DISJOINT BASIC SUBGROUPS

A. Richard Mitchell and Roger W. Mitchell

Abstract

This paper arose from consideration of the following questions. First, what characterizes those infinite Abelian reduced p-groups which possess disjoint basic subgroups? Second, are there properties that a basic subgroup must possess to insure the existence of a basic subgroup disjoint from it?

We show that a necessary and sufficient condition for an infinite Abelian reduced p-group G to contain disjoint basic subgroups is that $|G|=$ final rank G. Futhermore, in such a group a necessary and sufficient condition for a basic subgroup B to have a basic subgroup disjoint from it is that B is a lower basic subgroup of G.

Throughout this paper the word "group" will mean "Abelian group" and the notation used will be that of L. Fuchs in [1] with the exception that $A \oplus B$ will denote the direct sum of the groups A and B, and $A+B$ will be the, not necessarily direct, sum.

We will use the following theorem:
Theorem A. (Mitchell and Mitchell in [4]) Let G be an infinite reduced Abelian p-group and B a basic subgroup of G such that $G / B=$ $\sum_{\alpha \in I}\left(G_{\alpha} / B\right)$ where $G_{\alpha} / B \cong Z\left(p^{\infty}\right)$ for all $\alpha \in I$. Then $G=H \oplus K$ and $B=H \oplus L$ where L is a basic subgroup of K such that $r(K / L)=$ $r(G / B)=|I|$ and $|K|=\operatorname{maximum}\left\{\boldsymbol{K}_{0},|I|\right\}$.

We first prove the following lemmas:
Lemma 1. Let G be a p-group without elements of infinite height, and such that final rank $(G)=|G|$. Let B be a lower basic subgroup of G. Then there exists a basic subgroup, B^{\prime}, of G which is disjoint from B.

Proof. Let $B=\sum_{\alpha \epsilon_{I}}\left\langle y_{\alpha}\right\rangle$, and let $G / B=\sum_{\beta \epsilon_{J}} C_{\beta}$ where each $C_{\beta} \cong Z\left(p^{\infty}\right)$. Let $\left\{\left\{y_{\alpha} \mid \alpha \in I\right\},\left\{c_{\beta, n} \mid \beta \in J, n=1,2, \cdots\right\}\right\}$ be a quasibasis for G. Since B is a lower basic subgroup of G and final rank $(G)=|G|$, we have $|J|=r(G / B)=|G| \geqq|B| \geqq|I|$. If indeed we have $|J|>|I|$ a pure subgroup H of G can be chosen such that $H \supset B, H^{1}=0$, and final rank $(H)=|H|=|I|$. We can then prove that there is a basic subgroup B^{\prime} of H which is disjoint from B and H being pure in G will insure B^{\prime} is a basic subgroup of H. Thus it suffices to complete the proof when $|J|=|I|$ and we will assume moreover $I=J$.

Now for each $\alpha \in I$ choose from $\left\{c_{\alpha, n}\right\}_{n=1}^{\infty}$ the element $c_{\alpha, 2 E\left(y_{\alpha}\right)}$. Define $B^{\prime}=\left\langle\left\{y_{\alpha}-p^{E\left(y_{\alpha}\right)} c_{\alpha, 2 E\left(y_{\alpha}\right)}\right\}_{\alpha \in I}\right\rangle$. We now claim that B^{\prime} is the desired basic subgroup of G which is disjoint from B. To see this we prove the following:
(i) First claim that

$$
B^{\prime}=\sum_{\alpha \in I}\left\langle y_{\alpha}-p^{E\left(y_{\alpha}\right)} c_{\alpha, 2 E\left(y_{\alpha}\right)}\right\rangle .
$$

