The ti-transitivity of G implies t h a t there are elements gk£G satisfy-

ing gk{xι) = x\ for each i and k. Thus

implies

lim flr^a;*) = lim x\ = ̂ (^) , i = 1, . . . , n
k k

lim gk(x) = βr(a ) , lim ̂ ( α ) = g-^aj) , xeX .
k k

From the remark preceding the lemma, gk{L)aN implies gk(x),
gk\x)eN for xeN, whence g(x)9g"\x)eN for xeN. Consequently,
g(N) c N, g(N) c N, g-\N) c JV, g~\N) c i?, and ̂ (iV) = N.

LEMMA 5. Let X be m-dimensional euclidean space Em, G the
group Am of affine transformations defined on Em, L consist of m + 1
points which do not lie on any (m — l)-dimensional hyper plane, and
M Z) L consist ofm + 2 points. Then N is dense in Em.

Proof. We recall that the elements a of Am have the form
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a(x) = t + Txy where teEm, and T is a nonsingular linear transfor-
mation of Em onto itself. Moreover, Am is strictly (m + Intransitive
on (m + l)-tuples which do not lie on any (m — l)-dimensional hyper-
plane. We first consider the case m = 1. The hypothesis of Lemma
4 is clearly satisfied with n = 2. Let L = {xlf x2} and M = {xu x2, xs}.
Evidently we can arrange the indices so that either (i) x1<x2,x1< x2

or (ii) xx > x2, xx > x3. We will complete the proof for case (i); case
(ii) is handled in exactly the same way. Choose ax e Ax so that ax(xx) = xx

and ax(x2) = x3. Then ax(L) c JV, and the remark preceding Lemma 4
implies that ax(N) = N. Indeed, ax(N) = N for any integer k, where
a\ is the fe-th iterate of αlβ Now ax is order-preserving and has just
one fixed point at xl9 so that {ax(x2): — oo < k < +°°} has #! and + oo
as limit points. In other words, N contains a sequence which con-
verges to xx from the right and another which converges to +oo.
If N Φ E1, then E1 — JV" is the union of disjoint open intervals. Let
I = (λ, μ) be one of these, where we allow λ = — oo or μ = +°o .
If A, φ — oo, we can find α2 e At satisfying a2(xx) = λ and λ < a2(x2) e N,
whence α2 is order-preserving, α2(L)cJV, a2(N) = N, and α2~

1(I)c£ r l-JV.
But αf^λ) is the left endpoint of αi"^/), while α ^ λ ) = ^ has a
sequence in N converging to it from the right, so that part of this
sequence must lie in a^\I), which is impossible. If λ = — oo, then
μ <̂  xlf and we choose α3 e Ax so that a3(x2) = xs, xx < α3(ίc1) e JV, and
az{xx) < x2. Thus α3 is order-preserving, ad(L) a N, <h(N) — N, and
a3(I) c J?1 — JV. But dziμ) > μ, and α3(//) is the right endpoint of
α3(/), whence /̂  e α3(J), which is impossible. Therefore, JV = E1.

We now proceed by induction on m. Suppose the lemma has been
proved in all dimensions less than a certain m,

L = {xlf , α;m+1} c {x0, xl9 , a;m+1} = M aEm ,

and L does not lie on any (m — l)-dimensional hyperplane. We can
arrange the indices in L so that either (i) x0 lies on the (m — 1)-
dimensional hyperplane X determined by xif , xm+1, or (ii) x0 and α?x

lie on the same side of X. To see this, we set up a coordinate system
in Έm in which the points of L are the origin and unit points on the
coordinate axes. If each point of L lay on the side opposite xQ of
the (m — l)-dimensional hyperplane through the remaining points of
L, then all the coordinates of xQ would be negative, while x0 lay on
the side opposite the origin of the hyperplane through the unit points,
which is impossible. In case (ii), choose α0 e Am so that aύ{xx) = xQ

and aQ(Xi) = α?4 (i = 2, , m + 1). We will show that x±1 αo(#i), and
αS(a?i) are collinear. Since if(α0) = X, we can refer aQ(x) = t0 + 5Pô
to a coordinate system in £/m relative to which xx = (0, , 0,1), X
is the set of points with last coordinate 0, ί0 = (0, , 0), and To has
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the form

Thus we have

n
0

0

(o

0

1

0

0

0 a,

0 α,

1 α,

= (al9

1 (am - ΐ)aj

whence xu αo(a?i) = α?0, and α ^ ) = αo(#o) = y0 are collinear, and ΐ/0 Φ %o, χi-
We will show next that there is a subset U of M which contains
x0, xu and m — 1 of the remaining m points of L, but which does
not lie on any (m — l)-dimensional hyperplane. If U — {x0, xl9 , xm}
will not work, then let k be the least integer such that 2 ^ k ^ m
and {cc0, a?!, , OĴ } lies on some (k — l)-dimensional hyperplane, and
set U — M — {xk}. Now if 1/ lay on an (m — l)-dimensional hyper-
plane Xw_i, then the unique (k — l)-dimensional hyperplane through
{xO1 xl9 , ajfc-1} must contain α?fc and lie in Xw_i, so that M c Xm_x,
which is impossible. Hence, 1/ = M — {xk} satisfies our condition.
Let Xj be a fixed element of L' — {x0, α }̂, F be the (m — l)-dimensional
hyperplane through L" = U — {x^}, M" = L" U {yo}9 and αx e Aw map
L onto L'. Since {y0, x0, xj is collinear, and xQ, xx e L", we have
M" c y. Now L" contains m points, M" contains m + 1 points, and
the group B of elements in Am which, fix x3- and map Y onto itself
acts on Y exactly like Am_1. By our induction hypothesis, the extension
N" of M" with respect to L" and B is dense in Y. We will show
that U Ml' = N" c N = U ikΓ, by showing inductively that M/' c JNΓ.
First, α o ( L ) c M implies y0 = ao(xQ) eao(M)c:N, so that Λf0" = M"aN.
Suppose now that M" c iV for some i, and 6(L") c M{' for some 6 e B.
Then α^L) = L ' c I implies aλ{N) = N, and

