KERNEL REPRESENTATIONS OF OPERATORS AND THEIR ADJOINTS

F. Dennis Sentilles

If S is a locally compact and Hausdorff space and A is a continuous linear operator from $C_0(S)$ into the space C(T) with the supremum norm topology then the Riesz Representation Theorem yields the formula $[Af](x) = \int_S f(y)\lambda(x,dy)$, where for each $x \in T$ $\lambda(x,\cdot)$ is a complex-valued regular Borel measure on S. More generally a study is made of kernel functions λ such that $\int_S f(y)\lambda(\cdot,dy) \in C(T)$ for f of compact support on S. It is shown that $\lambda(\cdot,E)$ is measurable for each Borel set E and that $\mu(E) = \int_T \lambda(x,E)\nu(dx)$ is a regular measure on S yielding the adjoint formula $A^*\nu = \mu$. Necessary and sufficient conditions are given on λ so that $A^{**}(C(S)) \subset C(T)$ and that A^{**} be continuous from $C(S)_\beta$ to $C(T)_\beta$ when S is paracompact. Furthermore, kernel representations of β -continuous operators are studied with applications to semi-groups of operators in $C_0(S)$ and $C(S)_\beta$ when S is locally compact.

We point out that as a consequence of our work the condition (1.7) in the paper by Foguel [7] follows from (1.6) when the space is locally compact and Hausdorff. Further the regularity of the above measure yields the more specific vector-valued measure representation of $A, \mu(E) = \lambda(\cdot, E)$ in the sense of [5, Th. 2, p. 492].

DEFINITION AND NOTATION. If X is a locally compact Hausdorff space we denote by C(X), $C_0(X)$ and $C_c(X)^+$ the collection of all bounded continuous complex-valued functions on X, those vanishing at infinity, and those nonnegative functions of compact support, respectively. The σ -algebra of Borel sets is the σ -algebra generated by the open subsets of X. We denote by M(X) the space of bounded regular Borel measures on X with variation norm and by B(X) the space of bounded Borel measurable functions on X. Let $M(X)^+$ denote the nonnegative measures in M(X). We give B(X), $C_0(X)$ and C(X) the supremum norm topology and $||f|| = \sup\{|f(x)|: x \in X\}$.

We wish to consider two further topologies on the space C(X). We denote by $C(X)_{\beta}$ the space C(X) with the locally convex topology defined by the collection of seminorms $P_{\phi}(f) = ||\phi f||$, $\phi \in C_0(X)$. Buck [1] has shown that $C(X)_{\beta}$ has adjoint or dual space M(X). We denote by $C(X)_{\beta}$, the space C(X) with the locally convex topology whose base of neighborhoods at the origin consists of all convex, balanced,

absorbent sets V such that for each r>0 there is a β neighborhood of the origin, W, such that $W\cap B_r\subset V$ where $B_r=\{f\in C(X)\colon ||f||\le r\}$. In a recently submitted paper Dorroh [4] introduces this topology and shows that $C(X)_\beta$, has dual M(X) and that $\beta=\beta'$ for X a paracompact space. Further results on $C(X)_\beta$ and $C(X)_\beta$, have been recently obtained by Collins and Dorroh in [2]. A set $H\subset M(X)$ is β -equicontinuous (β' -equicontinuous) if there is a $\beta(\beta')$ neighborhood of 0, W, such that $\left|\int_X f d\mu\right| \le 1$ for all $f\in W$ and $\mu\in H$. The β -equicontinuous sets of M(X) have been characterized by Conway [3] who has shown that H is β -equicontinuous if and only if H is uniformly bounded and for each $\varepsilon>0$ there is a compact set $K\subset X$ such that the variation of μ on X-K is less than ε for all $\mu\in H$. Since β' is a finer topology than β any β -equicontinuous set is β' -equicontinuous and these are the same when X is paracompact.