Suppose that

$$
0=\sum_{i=1}^{n} a_{i}\left(y_{\alpha_{i}}-p^{E\left(y_{\alpha_{i}}\right)} c_{\alpha_{i}, 2 E\left(y_{\alpha_{i}}\right)}\right),
$$

then

$$
\sum_{i=1}^{n} a_{i} y_{\alpha_{i}}=\sum_{i=1}^{n} a_{i} p^{B\left(y_{\alpha_{i}}\right)} c_{\alpha_{i}, 2 E\left(y_{\alpha_{i}}\right)} .
$$

Since the

$$
E\left(y_{\alpha}-p^{E\left(y_{\alpha}\right)} c_{\alpha, 2 E\left(y_{\alpha}\right)}\right)=E\left(y_{\alpha}\right),
$$

we would be finished if $\sum_{i=1}^{n} a_{i} y_{\alpha_{i}}=0$, so we can assume that $\sum_{i=1}^{n} a_{i} y_{\alpha_{i}} \neq 0$, and without loss of generality a_{i} is not equal to 0 $\bmod o\left(y_{\alpha_{i}}\right)$. Now the height $h_{G}\left(\sum_{i=1}^{n} a_{i} y_{\alpha_{i}}\right)=r$, where r is the largest positive integer such that p^{r} divides each a_{i}, since $\sum_{i=1}^{n} a_{i} y_{\alpha_{i}}$ is an element of $B=\sum_{\alpha \in I}\left\langle y_{\alpha}\right\rangle$. But,

$$
h_{G}\left(\sum_{i=1}^{n} a_{i} p^{E\left(y_{\alpha_{i}}\right)} c_{\alpha_{i}, 2 E\left(y_{\alpha_{i}}\right)}\right) \geqq \operatorname{minimum}_{i=1,2, \cdots, n}\left\{r+E\left(y_{\alpha_{i}}\right)\right\}>r,
$$

which contradicts the equality

$$
\sum_{i=1}^{n} a_{i} y_{\alpha_{i}}=\sum_{i=1}^{n} a_{i} p^{E\left(y_{\alpha_{i}}\right)} c_{\alpha_{i}, 2 E\left(y_{\alpha_{i}}\right)} .
$$

Therefore, we must have that

$$
B^{\prime}=\sum_{\alpha \in I}\left\langle y_{\alpha}-p^{E\left(y_{\alpha}\right)} c_{\alpha, 2 E\left(y_{\alpha}\right)}\right\rangle
$$

(ii) Next we will show that B^{\prime} is a pure subgroup of G. Let $z \in B^{\prime}[p]$, and write

$$
z=\sum_{i=1}^{n} \alpha_{i} p^{E\left(y_{\alpha_{i}}\right)-1}\left(y_{\alpha_{i}}-p^{E\left(y_{\alpha_{i}}\right)} c_{\alpha_{i}, 2 E\left(y_{\alpha_{i}}\right)}\right),
$$

where each a_{i} is relatively prime to p. Now we have that

$$
\begin{aligned}
h_{B^{\prime}}(z) & =\operatorname{minimum}_{i=1, \cdots, n}\left\{h_{B^{\prime}}\left[a_{i} p^{B\left(y_{\alpha_{i}}\right)-1}\left(y_{\alpha_{i}}-p^{E\left(y_{\alpha_{i}}\right)} c_{\alpha_{i}, 2 E\left(y_{\alpha_{i}}\right)}\right)\right]\right\} \\
& =\operatorname{minimum}_{i=1, \cdots, n}\left\{E\left(y_{\alpha_{i}}\right)-1\right\} .
\end{aligned}
$$