ba.iL) - δ(L') = {a?y} U b(L") c {aj,.} U C c i V

implies bax{N) = N. Thus b(N) = b(θj(N)) = ΛΓ, δ(M/') U δ-W/') c AT,
and Λf/ix c ΛΓ, so that JV" c ΛΓ. Suppose {ylf , ί/w-1} is a subset of
N" which does not lie in any (m — 3)-dimensional hyperplane. Since
L" does not lie on any (m — 2)-dimensional hyperplane, we can find
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an α^eL" such that {xi9 yl9 , ym^} does not lie on any (m — 2)-
dimensional hyperplane. Then {x{, x5, yu , 7/m_J does not lie on any
(m — l)-dimensional hyperplane, and we can find an a2 6 Am which
maps U onto {xif xj9 yl9 , ym^} in such a way that a2{Xι) — xs and
a2(Xj) = Xi. From a^a^L) = α2(L') c JV, we infer that a2ax{N) = AT and
α2(JV) = (φ^N)) = N, so that a2(N")aN. Now α2(iV") is a dense
subset of α2(Y), and a2(Y) is an (m — l)-dimensional hyperplane through
{xj} and {y19 , s/m_i}. The union of such hyperplanes as {yl9 , ym_^
ranges over N" is clearly dense in Em, whence N is dense in Em, and
our main induction step is complete for case (ii). For case (i), the
preceding argument becomes considerably simpler. We set

L = \X2, , Xm+ι\ , M = {ί̂ o> ^"λt ' * ' y ^ m + l j >

and let B be the set of elements in Am which fix xt and map X onto
itself. Then ΛΓ" c JV, and JV" is dense in X. The last part of the
argument with U — L, Y = X, and xd = xλ shows that N is dense in
Em in this case as well.

LEMMA 6. The conclusion of Lemma 5 remains valid if, in the
hypothesis, we set m — 1 and replace Aλ with the group At of order-
preserving elements in Ax.

Proof. We observe that all of the elements in Aλ which appear
in the proof of Lemma 5 are order-preserving. The only other lemma
used in that proof was Lemma 4 which assumes that G is 2-transitive.
Although At is only 2-transitive relative to H+(E1), the net {gk} can
still be found, if we recall that any pair of points which lies suffi-
ciently close to a positively oriented pair is also positively oriented.

LEMMA 7. Let X be a topological space, L consist of n points,
LdM,fe H(X), G and Gf be subgroups of H(X), and Gf have the pro-
perty that if gf e Gr and K{gf) contains n points, then g' = e. Suppose
that, for every g eG, there is a g' e Gf such that fg(x) — g'f(%) for
all xeM. Then fg(x) = grf{x) for all x in the extension N of M
with respect to L and G.

Proof. We will prove the result inductively for the sets M =
Mo, Mu M2, . Suppose that, for every g eG, there is a g' e Gr such
that fg(x) = grf(x) for all x e Mi9 and gλ(L) c Mi9 where gλ e G. If
y eL, then gx(y) e Mi and

( l ) fg(9i(v)) = g'f(9i(y)), yeL.

We know that there are elements g[, g2 e G' satisfying
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(2 ) fgM = g'J(y) , fggAv) = g'Jiv) , V e Mt .

Combining (1) and (2) and recalling that LczMif we obtain

= g'fgAv) = g'g'J(y), yeL.

Thus f(y)eK(gr

2-yg[)ff(L)^K(gf

2~Yg[)9 and /(L) contains n points,
so t h a t g'<rιg'g[ = e and ĝ  = gfg[. From (2) we have

fggάv) = flfί

that is, /flr(a ) = g'f(x) for all OJ G ̂ (M,), TO see that fg(x) = g'f(x)
for all x e gϊ^Mi), we observe that La Mi implies

(3) fggτ\y) = g'fgτ\y), v e

We can also find elements g[, g{e G' satisfying

(4) fgτ\y) - g'J(y) , fggϊ\v) = g[f{y) , 3/

F r o m (3), (4), a n d gx{L) c Mi w e obta in

ίir:/(i/) - fggτ\y) = ί/'Λ/Γ'd/) = βW(i>), 2/

Thus fgx(L) c K(g'cλg'g',) and ̂  = flr'flrj. Finally, from (4) we have

fggτ\y) = g'Jiv) = g'gίfiv) = grfoτ\v), veMif

in other words, fg(x) = g'f(x) for all x e gff̂ Λfi). Therefore, fg(x) =
ί/'/(aj) for all xeΛί ί+1, and the induction step is complete.