Suppose S and T are locally compact and Hausdorff. Let Δ denote the collection of open sets in S and $\sigma(\Delta)$ the collection of Borel sets. We consider complex-valued functions λ defined on $T \times \sigma(\Delta)$ such that $\lambda(x) = \lambda(x, \cdot) \in M(S)$. For brevity we will denote this by $\lambda: T \to M(S)$. We denote the norm of the measure $\lambda(x)$ by $\|\lambda(x)\|$ and set $\|\lambda\| = \sup\{\|\lambda(x)\| : x \in T\}$. If $f \in B(S)$ we write $\lambda(f)$ for the function defined by $\lambda(f)(x) = \int_S f(y)\lambda(x,dy)$ and $\lambda(\cdot,E)$ is the function whose value at x is $\lambda(x,E)$ for $E \in \sigma(\Delta)$. We let $|\lambda|(x,E)$ be the variation of the measure $\lambda(x,\cdot)$ on the set E. We will say that the kernel λ satisfies condition E(E') if $\{\lambda(x): x \in K\}$ is β -equicontinuous (β '-continuous) for each compact set $K \subset T$.

Finally we take our topology from [8] and topological vector space terminology from [9]. We make use of the Riesz Representation theorem throughout and in particular its corollary:

$$\mid \mu \mid (U) = \sup \left\{ \left| \int \! f d\mu \right| : f \in C_{\mathfrak{o}}(S), \mid \mid f \mid \mid \leq 1, \text{ support } (f) \subset U \right\}$$

for each open set U.

We prove the following theorems.

THEOREM 1. (1) If $\lambda: T \to M(S)^+$ and $\lambda(f)$ is lower semi-continuous for each $f \in C_c(S)^+$ then $\lambda(\cdot, E)$ is Borel measurable for each $E \in \sigma(\Delta)$.

- (2) If $\lambda: T \to M(S)$ and $\lambda(f) \in C(T)$ for all $f \in C_c(S)$ then $\lambda(\cdot, E)$ and $|\lambda|(\cdot, E)$ are measurable for each $E \in \sigma(\Delta)$.
- (3) If λ satisfies (1) or (2) and $||\lambda|| < \infty$ then $\lambda(f) \in B(T)$ for $f \in B(S)$.

THEOREM 2. If λ satisfies (3) of Theorem 1 then for each $\nu \in M(T)$

the formula $\mu(E) = \int_T \lambda(x, E) \nu(dx)$ defines a regular Borel measure on S such that $|\mu|(E) \leq \int_T |\lambda|(x, E)|\nu|(dx)$ and for $f \in B(S)$ we have $\int f d\mu = \int \lambda(f) d\nu$.

THEOREM 3. Suppose A is a continuous linear operator from the space X to the space Y where X denotes $C_0(S)$, $C(S)_{\beta}$ or $C(S)_{\beta}$, and Y denotes C(T), $C(T)_{\beta}$ or $C(S)_{\beta}$. Then there is a unique mapping $\lambda \colon T \to M(S)$ such that

(1) $Af = \lambda(f)$ for all $f \in X$ and

$$||\lambda|| = \sup\{||Af||: f \in X, ||f|| \le 1\} < \infty$$
.

(2) The adjoint of A, A^* , takes M(T) into M(S) and is given by

$$(A^*\mu)(E) = \int_T \lambda(x, E) \mu(dx)$$
.

(3) Under the natural imbeddings of B(S) and B(T) into $M(S)^*$ and $M(T)^*$ respectively we have for $f \in B(S)$

 $\lambda(f) = A^{**}f$ where A^{**} is the adjoint of A^{*} restricted to M(T) Hence $A^{**}(B(S)) \subset B(T)$ and A^{**} defines a continuous extension of A to B(S) into B(T).

THEOREM 4. Let $\lambda: T \to M(S)$. If $\lambda(f) \in C(T)$ for all $f \in C_c(S)$ and λ satisfies condition E' then $\lambda(f)$ is a continuous function on T for $f \in C(S)$. Conversely, if S is paracompact and $\lambda(f)$ is continuous for $f \in C(S)$ then λ satisfies condition E.

THEOREM 5. Let λ : $T \to M(S)$ and A the linear operator on C(S) defined by $Af = \lambda(f)$. Then A is a continuous operator from $C(S)_{\beta}$, into $C(T)_{\beta}$, or $C(T)_{\beta}$ if and only if $||\lambda|| < \infty$, $\lambda(f) \in C(T)$ for $f \in C_c(S)$ and λ satisfies condition E'.