But

$$
h_{G}(z)=h_{G}\left[\left(\sum_{i=1}^{n} a_{i} p^{E\left(y_{\alpha_{i}}\right)-1} y_{\alpha_{i}}\right)-\left(\sum_{i=1}^{n} a_{i} p^{2 E\left(y_{\alpha_{i}}\right)-1} c_{\alpha_{i}, 2 E\left(y_{\alpha_{i}}\right)}\right)\right],
$$

and

$$
\begin{aligned}
h_{G}\left(\sum_{i=1}^{n} a_{i} p^{2 E\left(y_{\alpha_{i}}\right)-1} c_{\alpha_{i}, 2 E\left(y_{\alpha_{i}}\right)}\right) & \geqq \operatorname{minimum}\left\{2 E\left(y_{\alpha_{i}}\right)-1\right\} \\
& >\operatorname{minimum}_{i=1, \cdots, n}\left\{E\left(y_{\alpha_{i}}\right)-1\right\},
\end{aligned}
$$

and

$$
h_{G}\left(\sum_{i=1}^{n} a_{i} p^{E\left(y_{\alpha_{i}}\right)-1} y_{\alpha_{i}}\right)=\operatorname{minimum}_{i=1, \cdots, n}\left\{E\left(y_{\alpha_{i}}\right)-1\right\} .
$$

Since the height of the sum of two elements with different heights is just the height of the smaller, we have that

$$
h_{G}(z)=\operatorname{minimum}_{i=1, \cdots, n}\left\{E\left(y_{\alpha_{i}}\right)-1\right\} .
$$

Therefore $h_{G}(z)=h_{B^{\prime}}(z)$ for each element $z \in B^{\prime}[p]$, and hence by Lemma 7, page 20, in [3], we have that B^{\prime} is pure.
(iii) We will now complete the proof that B^{\prime} is a basic subgroup of G by showing that B^{\prime} cannot be extended to a larger pure direct sum of cyclic groups. Suppose that $B^{\prime} \oplus\langle z\rangle$ is a pure direct sum of cyclic groups. Since $\left\{\left\{y_{\alpha} \mid \alpha \in I\right\},\left\{c_{\alpha, n} \mid \alpha \in I, n=1,2, \cdots\right\}\right\}$ is a quasibasis for G, we can write

$$
z=\sum_{i=1}^{n} a_{i} y_{\alpha_{i}}+\sum_{i=1}^{k} s_{j} c_{\alpha_{j}, r_{j}}
$$

Now we also know that $c_{\alpha_{j}, r_{j}}=p c_{\alpha_{j}, r_{j}+1}+b_{j}$ where $b_{j} \in B=\sum_{\alpha \in I}\left\langle y_{\alpha}\right\rangle$, hence we can write

$$
z=\sum_{j=1}^{k} s_{j} p c_{\alpha_{j}, r_{j}+1}+\sum_{i=1}^{m} t_{i} y_{\alpha_{i}}
$$

Now write

$$
z=\sum_{j=1}^{k} s_{j} p \boldsymbol{c}_{\alpha_{j}, r_{j}+1}+\sum_{i=1}^{m_{1}} t_{i}^{\prime} y_{\alpha_{i}}+\sum_{i=1}^{m_{2}} t_{i}^{\prime \prime} y_{\alpha_{i}}
$$

where each t_{i}^{\prime} is divisible by p, and each $t_{i}^{\prime \prime}$, is relatively prime to p. We are assuming that $H=B^{\prime} \oplus\langle z\rangle$ is pure in G, and hence, $h_{G}(z)=$ $h_{H}(z)=0$, and since H is a direct sum of cyclic groups we must also have that $h_{H}\left(b^{\prime}+z\right)=0$, for any $b^{\prime} \in B$. Consider the following element of B^{\prime},

$$
\sum_{i=1}^{m_{2}} t_{i}^{\prime \prime}\left(y_{\alpha_{i}}-p^{E\left(y_{\alpha_{i}}\right)} c_{\alpha_{i}, 2 E\left(y_{\alpha_{i}}\right)}\right) .
$$