LEMMA 8. With the same hypotheses as in Lemma 7, suppose
G = Gf and f(x) = x for all x e M. Then f(x) = x for all xeN.

Proof. Again we proceed by induction on the sets M*. Suppose
f(x) = x for all x e Miy and gx(L) c Λfi, where g1 e G. Then we can
find g[ e G such that

g'lΛx) = g[(χ),

Since L, ̂ (L) c Λfi, we have

whence L c K(gϊιg[) and ^ = g[. Thus /^i(x) = ̂ i(a ) for all x e M^
that is, /(s) = « for all z e g^Mi). Similarly, there is a g'2 e G satisfy-
ing

fgτ\χ) = g'J(χ) = g'*(χ), χeMiy

gϊ\y) = fgΛv) = gί(y), v
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so that gr1 = g[ and fgϊ\x) = gϊ\x) for all x e Λft . Therefore, f(z) = z
for all z e Mi+ly and the induction step is complete.

THEOREM 1. Suppose X — E1, L consists of two points, M of
three points, feH+(E1), and, for every aeAt, there is an a'eAt
such that fa(x) = aff{x) for all xeM. Then feAt.

Proof. The hypotheses of Lemma 7 are evidently satisfied when
n = 2 and G = G' = At, whence fa(x) = aff(x) for all xeN. By
Lemma 6, N is dense in E1, and the continuity of a, a!, and / implies
that fa — a'f, that is, fAtf~x c At. If we choose ax e At so that

αi(0) = /(0), α^l) = /(I), and set Λ = αr1/, then 0,1 e K(fx) and
ftAtfc1 c Aί. In particular, if we define α2(#) = 1 + a? for a; e E1,
then α3 - ./X/f1 e At. Now ίΓ(α3) = Λ(iΓ(α2)) = ̂ ( 0 ) = 0 , so that α3

is also a translation, and α3(0) = 1 implies α3 = α2. Thus 2 = α3(l) =
/Λ/Γ'ίl) = /i(2), and 0,1, 2 € #(/;). Setting Λf = {0,1, 2} in Lemmas
6 and 8, we conclude that fλ — e and / = axeAt.

4* 3-transitive groups containing Am and Pm. We are now
ready to investigate the transitivity of groups of homeomorphisms of
euclidean m-space Em or real protective m-space Πm which contain
the affine group Am or the protective group Pm, respectively, as a
proper subgroup. The groups which we will consider are all obtained
by adjoining some homeomorphism to Am or Pm and generating the
smallest group containing them. Any larger group will obviously have
at least as high a degree of transitivity. In the case m = 1, we will
obtain slightly sharper results by adjoining an element of H+(E1) or
H+(Πι) to At or Pi+, respectively, and considering transitivity relative
to H+(E1) or H+(Π1). Then if an orientation-reversing element of
Ax or Pj is added, the resulting group will clearly have the same
degree of transitivity relative to H(EX) or HiΠ1), respectively.

THEOREM 2. If feH+iE1) - A19 then the group G generated by
f and At is %-transitive relative to H+(E1).

Proof. Given any three points xx < x2 < #3 in E1, let L — {xu x2}
and M = {xu x2, x5}. For each a e At, we can find α' e At satisfying
α'(/(&4)) - fφi) (i = 1, 2). If a(x) - a + βx and a'(x) - oί + β'x,
then a! and βf must satisfy the equations

i) = f(a + βxx) ,

a' + /S7(α?t) - f(a + /9a?,) ,

so that a' and /3' are continuous functions of a and β. We can identify
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At with the set of pairs (a, β) of real numbers, where β > 0. If we
give At the euclidean topology of a half-plane and hold xeE1 fixed,
then the mapping a —> a(x) or (a, β) —* a + βx from At into E1 is
evidently continuous. Since / and f'1 are continuous, so also is the
mapping α—>φ(α) = f~ιar~τfa(xz) from At into E1. From Theorem 1,
we know that there is at least one α0 e At such that a'0f(x3) Φ fao(x3),
for otherwise feAt, contrary to our hypothesis. Thus <p(α0) Φ xz

while φ(e) = x3. From the connectedness of At we infer that φ{At)
is a nondegenerate interval and so contains an open set. Moreover,
f-W^faeG and x1,xzeK{f~ιaf~~ιfa). By Lemma 3, G is 3-transitive
relative to H+(Eι).

THEOREM 3. // m >̂ 2 α^ώ feH(Em) — Am, £/&ew £/&e group G
generated by f and Am is 3-transitive.

Proof. We know that Am maps any noncollinear triple onto any
other noncollinear triple. If we can show that G maps every collinear
triple onto some noncollinear triple, then we will have established that
G is 3-transitive. Let M be a collinear triple, LczM consist of two
points, X be the line through M, and suppose that, for every aeAm,
fa(M) is a collinear triple. The group B of all those elements in Am

which map X onto itself behaves exactly like A1 on X. By Lemma
5, the extension N of M with respect to L and B is dense in X
We will show by induction on the sets Mi that, for every aeAm,
fa(N) is a collinear set. Suppose fa(Mi) is a collinear set for each
aeAm, and δ^cikf^ for some beB. Then fa{b{Mi)) = fabiM,) and
fa(b~\Mi)) = fab~ι{Mi) are each collinear, and