COROLLARY 1. Let $A: C_0(S) \to Y$ where Y is as in Theorem 3. Then A^{**} is a continuous operator from $C(S)_{\beta}$, into $C(T)_{\beta}$, if and only if the kernel λ satisfies condition E'. Moreover A^{**} is the only extension of A to C(S) given by a kernel and consequently is the only β or β' continuous extension of A to C(S).

Proof of Theorem 1. Let U be an open subset of S and let χ denote its characteristic function. Since $\lambda(x)$ is regular it follows that $\lambda(x, U) = \sup \{\lambda(f)(x) \colon 0 \le f \le \chi, f \in C_{\mathfrak{o}}(S)^+\}$. Since $\lambda(f)$ is lower semicontinuous for each $f \in C_{\mathfrak{o}}(S)^+$, then $\lambda(\cdot, U)$ is lower semi-continuous and hence Borel-measurable. Let Σ denote the class of Borel sets E

for which $\lambda(\cdot, E)$ is measurable. Then Σ contains all open sets and is closed under countable unions of mutually disjoint sets $E \in \Sigma$ and, if $A, B \in \Sigma$ and $A \supset B$ then $A - B \in \Sigma$. It now follows from [6, p. 2] that $\Sigma = \sigma(\Delta)$ and (1) is proven.

We now prove (2). If U is an open set then as a consequence of the Riesz Representation Theorem we have

$$|\lambda|(x, U) = \sup\{|\lambda(f)(x)|: f \in C_{\mathfrak{c}}(S), ||f|| = 1 \text{ and support } (f) \subset U\}$$
 for each $x \in T$.

This means that $|\lambda|(\cdot, U)$ is lower semi-continuous and as in the proof of (1) that $|\lambda|(\cdot, E)$ is measurable for each Borel set E.

We can suppose for the remainder of the proof that $\lambda(x)$ is a real signed measure for each $x \in T$ and we then have [5, p. 123] that $\lambda(x) = \lambda(x)^+ - \lambda(x)^-$ where $\lambda(x)^+, \lambda(x)^- \in M(S)^+$ and $|\lambda(x)| = \lambda(x)^+ + \lambda(x)^-$ for all $x \in T$. We show that λ^+, λ^- satisfy condition (1).

Let $f\in C_{\mathfrak{o}}(S)^+$ and set $\mu(x,E)=\int_E f(y)\lambda(x,dy)$. Then for each $x,\,\mu(x)\in M(S)$ and for

$$g \in C_{\mathfrak{o}}(S), \, \mu(g) = \int_{S} g(y) f(y) \lambda(x, \, dy) = \lambda(gf)$$
 .

Hence $\mu(g)$ is continuous for each $g \in C_c(S)$ and therefore from what we have just shown $|\mu|(\cdot,S)$ is lower-semicontinuous since S is open. But $|\mu|(x,S) = \int_S f(y) |\lambda|(x,dy)$ and therefore $|\lambda|(f)$ is lower semicontinuous for each $f \in C_c(S)^+$. Since $|\lambda|(x) = \lambda^+(x) + \lambda^-(x)$ and $\lambda(x) = \lambda^+(x) - \lambda^-(x)$ it now follows that for $f \in C_c(S)^+$, $\lambda^+(f)$ and $\lambda^-(f)$ are lower semi-continuous. But then it follows from (1) that $\lambda^+(\cdot,E)$, $\lambda^-(\cdot,E)$ and hence $\lambda(\cdot,E)$ are measurable for each Borel set E.

Condition (3) easily follows for we can approximate $\lambda(f)$ uniformly by means of measurable functions of the form $\sum_{i=1}^{n} a_i \lambda(\cdot, E_i)$.

Remark 1. T need not be Hausdorff or locally compact in Theorem 1.

Proof of Theorem 2. It is well known that $\mu(E) = \int_T \lambda(x, E) \nu(dx)$ defines a measure on S such that $\int_S f d\mu = \int_T \lambda(f) d\nu$ for $f \in B(S)$. Hence we will only show that μ is regular.