Now we have

$$
\begin{aligned}
z- & \sum_{i=1}^{m_{2}} t_{i}^{\prime \prime}\left(y_{\alpha_{i}}-p^{\mathbb{E}\left(y_{\alpha_{i}}\right)} c_{\alpha_{i}, 2 E\left(y_{\alpha_{i}}\right)}\right) \\
& =\sum_{j=1}^{k} s_{j} p c_{\alpha_{j}, r_{j}+1}+\sum_{i=1}^{m_{1}} t_{i}^{\prime} y_{\alpha_{i}}+\sum_{i=1}^{m_{2}} t_{i}^{\prime \prime} p^{E\left(y_{\left.\alpha_{i}\right)}\right)} c_{\alpha_{\alpha_{i}}, 2 E\left(y_{\alpha_{i}}\right)}
\end{aligned}
$$

thus

$$
h_{G}\left(z-\sum_{i=1}^{m_{2}} t_{i}^{\prime \prime}\left(y_{\alpha_{i}}-p^{E\left(y_{\alpha_{i}}\right)} c_{\alpha_{i}, 2 E\left(y_{\alpha_{i}}\right.}\right) \geqq 1\right.
$$

but this contradicts the assumption that H is a pure subgroup of G. Thus B^{\prime} is a basic subgroup of G.

To complete the proof of the theorem, we need only show that $B \cap B^{\prime}=0$. To see this suppose that

$$
\sum_{j=1}^{k} s_{j}\left(y_{\alpha_{j}}-p^{E\left(y_{\left.\alpha_{j}\right)}\right.} c_{\alpha_{j}, 2 E\left(y_{\alpha_{j}}\right)}\right)=\sum_{i=1}^{n} a_{i} y_{\alpha_{i}}
$$

Consider

$$
\begin{aligned}
\sum_{i=1}^{n} a_{i} y_{\alpha_{i}}+B=0+B & =\sum_{j=1}^{k} s_{j}\left(y_{\alpha_{j}}-p^{E\left(y_{\left.\alpha_{j}\right)}\right.} c_{\alpha_{j}, 2 E\left(y_{\alpha_{j}}\right)}\right)+B \\
& =\sum_{j=1}^{k} s_{j} p^{E\left(y_{\alpha_{j}}\right)} c_{\alpha_{j}, 2 E\left(y_{\alpha_{j}}\right)}+B \\
& =\sum_{j=1}^{k} s_{j} c_{\alpha_{j}, E\left(y_{\alpha_{j}}\right)}+B
\end{aligned}
$$

so that $s_{j} c_{\alpha_{j}, E\left(y_{\alpha_{j}}\right)}+B=0+B$ for $j=1, \cdots, k$ since each is from a different summand of G / B. But this means that s_{j} is divisible by $p^{E\left(y_{\alpha_{j}}\right)}$ for $j=1, \cdots, k$. Thus

$$
\sum_{j=1}^{k} s_{j}\left(y_{\alpha_{j}}-p^{E\left(y_{\alpha_{j}}\right)} c_{\alpha_{j}, 2 E\left(y_{\alpha_{j}^{\prime}}\right.}\right)=0
$$

and so $B \cap B^{\prime}=0$.
Lemma 2. Let G be a reduced p-group such that final rank $(G)=|G|$. Let B be a lower basic subgroup of G. Then there exists a basic subgroup B^{\prime} of G which is disjoint from B.

Proof. Let H be a high subgroup of G which contains B. By Theorem 5 in [2] H is pure and a basic subgroup of H is a basic of G. Thus $\operatorname{rank}(G / B)=\operatorname{rank}(H / B)+\operatorname{rank}(G / H)$, and we consider the following cases:

Case (i). Suppose that $\operatorname{rank}(H / B)=\operatorname{rank}(G / B)$, then we know that final $\operatorname{rank}(H) \geqq \operatorname{rank}(H / B)=\operatorname{rank}(G / B)=$ final $\operatorname{rank}(G)=|G| \geqq|H|$. Thus final rank $(H)=|H|$, and Lemma 1 completes the proof.