5 / « ) Π faψiMt)) Z) /α(6(L)) ,

Since fa(b{L)) and /α(L) each contain two points, the sets
faφiMi)), and fa(b~\Mi)) all lie on the same line, so that fa(Mi+1) is
collinear, and the induction step is complete. From N = X we infer
that fa(X) is collinear for each α e Aw. If F is any line in £ r m, then we
can choose aoeAm such that ao(X) = Y, whence f(Y) = fao(X) is also
collinear. Since Y is closed, connected, and separated by each of its
points, the same must also be true of f(Y) so that f(Y) is a line. Let
Yi, F2 be parallel lines and Z a line which meets them both. Then
Yx Π Y2 = 0 , and any line which meets if and Fx in distinct points
mush also meet Y2. Since / preserves these incidence relations, we
conclude that /(YΊ) and f(Y2) are parallel. Let 1/ consist of the
origin and the m unit points in a coordinate system for Em, and let
M' be the set of 2m vertices of the unit cube determined by U.
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Then fa(M') is the set of vertices of a parallelotope for each aeAm,
and we can find α' e Am satisfying fa(x) — aff{x) for all x e Mr. If
we select ax e Am so that aλ(x) = f(x) for all xeMr and set fx = αf1/,
then M' c K(f) and

fxa(x) — a1~
1fa(x) — ax

λaff(x) — a\~λa'aλfλ(x) , x e Mr .

We infer from Lemmas 5 and 8 that fλ = e and / = ax, which con-
tradicts the hypothesis of our theorem. Hence, fa(M) is not collinear
for some aeAm.

The conclusion of Theorem 3 seems especially weak in view of
the fact that Am itself is (m + Intransitive on subsets which do not
lie on any (m — l)-dimensional hyperplane. The difficulty in extending
our method to higher transitivity comes from (5). If we knew, for
example, that fa(b(L)) and fa(L) each contained three points, it would
not follow that these triples were noncollinear, and we could not
conclude that /α(Mi),/α(6(Λίί)), and fa(b~\Mi)) were coplanar.

LEMMA 9. Suppose the group F generated by At and fe H+(E1)
is n-transitive relative to H+(Eι). If we extend f to an element f
of H+(Π1) by making f fix the point at infinity, then the group G
generated by Px

+ and f is (n + l)-transitive relative to H+(Π1).

Proof. An element p e Px

+ = Px Π H+iΠ1) has the form p(x) =
(ax + β)l(Ίx + δ), where aδ — βy > 0. We can identify At with the
subgroup of Px

+ which leaves fixed the point co at infinity. Suppose
that {xu , xn+1} and {ylf , yn+1} are given such that, as i increases
from 1 to n + 1, Xi and y{ each move in the positive sense of orienta-
tion. Choose PoiPiZPi' so that po(xx) = <*> and pλ(yx) = co. Then
{Pofa), , Po(%n+i)}, \Pi(y*), ' , Pi(y«+i)} c Π1 - {co}, and the points in
each set increase with i. Thus we can find g0 e F satisfying
9o(Po(%i)) = Pι(Vi) (i = 2> ' ι n + !)» a n d 9\ = PϊλQΦ*^G must satisfy

THEOREM 4. // feH+iΠ1) — Px

+, then the group G generated
by f and P^ is ^-transitive relative to H+{Π1).

Proof. Let f(oo) = χ09 and choose Po^P^ so that pQ(x0) = oo.
Then 3>0/(°°) = °°> a n ( i the restriction fQ of pof to Π1 — {co} = E1

belongs to H+(E1). Theorem 2 says that the group F generated by
/0 and the set At of those elements of Pλ

+ which fix co is 3-transitive
relative to i ϊ + (£' 1 ), and Lemma 9 gives the desired result.

THEOREM 5. If m ^ 2 and feH(Πm) - Pm, then the group G
generated by f and Pm is ^-transitive.
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Proof. Since Pm maps any noncollinear triple onto any other
noncollinear triple, our result will be proved if we can show that, for
any collinear triple M, there is a p e Pm such that fp(M) is noncollinear.
Suppose that, for some collinear triple M = {xl9x2, xs} and every pePm,
fp(M) is collinear. Let X be a protective line in Πm,poePm map
M into X, and Q be the subgroup of Pm which maps X onto itself.
We know that Q acts like Px on X and is, therefore, 3-transitive
without regard to orientation. Let xe X — {po(%i), Po(̂ 2)} be arbitrary,
and choose qeQ so t h a t {po(Xi), po(x2)} a K(q) and q(pQ(x*)) = x. Then

fq(po(M)) and f(po(M)) are each collinear and have two points in
common, so that f(x) lies on the protective line Y through f(po(M)),
and f(X) c Y. Since / is a homeomorphism, and X, Y are topological
circles, we must have/(X) = Y. If iΓ denotes the (m — l)-dimensional
protective hyperplane at infinity, then any protective line which meets
Z in two points must lie in Z. Moreover, f(Z) must have the same
property, for / preserves incidence relations. Hence, f(Z) is a pro-
jective hyperplane, and f(Z) has dimension m — 1. If we choose
pL e Pm so that px(Z) = f(Z) and set fx = p?f, then f(Z) = Z, and
the restriction /i* of f to Πm — Z — Em maps lines onto lines.
Following the argument in the proof of Theorem 3, we infer that
/i* is affine, fePm, and fePm, which contradicts the hypothesis of
our theorem. Therefore, fp(M) is noncollinear for some p e Pm.