We can assume that ν is real and $||\nu||=1$. Further we can suppose that $\lambda(x) \in M(S)^+$ for each $x \in T$. For we can first assume that $\lambda(x)$ is a real signed measure, and writing $\lambda(x) = \lambda(x)^+ - \lambda(x)^-$, the proof of Theorem 1 shows that for $f \in C_o(S)^+$, $\lambda^+(f)$ and $\lambda^-(f)$ are lower semi-continuous. Hence we have the condition (1) of Theorem 1 and additionally, $||\lambda|| = \sup\{||\lambda(x)|| : x \in S\} < \infty$.

LEMMA 1. Let U be an open set in S, χ its characteristic function. Let $X=\{f\in C_c(S)\colon 0\leq f\leq \chi\},\ Y=\{g\in C_c(T)\colon 0\leq g\leq \lambda(\cdot,\ U)\}.$ Then

$$\sup\left\{\int_{\mathbb{T}} g d\nu \colon g \in Y\right\} \leqq \sup\left\{\int_{\mathbb{T}} \lambda(f) d\nu \colon f \in X\right\}.$$

Proof. Let $g \in Y$, $\varepsilon > 0$ and let g vanish outside the compact set K and fix $x \in K$.

Since $g \in Y$ then $g(x) - \varepsilon/2 < \lambda(x, U)$ and hence there is a function $f \in X$ such that $g(x) - \varepsilon/2 < \lambda(f)(x)$. Since $\lambda(f)$ is lower semicontinuous there is a neighborhood V of x such that for $t \in V$ one has $g(x) - \varepsilon/2 < \lambda(f)(t)$. But also there is a neighborhood V' of x such that if $t \in V'$ then $g(t) - \varepsilon < g(x) - \varepsilon/2$. Hence there is a neighborhood W of x such that for $t \in W$, $g(t) - \varepsilon < \lambda(f)(t)$. We extract a finite cover of sets W of K with associated functions $f \in X$. If we let h be the pointwise maximum of the corresponding functions f then $h \in X$ and for $t \in K$ we have

$$g(t) - \varepsilon < \lambda(h)(t)$$
.

Hence $\int_{\scriptscriptstyle T} g d
u - arepsilon < \int_{\scriptscriptstyle T} \lambda(h) d
u$ and the proof is complete.

Lemma 2.
$$\int_{\mathbb{T}} \lambda(x, U) \nu(dx) \leq \sup \left\{ \int_{\mathbb{T}} g d\nu \colon g \in Y \right\}$$
.

Proof. Let $\varepsilon > 0$ and n be an integer such that $n\varepsilon > ||\lambda|| \ge (n-1)\varepsilon$. Then set

$$E_k = \{x \in T : k \varepsilon < \lambda(x, \ U) \le (k+1)\varepsilon\} \quad ext{ for } k=0,1,\cdots,n-1$$
 .

Then $\{E_k\}$ is a partition of T by Borel sets and

(1)
$$0 \leqq \int_T \lambda(x,\,U) \nu(dx) - \sum\limits_{k=0}^{n-1} k \varepsilon \nu(E_k) < \varepsilon \;.$$

Let

$$U_k = \{x: \lambda(x, U) > k\varepsilon\}$$
.

Then U_k is an open set and $E_k=U_k-U_{k+1}$. Since ν is regular then for each k there is a compact set $K_k\subset E_k$ such that $\nu(E_k-K_k)<\varepsilon/n^2$. We can then find for each k an open set V_k with compact closure contained in U_k and containing K_k . Further there exist functions $f_k\in C_\epsilon(T)^+$ for $k=0,\cdots,n-1$ such that $f_k(x)=k\varepsilon$ for $x\in K_k$, $f_k(x)=0$ for $x\in T-V_k$ and $0\le f_k(x)\le k\varepsilon$ for all $x\in T$. Therefore $f_k(x)\le k\varepsilon<\lambda(x,U)$ for $x\in U_k$ and hence $f_k\in Y$. We let

$$f(x) = \max \{f_k(x) : 0 \le k \le n - 1\}$$
.