Case (ii). Suppose that $\operatorname{rank}(G / B)>\operatorname{rank}(H / B)$. Since $|G|=$ final $\operatorname{rank}(G)$, and final $\operatorname{rank}(G)=\operatorname{rank}(G / B)$, we know that $\operatorname{rank}(G / B)$ is infinite. But if $\operatorname{rank}(G / B)>\operatorname{rank}(H / B)$, and is infinite, then the $\left|G^{1}[p]\right|$ is infinite, and hence we have $\left|G^{1}[p]\right|=\operatorname{rank}(G / H)>\operatorname{rank}(H / B)$. Now $\operatorname{rank}(G / B)=\operatorname{rank}(H / B)+\operatorname{rank}(G / H)=\operatorname{rank}(H / B)+\left|G^{1}[p]\right|$, and thus $\left|G^{1}[p]\right|=\operatorname{rank}(G / B)=|G|$. So that $\left|G^{1}[p]\right| \geqq|B|$, and for the purposes of this proof we can assume that $\left|G^{1}[p]\right|=|B|$. Let $G^{1}[p]=\sum_{\alpha \in I}\left\langle y_{\alpha}\right\rangle$, and let $B=\sum_{\alpha \in I}\left\langle x_{\alpha}\right\rangle$. For each $\alpha \in I$ choose z_{α} such that $y_{\alpha}=p^{E\left(x_{\alpha}\right)-1} z_{\alpha}$, which can be done since each y_{α} has infinite height. Now consider the subgroup $B^{\prime}=\left\langle\left\{x_{\alpha}+z_{\alpha}\right\}_{\alpha \in I}\right\rangle$. We claim that B^{\prime} is a basic subgroup of G which is disjoint from B. To see this we prove:
(i) First we must show that $B^{\prime}=\sum_{\alpha \in I}\left\langle x_{\alpha}+z_{\alpha}\right\rangle$. Suppose

$$
\sum_{i=1}^{n} a_{i}\left(x_{\alpha_{i}}+z_{\alpha_{i}}\right)=0,
$$

where $a_{i} \not \equiv 0 \bmod \left(o\left(x_{\alpha_{i}}\right)\right)$, and $a_{i}<o\left(x_{\alpha_{i}}\right)$. Notice that $o\left(x_{\alpha}\right)=o\left(x_{\alpha}+z_{\alpha}\right)$ since $p\left(y_{\alpha}\right)=0=p^{\Xi\left(x_{\alpha}\right)} z_{\alpha}$. Let k_{i} be the largest positive integer such that $p^{k_{i}}$ divides a_{i}. Let $r=$ maximum $_{i=1, \ldots, n}\left\{E\left(x_{\alpha_{i}}\right)-k_{i}\right\}$, and consider

$$
\begin{aligned}
0=p^{r-1}\left(\sum_{i=1}^{n} a_{i}\left(x_{\alpha_{i}}+z_{\alpha_{i}}\right)\right) & =\sum_{i=1}^{n} a_{i} p^{r-1} x_{\alpha_{i}}+\sum_{i=1}^{n} a_{i} p^{r-1} z_{\alpha_{i}} \\
& =\sum_{i=1}^{n} a_{i} p^{r-1} x_{\alpha_{i}}+\sum_{i=1}^{n} \alpha_{i}^{\prime} y_{\alpha_{i}} .
\end{aligned}
$$

Hence we have

$$
\sum_{i=1}^{n} a_{i}^{\prime} y_{\alpha_{i}}=-\sum_{i=1}^{n} a_{i} p^{r-1} x_{\alpha_{i}}
$$

but this means that an element of infinite height is equal to an element of finite height which is contradiction. Thus $B^{\prime}=\sum_{\alpha \in I}\left\langle x_{\alpha}+z_{\alpha}\right\rangle$.
(ii) We must show that B^{\prime} is pure. Let $s \in B^{\prime}[p]$, and write

$$
s=\sum_{i=1}^{n} a_{i} p^{E\left(x_{\alpha_{i}}\right)-1}\left(x_{\alpha_{i}}+z_{\alpha_{i}}\right)
$$