5* ω-transitive groups* So far, we have not exhibited any /
such that the group generated by / and Am is ω-transitive. This we
will now do. As before, the results for the case m = 1 are much
stronger than those for m > 1, and this seems to be due to the fact
that a nondegenerate connected subset of E1 has a nonempty interior.
The conditions which we shall impose on / all have to do with its
fixed point set and require, at the very least, that this should have
a nonempty interior.

THEOREM 6. Suppose feH+iE1), f Φ e, and K(f) contains a half-
line. Then the group G generated by f and the set B of all trans-
lations in At is ω-transitive relative to H+(Eι).

Proof. Let xλ < < xn+1 be arbitrary points of E\ and suppose
(- °°, #o] is a connected component of K(f). The case [x0, + oo) c K(f)
is handled in the same way. Choose b0 e B so that 60(̂ o) = xn+i If
we set /o = 6o/&o~\ then K(f0) = bo(K(f)) has ( - oo, χn+1] as a connected
component. The elements of B have the form b(x) = β + x, and if
we give to B the topology induced by the euclidean topology for β,
then the mapping φ(b) = bfob~\xn+1) from B into E1 becomes continuous.
Now <p(e) = /0(ajΛ+1) = xn+lf and we can find a connected neighborhood
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U C.B of e so that be U implies b(xn+1) e (xn, +00). Since xn+1 is a
boundary point of K(f0), we can find bell with the property that
b~\xn+1) e E1 — iί(/o), whence φ{b) Φ xn+1. From the connectedness of
U we infer that φ(U) is a nondegenerate interval which must have
a nonempty interior. If we set Go = {g e G: {â , , a?n} c JK"(^)}, then
δ e C/ implies

so that bfob^eGo and 9>(J7)cG0(a?»+1). Lemma 3 tells us that if we
know G to be ^-transitive relative to H+(Eλ), then Gis (n + Intransi-
tive. Since G is clearly 0-transitive, a simple induction argument
shows that G is ω-transitive.

Clearly the group G2 generated by / and any conjugate hBh"1 of
Bf where h e H{Eι), is also (^-transitive relative to H+(E1). For the
fixed point set of fx = h~xfh is homeomorphic to that of /, so that
the group Gλ generated by fL and B is ω-transitive by Theorem 6, and
G2 = hGJr1. Similar remarks apply to the other theorems in this
section. We also observe that some groups generated by / e H+(E1)—At
and B are not even 2-transitive. Choose boeB and feH+(E1) — A}
so that bQ(x) = β0 + x, where βQ Φ 0, and / has period β0 in the sense
that f(β0 + x) = β0 + f(x), or bofb^ = f. Now / and each element
of B commutes with b0, so every element of the group G generated
by / and B commutes with 60. If any such element maps x into y,
then it maps x + β0 into y + β0, and G is not 2-transitive.

THEOREM 7. Suppose {fl9 /2, }ciί+(2ί71), and, for every compact
subset C of E1, there is an fm satisfying E1 Φ K{fm) Z) C. Then the
group G generated by {fuf2i •••} and B is ω-transitive relative to

Proof. Let xx< < xn+1 be arbitrary points in E1, and fm

have the property that E1 Φ K(fm) z> [xλ — 1, xn+i] If K{fm) contains
a half-line, then our result follows from Theorem 6. We will assume,
therefore, that the connected component [y0, y^\ of K{fm) which contains
[xx — 1, xn+1] is bounded. Choose bQ e B so that bQ{yx) = xn+1, set g0 =
6o/m&o"\ and let φ(b) = δ^oδ~1(^%+i) for each b e B. Then K(g0) has
[V2, *»+i] as a connected component, where y2 = 60(ί/0) ^ ^ — 1. As in
the proof of Theorem 6, φ is continuous, φ(β) = α?Λ+1, and we can
find a connected neighborhood U czB oΐ e such that 6e U implies
b(xn+1)e(xnf +00) and b(y2)e (— 00, ^ ) . Again there is a fee Z7 such
that £>(&) Φ xn+1, and if we define Go as before, then beU implies
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so that bgJb^eGo and <p(U)aG0(xn+1). The rest of the proof follows
that of Theorem 6.

THEOREM 8. Suppose f,ge H+(Eι), E1 Φ K{f) has a nonempty
interior, and K(g) = {y0}. Then the group G generated by f, g and
B is ω-transitive relative to H+(E1).

Proof. Choose yl9 y2 e E1 and boeB so that [yl9 y2] c K(f) and
6o(l/o) = Vi H we set g0 = bQgb^\ then K(g0) = {y^9 and if we define
g± = gQ in case go(y2) > y2 and gx = g^1 in case g^\y2) > y2, then g?(y2) —>
+ co as m —> + 00. Finally, let 6m(α;) — βm + x and

/• = b

Then

If we choose βm = g?(yz)β, then any compact subset of ϋ/1 will even-
tually lie in some K(fm), and our result follows from Theorem 7.

COROLLARY. With the same hypotheses as in Theorem 8, the
group generated by f and At is ω-transitive relative to H+(E1).

THEOREM 9. Suppose {flff2, • }cff+(/71), and there is a point
y0 e Π1 such that, for every neighborhood U of yQ, we can find an
fm satisfying Π1 Φ K(fm) Z) Π1 — U. Then the group G generated by
{fu ft* •*•} wnd Q is co-transitive relative to H+(Π1), where Q is the
group of "rotations" q e Px

+ of the form q(x) = (ax — β)/(βx + a)
with a, β real and not both 0.