It follows that $f \in Y$ and

$$f(x) \leq \sum_{k=0}^{n-1} k \varepsilon \chi_k(x) ,$$

where χ_k denotes the characteristic function of the set E_k . We then have

$$egin{aligned} 0 & \leq \int_T \sum_0^{n-1} k arepsilon \chi_k d
u - \int_T f d
u \ & \leq \sum_0^{n-1} \int_{E_k} (k arepsilon - f_k) d
u \ & = \sum_0^{n-1} \int_{E_k - K_k} (k arepsilon - f_k) d
u \ & \leq \sum_0^{n-1} \int_{E_k - K_k} k arepsilon d
u \ & \leq \sum_0^{n-1} k arepsilon^2 / n^2 \leq arepsilon^2 \,. \end{aligned}$$

But

$$\int_T \sum\limits_0^{n-1} k arepsilon \chi_k d
u = \sum\limits_0^{n-1} k arepsilon
u(E_k)$$

and applying (1) we have

$$0 \le \int_T \lambda(x, U) \nu(dx) - \int_T f d\nu \le \varepsilon^2 + \varepsilon$$

completing the proof.

LEMMA 3. $\mu(U) = \sup \left\{ \int_{S} f d\mu : f \in X \right\}$ and μ is regular.

Proof. Combining Lemma 1 and Lemma 2 we have

$$\mu(U) \leq \sup \left\{ \int_{\scriptscriptstyle T} \lambda(f) d
u \colon f \in X
ight\}$$
 .

But $\int_{S} f d\mu = \int_{T} \lambda(f) d\nu$ and therefore

$$\mu(U) \leq \sup \left\{ \int_{S} f d\mu; f \in X \right\} \leq \mu(U)$$
.

Now the mapping $f \to \int_S f d\mu$ defines a bounded linear form on the space $C_0(S)$ and hence there is a measure $\omega \in M(S)^+$ such that $\int_S f d\mu = \int_S f d\omega$ for all $f \in C_0(S)$ and since ω is regular

$$\omega(U) = \sup \left\{ \int_{\mathcal{S}} f d\omega \colon f \in X
ight\} = \mu(U)$$
 .

This means the collection Σ of all Borel sets E for which $\omega(E) = \mu(E)$ contains all open sets and it follows from [6, p. 2] as in the proof of (1) Theorem 1 that Σ is the class of all Borel sets. Hence μ is the regular measure ω . It is easily seen that $|u|(E) \leq \int_{\mathbb{T}} |\lambda|(x,E)|\nu|(dx)$ and the proof is complete.

Proof of Theorem 3. From [1], [4] and the Riesz Representation Theorem, $X^* = M(S)$ and $Y^* \supset M(T)$. From [9, pp. 38-39]

$$A^*(M(T)) \supset M(S)$$

and the formula $\lambda(x)=A^*\hat{x}$, where $\mathring{x}(E)=1$ if $x\in E$, 0 if $x\notin E$, defines a map $\lambda\colon T\to M(S)$ satisfying (3) of Theorem 1 since $||\lambda||=\sup\{||Af||\colon ||f||\le 1,\,f\in C_0(S)\}<\infty$ because the norm, β and β' bounded sets are the same (see [1] and [4]) and from [9, p. 45] A takes bounded sets into bounded sets. Furthermore $Af=\lambda(f)$ for $f\in X$ and if $\nu(E)=\int_{\mathbb{R}}\lambda(x,E)\mu(dx)$ then

$$\int_{\mathcal{S}} f d\nu = \int_{\mathcal{T}} \lambda(f) d\mu = \int_{\mathcal{T}} A f d\mu = \int_{\mathcal{S}} f d(A^*\mu)$$

for all $f \in X$ and consequently $A^*\mu = \nu$ since ν is regular. Finally if A^{**} is the adjoint of A^* restricted to M(T) then for $\mu \in M(T)$ and

$$f \in B(S) \ [A^{**}f](\mu) = f(A^{*}\mu) = \int_{S} f d(A^{*}\mu) = \int_{T} \lambda(f) d\mu = [\lambda(f)](\mu)$$

since $\lambda(f) \in B(T)$. This holds for all $u \in M(T)$ and consequently $A^{**}f = \lambda(f)$. Hence $A^{**}(B(S)) \subset B(T)$ and $||A^{**}|| = ||\lambda||$.