where a_{i} is relatively prime to p for each i. Since $B^{\prime}=\sum_{\alpha \in I}\left\langle x_{\alpha}+z_{\alpha}\right\rangle$, we know that $h_{B^{\prime}}(s)=$ minimum $_{i=1, \ldots, n}\left\{E\left(x_{\alpha_{i}}\right)-1\right\}$. Now consider

$$
\begin{aligned}
h_{G}(s) & =h_{G}\left(\sum_{i=1}^{n} a_{i} p^{E\left(x_{\alpha_{i}}\right)-1} x_{\alpha_{i}}+\sum_{i=1}^{n} a_{i} p^{E\left(x_{\alpha_{i}}\right)-1} z_{\alpha_{i}}\right) \\
& =h_{G}\left(\sum_{i=1}^{n} a_{i} p^{E\left(x_{\alpha_{i}}\right)-1} x_{\alpha_{i}}+\sum_{i=1}^{n} a_{i} y_{\alpha_{i}}\right) \\
& =h_{G}\left(\sum_{i=1}^{n} a_{i} p^{E\left(x_{\alpha_{i}}\right)-1} x_{\alpha_{i}}\right) \\
& =\operatorname{minimum}_{i=1, \ldots, n}\left\{E\left(x_{\alpha_{i}}\right)-1\right\} .
\end{aligned}
$$

Thus B^{\prime} is a pure subgroup of G.
(iii) To complete the proof that B^{\prime} is a basic subgroup of G, we need only prove that the quotient G / B^{\prime} is divisible. If every element $s+B^{\prime} \in\left(G / B^{\prime}\right)[p]$ has infinite height then G / B^{\prime} is divisible. Thus we can assume $h_{G \mid B^{\prime}}\left(s+B^{\prime}\right)=n$, a finite integer, and we can assume that $o(s)=o\left(s+B^{\prime}\right)$. Now since G / B is divisible we know that $s+B$ has infinite height in G / B. Consider the following cases:

Case (a). Suppose that $s \in B$, then

$$
s=\sum_{i=1}^{m} a_{i} p^{B\left(\varepsilon_{\alpha_{i}}\right)-1} x_{\alpha_{i}}
$$

where a_{i} is relatively prime to p for each i. Now define the following element of B^{\prime}, let

$$
b^{\prime}=\sum_{i=1}^{m} a_{i} p^{B\left(x_{\alpha_{i}}\right)-1}\left(x_{\alpha_{i}}+z_{\alpha_{i}}\right) .
$$

But

$$
s-b^{\prime}=\sum_{i=1}^{m} a_{i} y_{\alpha_{i}}, \quad \text { and } \quad \sum_{i=1}^{m} a_{i} y_{\alpha_{i}}
$$

has infinite height in G so that $h_{G / B^{\prime}}\left(s+B^{\prime}\right)$ is infinite. Therefore G / B^{\prime} must be divisible.

Case (b). Suppose that $s \notin B$, then there exists an element $\sum_{i=1}^{m} a_{i} x_{\alpha_{i}} \in B$, such that

$$
s+\sum_{i=1}^{m} a_{i} x_{\alpha_{i}}=p^{n+1} g
$$

since $h_{G / B}(s+B)$ is infinite. Now write

$$
\sum_{i=1}^{m} a_{i} x_{\alpha_{i}}=\sum_{j=1}^{r} c_{j} x_{\alpha_{j}}+\sum_{k=1}^{t} d_{k} x_{\alpha_{k}},
$$

where c_{j} is divisible by $p^{E\left(x_{\alpha_{j}}\right)-1}$, and d_{k} is not divisible by $p^{B\left(x_{x_{k}}\right)-1}$. Thus

$$
s+\sum_{j=1}^{r} c_{j} x_{\alpha_{j}}+\sum_{k=1}^{t} d_{k} x_{\alpha_{k}}=p^{n+1} g
$$

and so multiplication by p yields

$$
\sum_{k=1}^{t} p d_{k} x_{\alpha_{k}}=p^{n+2} g .
$$

By choice of the $x_{\alpha_{k}}$'s we know $p d_{k} x_{\alpha_{k}} \neq 0$. Thus we must have