Proof. The name "rotation" for an element of Q is suggested
by the fact that Q is strictly 1-transitive, so that e is the only one
of its elements with fixed points. We can identify Q with the set
of ordered pairs (a, β), excluding (0, 0), but we must also identify
(a, β) with (λα, λ/S) for each real λ Φ 0. Thus Q is topologically
equivalent to Π1, that is, a circle. The action of Q on Π1 is, there-
fore, the same as that of the group of real numbers modulo 2π
on itself by means of left translation. We will show, first of all,
that the group Gλ of those elements in G which fix 00 is ω-transitive
relative to H+(E1). Let xx< < xn+1 e E1 c Π1 be arbitrary, qoeQ
map y0 into xn+1 + 1, and fm have the property that

Π1 Φ K{fm) ZDΠ1- qϊ\(xn+1, xn+1 + 2)) .
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Setting / = qjmqv\ we have Π1 Φ K(f) => Π1 - (xn+1, xn+1 + 2). Let
yx be the right-hand endpoint of the connected component D of K{f)
which contains Π1 — (xn+1, xn+1 + 2), where Π1 is oriented so as to
agree with the ordering of E1. If we choose qx e Q so that qi(y1) = xn+1

and set gλ = ?i/?r\ then #i(D) is a connected component of i£(#i)
which contains /71 — (xn+1, xn+1 + 2). We define φ(q) = qgιq~\xn+1) for
each qeQ, and observe that φ is continuous, <£>(e) = xn+1, and there
is a connected neighborhood V aQ of β such that qe V implies
q((xn+1, ^w+i + 2)) c (xn, + oo). As before, <£>(F) has a nonempty interior,
and qe V implies

Kiqg.q'1) 3 q{Πι - (xn+u xn+1 + 2)) =) /71 - (a?., + oo) ,

so that qgλq~ι e Glβ If we set Go = {g e G^. {xl9 , xn] c K(g)}, then
Go(̂ n+i) has a nonempty interior, and Lemma 3 implies that Gx is
ω-transitive relative to iί+(£ r l). To show that G is ω-transitive relative
to H+(Π1)f we can apply the argument in the proof of Lemma 9 with
Pi+ replaced by Q, for only the 1-transitivity of P^ was used in that
case.

THEOREM 10. Suppose /, geH+iΠ1), Π1
 Φ K(f) has a nonempty

interior, and K(g) = {y0}. Then the group G generated by f, g and
Q is ω-transitίve relative to H+(Π1).

Proof. Choose yλ<y2 in EλaΠι and qQ, q1 e Q so that [yl9 y2](zK(f),
qQ(yQ) = oo, and q^y^ = co. Then gQ = ô̂ ί̂"1 has only one fixed point
at oo, and f^ — qxfqT1 leaves fixed the points of [—^,2/3], where
yz = qx(y^ and, for the sake of our interval notation, we identify
— 00 and +00 with 00. Now {g$(yι): — 00 < fc < +00} has +00 as a

limit point, and, for every neighborhood U of 00, we can find an
integer k satisfying

Π1 - U c [ - - ,

Our result now follows from Theorem 9.

COROLLARY. With the same hypotheses as in Theorem 10, the
group generated by f and Pf is ω-transitive relative to H+inj.

THEOREM 11. Suppose X is a locally compact, locally connected
metric space which can not be separated by any finite set,

{fl9f%,..-}(zH(X)t

and yoeX has the property that {X — K(fk)} is a base for the
neighborhoods of y0. Let R c H(X) be a 1-transitive group of
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isometries of X, and Ro = {r e R: r(yQ) = y0}. Suppose there is a
continuous mapping σ from [0,1] into R with the topology of
uniform convergence on compact sets such that σ(0) e Ro, σ(l) eR — Ro,
and, for each y e X, RQ(y) is the sphere containing y with center at
yQ. Then the group G generated by {fl9fi9 •} and R is ω-transitive.

Proof. Let xu , xn+1 e X be given, and

G0 = {geG:{xu , xn}aK(g)} .

If we can show that G0(xn+i) has a nonempty interior, then our result
will follow by induction from Lemma 1. Since G is 1-transitive, we
may assume that xn+1 = y0. For let g0 e G map xn+1 into yQ, and

Gί = {g' e G: {gfa), , go(xn)} c K(g')} .

Then g e Go implies gogg^ e GJ, and g' e G'o implies g^VgQ e Go, whence
g^GΌgo = Go. If we know that GΌ(y0) has a nonempty interior, then

Go(χn+i) = g^GΌgoiXn+i) = gϊWoiVo))

also has a nonempty interior. Hence, we can assume that xn+1 = yQ.
If we set σ(t) = rt for t e [0,1], then a = ρ(rλ{yQ), y0) > 0, where p is
the metric for X. Let β be the shortest distance from y0 to
{x19 , xn}, Uε the open ball with center y0 and radius ε = min (<x, β/2),
and /fc such that yoe X - K(fk)(zUε. Since ε ^ α, and ρ(rt(y0),y0)
is a continuous function of ί, we can find δ e [0,1] satisfying
P(rt(y0), Vo) ^ e for t e [0, δ] and p(rδ(y0), y0) = e. This also implies that

rr'il/o)) ^ e for ί e [0, δ]. If we set

then Gx c Go. For

=> X - srτ\Uε) ZD X - s(U2ε)

= X - U2εZD {Xly •••,»„}.