REMARK 2. If for each $t \in [0, \infty]$, T(t) is a continuous operator from X to X and T(t+u) = T(t)T(u) then $T(t+u)^{**} = T(t)^{**}T(u)^{**}$. If we then write $[T(t)f](x) = \int_{S} f(y)\lambda_{t}(x,dy)$, then by the above theorem $\lambda_{t}(f) = T(t)^{**}f$ for $f \in B(S)$. If χ is the characteristic function of the Borel set E we have

$$\lambda_{t+u}(\chi) = \lambda_t(\lambda_u(\chi))$$

or the Chapmann-Kolmogorov equation

$$\lambda_{t+u}(x,E) = \int_{\mathcal{S}} \lambda_{u}(y,E) \lambda_{t}(x,dy)$$
 .

Consequently a transition function $\lambda_t(x, \cdot)$ can be obtained for a semi-

group of β or β' continuous operators on the space C(S) when S is locally compact.

REMARK 3. One can obtain a kernel λ satisfying (1) under the weaker condition that A have range B(T) and domain $C_0(S)$. For the set of linear mappings $f \to \lambda(f)(x)$ for $x \in T$ is pointwise bounded and hence uniformly bounded since $C_0(S)$ is a Banach space.

Proof of Theorem 4. For each compact set $K \subset S$ there is a function $\varphi_K \in C_o(S)$ such that $\varphi_K \equiv 1$ on K. If $f \in C(S)$ then the net $\{\varphi_K f\} \subset C_o(S)$ converges β' to f since it is uniformly bounded and β convergent to f. Consequently $C_o(S)$ is β' dense in C(S). If $x \in T$ and U is a neighborhood of x with compact closure then $\{\lambda(x_\alpha) : x_\alpha \in U\}$ is a β' -equicontinuous set of linear functionals on C(S) for any net $\{x_\alpha\} \subset U$ converging to x. By hypothesis $\lambda(x_\alpha) \to \lambda(x)$ on $C_o(S)$. Since $C_o(S)$ is β' dense and $\{\lambda(x_\alpha)\}$ is β' -equicontinuous, $\lambda(x_\alpha) \to \lambda(x)$ on C(S). Hence $\lambda(f)$ is continuous at x for all $f \in C(S)$.

Conversely if $\lambda(f) \in C(T)$ for $f \in C(S)$ then for any compact set $K \subset T$ $\{\lambda(x): x \in K\}$ is weak-* compact as as ubset of the dual of $C(S)_{\beta}$ and, as Conway [3] has shown, must be β -equicontinuous.

Proof of Theorem 5. Suppose that A is continuous from $C(S)_{\beta}$, to $C(T)_{\beta}$, or $C(T)_{\beta}$. Then $||\lambda|| < \infty$ by Theorem 3 and if K is a compact set in T and V is the β neighborhood of 0 defined by some function $\varphi \in C_0(T)$ identically 1 on K there is a β' neighborhood of 0, U, such that $A(U) \subset V$. That is, $|\lambda(f)(x)| \leq 1$ for all $f \in U$ and $x \in K$. Consequently λ satisfies condition E'.

Conversely, let us show A is continuous from $C(S)_{\beta'}$ into $C(T)_{\beta'}$. Let V be a β' neighborhood of 0 in C(T) and r>0. We show there is a β neighborhood U of 0 in C(S) such that $A^{-1}(V)\supset B_r\cap U$ thus showing that $A^{-1}(V)$ is a β' neighborhood.

Let $p = r ||\lambda||$. There is a $\phi \in C_0(T)$ such that

$$V \supset B_{\mathfrak{p}} \cap \{g \colon P_{\phi}(g) \leqq 1\}$$
 and $\phi \geqq 0$.

Let $K = \{t : |\phi(t)| \ge 1/(p+1)\}$. Since λ satisfies condition E' there is a β' neighborhood U_0 in C(S) such that $|\lambda(f)(x)| \le 1$ for all $f \in U_0$ and $x \in K$. Let $W = \{f \in C(S) : ||\phi|| f \in U\}$. Then $A^{-1}(V) \supset B_r \cap W$ for if $f \in B_r \cap W$ then $Af \in B_p$ and $|\phi(x)[Af](x)| < p/(p+1)$ for $x \notin K$ while for $x \in K$, $|\phi(x)[Af](x)| \le ||\phi|| ||Af|(x)| \le 1$ since $||\phi|| f \in U_0$. Hence

$$A^{-1}(V) \supset A^{-1}(B_p) \cap A^{-1}\{g\colon P_\phi(g) \leqq 1\} \supset B_r \cap (B_r \cap W) = B_r \cap W$$
 .