Moreover,

rrVWi/o) e r r 1 /^ C/ε) c r ^ ί £7.) c Ϊ72ε ,

and if we hold t fixed and let s vary, then

srτιfkrts-\y,) = s{rτλfkrt(y,))

is a sphere with center τ/0 and radius

θ(t) = p(y0, TTVurM) , t e [0, δ] .

Since rδ(τ/0) lies on the boundary of Uε, we have r^fkrb{yQ) = ί/0, and
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since ro(yQ) = yoe X - K(fk), we have r^ιfkr0(y0) Φ y0. Thus 0(0) Φ 0,
and θ(δ) — 0. Now the local compactness and local connectedness of
X implies that the mapping h —»hr1 is continuous, and (h, x) —> h(x)
is jointly continuous in the topology of uniform convergence on com-
pact sets [1], so that θ: [0, <5] —> E1 is continuous, and 0([O, δ]) is a
nondegenerate interval. Hence, G^y^) contains all spheres with center
y0 and radius less than some positive number, and Gx(y0) c G0(y0) has
a nonempty interior.

COROLLARY 1. With the same hypotheses as in Theorem 11, suppose
that we have f,ge H(X) with the property that {g\X — K{f)): k ^ 0}
is a base for the neighborhoods of yQ. Then the group generated by
f, g, and R is co-transitive.

Proof. We set fk — gkfg~k and apply Theorem 11.

COROLLARY 2. Suppose X = Em (m ;> 2), R is the group of rigid
motions of Em,yoeEm, and {f19fi9 •••} is as in the hypothesis of
Theorem 11. Then G is ω-transitive.

Proof. For the mapping σ, we set rt(x) = tx0 + x, where x0 Φ 0
is a fixed point of Em.

COROLLARY 3. Suppose X = Πm (m ̂  2), R is the set of elements
in Pm which can be represented by (m + l)-th order unitary matrices,
y0 e Πm, and {f19 f2, •} is as in the hypothesis of Theorem 11. Then
G is co-transitive.

Proof. If we regard Πm as the unit sphere in Em+1 with antipodal
points identified and the metric induced by Em+1, then the elements
of R are isometries of Πm. For the mapping σ, we choose a one-
parameter subgroup of rotations about some axis which does not
pass through y0.

LEMMA 10. Let X be a topological space, G a subgroup of H(X),
ψ a homeomorphism from E1 onto a closed subset Y of X, and F =
{geG:g(Y) — Y}. Suppose φ~ιFφ contains Au and there is a goeG
with the properties K(g0) ZD φ([0,1]) and go(Y) — Y Φ 0. Then for
any interval I — [a, β] in E1 and any yeY— <p(I), we can find a
geG such that K(g) D <p(I) and g(y) G I - Γ .

Proof. Let G0 = {g eG:<p(I)<z K(g)} and Yo = {y e Y: G0(y)-YΦ0}.
Clearly YΌ is open in Y. If a e AΎ and a(I) 3 1 , then we will show that
aφr\Y<) c φ~\Y0). We first choose feFso that φ~xfφ — a. For each
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teφ~λ(YQ), there is a geGQ satisfying gφ(t)eX— Y. Then

Kifgf-1) = f(K(g))^fφ(I) = φa(I) 3 φ(I)

implies that fgf~λ e Go. From

fgf-\φa(t)) = fgf~\fφ(t)) = fgφ(t) e f(X - Y) = X - Y

we infer that a{t)eφ~\Y0) and aφ~\Y^)(Zφ~\YQ). Since we can
always find an aeA1 such that α(I)z)I, and α maps any point in
E1 — I into any other point further away from I, it follows that if
φ~~ι(Y0) Φ 0 , then φr\YQ) is the union of two half-lines, that is,
E1 - φ-\Y0) = [7, δ] => [α, /3] = I. We will show that qr\Y*) Φ 0
and [a, β] — [7, δ] by deriving a contradiction from the assumption
Ύ < a. The case δ > /3 is handled in a similar manner. Let C be
the connected component of φ~λ(K(gQ)) which contains [0,1]. Then C
is a closed interval with at least one endpoint ε, and we can find an
a^Ax so that ao(C)Z)I and αo(e) = a. If foeH(X) is an extension
of φaoφ-\ and & = /0#0/(Γ\ then

3 φ<hφ-\K{Q*)) ^ <P<C) =)

implies that gλ^G0 and αo(C) is a connected component of φ~ι{K{gλ)).
Choose i / 0 €7so that go(yo) e X- Y. From g^foiVo)) = fogo(Vo) e l - F
we infer that Fo ^ 0 and ^ (Γo) ^ 0 . Evidently ί e [7, #] implies

e Y, and we can find ί0 e (7,«:) so close to α that t0 Φ
(7, α). We may assume, in fact, that φ~xgλψ{t^ < ίo; for

if φ^giΨiQ > t0, then we would work with gr1. Choose ax e Af so
that ^(1)13 J, α ί̂o) = 7, and let ^eHiX) be an extension of φaxφ~ι.
As we have already seen, #2 = fλgλfr

λ e Go. Now

< <h(t0) = 7

implies that #2φ(7) e Fo, and we can find βτ3 e Go satisfying 3̂(̂ 2̂ (7)) e
X — Y". Since ^3^2 e Go, we conclude that φ(y) e Yo which contradicts
our hypothesis. Hence, 7 = a, and our result is proved.

THEOREM 12. Let X be a topologίcal space which can not be
separated by any finite subset, R a subgroup of H(X),feH(X),
φ a homeomorphίsm from E1 onto a closed subset Y of X, and
S = {geR:g(Y) = Y}. Suppose φ-'Sφ 3 Al9 So = {ge G: YaK(g)} is
1-transitive on X - Γ, K(f) => φ([0,1]), and f(Y) - Y Φ 0 . Then
the group G generated by f and R is ω-transitive.

Proof. We proceed by induction on the transitivity and assume
that G is ^-transitive for some n Ξ> 0. If xl9 , xn+1 e X are given,
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Go = {g^G:{xu -**,xn}(zK(g)}, and we can show that G0(xn+1) is an
open subset of X, then Lemma 1 will imply that G is (n + Intransitive,
and our induction step will be complete. By hypothesis, there is a
goeG which maps {x2, •••,&»} into φ((0,1)) and &Λ+1 into cp(l). We
consider three cases for the position of go(xi). In case (i), go(Xi) e Y
and φ^QoiXi) < 1. Then we can find an interval / = [a, β] which
contains φ~ιgQ{xd, , ^ f i Φ O but not 9~Vo(^+i), and Lemma 10
gives us a gλ e G with the properties £>(/) c if(#2) and 0i(f7o(#n+i)) e X— F.
Since £o(#i#o(#w+i)) = -X" — Y is open in X, it follows that

1) = g^gτ\X - Y)

is open in X. From g e So we infer that

=) g^g

whence ^ " V r ^ i ^ o C GO, and our induction step is complete in case (i).
In case (ii), #0(#i) eX — Y. Now Lemma 10 gives us a # 2 e G with
the properties 1£(#2) ZD {go(x2), , 0̂(̂ ^+1)} and ^^(0) e I - 7 . We can
also find g^eS0 satisfying g3(g2φ(0)) = go(xi). Setting g4 = g^gr^o, we
have

9i(Xi) = g^g^QoiXi) = ^o(^ί) , 2 ^ i ^ w + 1 ,

Thus case (ii) can be reduced to case (i) with g0 replaced by g4. In
case (iii), flro(#i) e F and 9>"Vo(̂ i) > 1. Again Lemma 10 gives us a
gδe G such that K(gδ)z>{flro(»s), , 0̂(̂ ^+1)} and gb{gQ(%i)) eX - Y.
Setting r̂6 = gδgύ, we have

1 2 ^ i ^ w + 1 ,
- Y .

Thus case (iii) can be reduced to case (ii) with gQ replaced by g99 and
all the cases relating to the position of gQ{x^) have been disposed of.

THEOREM 13. The conclusion of Theorem 12 remains valid if
we replace E1 by Π1, that is, a circle, and Ax by P1#

Proof. The proof of Theorem 12 up to the definition of g0 can
be carried over unchanged. This time, however, we choose g0 so as
to map {xlf •••,#»} into φ((0,1)) and consider two cases for the posi-
tion of go(xn+1). In case (i), gQ(xn+1)eX— Y. As we have already
seen in the proof of Theorem 12, this implies that G0(xn+1) is open
in X, and our induction step is complete in this case. In case (ii),
go(xn+1) e Y. By hypothesis, these is some point yQeY — φ([0,1])
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satisfying f(y0) e X — Y. We choose pλ e Pλ and a neighborhood U
of φ^QoiXn+i) so that UaΠ1 - {φ-τgQ(xd, , ^ " ^ ( O } , Pi(9>~%o)) =
Φ^Qofan+i), and Vι{Πλ — [0,1]) c U. Let ^ e S be an extension of
φpλφ~\ and #2 = &/0Γ1. Then

K{g2) =

= φPl([0, 1]) Z) φiΠ1 -U)Z) {flro(«i),

If we set #3 = 02sro, then

i) () 1 ^ i ^ n ,

flr8(»»+i) = 929o(Xn+i) eX - Y ,

and case (ii) can be reduced to case (i) with g0 replaced by g3. Thus
all the cases relating to the positions of go(xn+1) have been disposed of.

COROLLARY. Suppose R is a subgroup of H(X), fe H(X), XΦK{f)
has a nonempty interior, and either (i) X — Em and R = Am, or
(ii) X — Πm and R = Pm. Then the group G generated by f and R
is ω-transitive.

Proof. The case m = 1 has already been verified in Theorems 8
and 10, so we will assume that m ^ 2. We first consider case (i) and
choose points xQ e int K(f) and xλ e Em — K{f). If /(α^) does not lie
on the line Y through x0 and xl9 then our result follows from Theorem
12, since K(f) Π Y contains a nondegenerate interval. If f(Xχ) e Y,
then we choose a rotation aλeAm about the point x1 through such a
small positive angle that K(f)V\az\Y) contains a nondegenerate
interval I. Setting fτ = ajar1, we have

and our result again follows from Theorem 12 with / replaced by flm

Case (ii) is handled in exactly the same way, for we can identify Em

with the finite part of 77m, and aλ can be extended to an element of Pm.
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