We then choose a β neighborhood U such that $W \supset B_r \cap U$ completing the proof.

REMARK 4. If A is continuous from $C(S)_{\beta}$ into $C(T)_{\beta}$, it follows that λ satisfies E.

The proof of Corollary 1 is almost immediate. As a consequence of Theorem 3 and Theorem 5 continuity from $C(S)_{\theta}$, to $C(T)_{\beta}$, is equivalent to condition E'. If A' is an extension of A to C(S) into C(T) given by a kernel μ then $\mu = \lambda$ on $C_0(S)$ and consequently $\mu = \lambda$ on C(S) and A = A'. Since by Theorem 3 any β or β' continuous extension is given by a kernel this shows that A^{**} is unique.

It should be noted that if S is paracompact and A is any operator on C(S) into C(T) given by a bounded kernel λ then by Theorems 4 and 5, A is continuous from $C(S)_{\beta}$ to $C(T)_{\beta'}$.

We conclude with a brief remark on operators from M(T) into M(S). Suppose B is such a linear operator and B^* its adjoint on B(S). Define $\lambda\colon T\to M(S)$ by $\lambda(x)=B\mathring{x}$ where \mathring{x} is the measure defined in the proof of Theorem 3. If B is bounded and $B^*(C_\circ(S))\subset C(T)$ then $B^*(B(S))\subset B(T)$ by Theorem 1. By Theorem 2,

$$(B\mu)(E) = \int_T (B\overset{\circ}{x})(E)\mu(dx)$$
.

If λ satisfies condition E' then by Theorem 5 B is the adjoint of the continuous operator B^* from $C(S)_{\beta}$, to $C(T)_{\beta'}$. Thus B is completely determined by its action on the point measures $\{\mathring{x}: x \in T\}$.

REMARK 5 (added January 13, 1967). One can amplify Remark 4 by observing that if, moreover, λ satisfies E then Theorem 5 remains true with β' replaced by β . For then A is continuous from $C(S)_{\beta'}$ to $C(T)_{\beta}$ and using condition E, [3], part (2) of Theorem 3 and [9, p. 39] it follows that A^* takes β -equicontinuous sets of M(T) into β -equicontinuous sets of M(S) making A continuous on $C(S)_{\beta}$ into $C(T)_{\beta}$.

REMARK 6. It has recently come to the author's attention that a version of Theorem 2 can be found on page 176 of the recent book by P. A. Meyer, *Probability and Potentials*, Blaisdell, Waltham, Massachusetts, 1966, under the conditions that S be σ -compact, $\lambda: S \to M(S)^+$, $\lambda(f)$ be continuous for all $f \in C_{\mathfrak{o}}(S)^+$ and that ν have compact support.

REFERENCES

- 1. R. C. Buck, Bounded continuous functions on a locally compact space, Michigan Math. J. 5 (1958), 95-104.
- 2. H. S. Collins and J. R. Dorroh, Remarks on certain function spaces (to appear in Math. Ann.)
- 3. J. B. Conway, The strict topology and compactness in the space of measures, Bull. Amer. Math. Soc. 72 (1966), 75-78.

- 4. J. R. Dorroh, Semi-groups of maps in a locally compact space (to appear in Canad. J. Math.)
- 5. N. Dunford and J. T. Schwartz, Linear Operators, Interscience, New York, 1958.
- 6. E. Dynkin, Die Grundlagen der Theorie der Markoffschen Prozesse, Springer, Berlin. 1961.
- 7. S. R. Foguel, Existence of invariant measures for Markov Processes II, Proc. Amer. Math. Soc. 17 (1966), 387-89.
- 8. J. L. Kelley, General Topology, D. Van Nostrand, New York, 1955.
- 9. A. P. and W. J. Robertson, *Topological Vector Spaces*, Cambridge Tracts in Math. and Math. Physics, No. 53, Cambridge University Press, London, 1964.

Received August 8, 1966. This material is a result of the author's dissertation research under the direction of Dr. J. R. Dorroh to whom the author is especially grateful.

LOUISIANA STATE UNIVERSITY BATON ROUGE, LOUISIANA