$$
h_{G}\left(\sum_{k=1}^{t} d_{k} x_{\alpha_{k}}\right) \geqq n+1
$$

Therefore by letting $c_{j}^{\prime}=c_{j} / p^{E\left(x_{\alpha_{j}}\right)-1}$ we have that

$$
s+\sum_{j=1}^{r} p^{E\left(x_{\alpha_{j}}\right)-1} c_{j}^{\prime} x_{\alpha_{j}}=p^{n+1} g^{\prime}
$$

Consider the element $b^{\prime} \in B^{\prime}$ such that

$$
b^{\prime}=\sum_{j=1}^{r} c_{j}^{\prime} p^{E\left(x_{\alpha_{j}}\right)-1}\left(x_{\alpha_{j}}+z_{\alpha_{j}}\right)=\sum_{j=1}^{r} c_{j}^{\prime} p^{E\left(x_{\alpha_{j}}\right)-1} x_{\alpha_{j}}+\sum_{j=1}^{r} c_{j}^{\prime} y_{\alpha_{j}} .
$$

Then

$$
s-b^{\prime}=p^{n+1} g^{\prime}-\sum_{j=1}^{r} c_{j}^{\prime} y_{\alpha_{j}}=p^{n+1} g^{\prime \prime}
$$

since $\sum_{j=1}^{r} c_{j}^{\prime} y_{\alpha_{j}}$ has infinite height in G. But this implies that

$$
h_{G \mid B^{\prime}}\left(s+B^{\prime}\right) \geqq n+1
$$

which contradicts the assumption that $h_{G \mid B^{\prime}}\left(s+B^{\prime}\right)=n$. Thus G / B^{\prime} must be divisible.
(iv) To complete the proof of the theorem, we need only show that $B \cap B^{\prime}=0$. To see this, suppose that

$$
\sum_{i=1}^{n} a_{i} x_{\alpha_{i}}=\sum_{j=1}^{k} s_{j}\left(x_{\alpha_{j}}+z_{\alpha_{j}}\right) \neq 0
$$

so

$$
\sum_{i=1}^{n} a_{i} x_{\alpha_{i}}-\sum_{j=1}^{k} s_{j} x_{\alpha_{j}}=\sum_{j=1}^{k} s_{j} z_{\alpha_{j}} \neq 0
$$

and by multiplying both sides of this equation by an appropriate power of p we get an element of infinite height on one side and an element of finite height on the other side, which is a contradiction. Thus $B \cap B^{\prime}=0$, and the proof is finished.

The following theorem gives a sufficient condition for a group G to possess disjoint basic subgroups.

Theorem 3. Let G be a reduced Abelian p-group. If final rank $(G)=|G|$, then G contains two disjoint basic subgroups.

Proof. Since every p-group has a lower basic subgroup, then Lemma 2 will complete the proof.

The next corollary shows that the restriction final rank $(G)=|G|$, can be removed if instead of disjoint basic subgroups, one is seeking two basic subgroups whose intersection is bounded.

Corollary 4. Let G be a reduced Abelian p-group. Then there exists two basic subgroups of G whose intersection is bounded.

Proof. By Theorem 31.5, page 106, in [1], we can write $G=$ $H \oplus K$, where K is bounded direct sum of cyclic groups, and final rank $(H)=|H|$. Now by Theorem 3 there exists A and B which are disjoint basic subgroups of H. Now $A \oplus K$ and $B \oplus K$ are basic subgroups of G whose intersection is bounded.

Theorem 5. Let G be a reduced Abelian p-group, and suppose that A and B are two disjoint basic subgroups of G. Then rank $(G / A)=\operatorname{rank}(G / B)=|G|$.

Proof. Suppose that rank $(G / A)<|G|$, then by Lagrange's Theorem and since basic subgroups are isomorphic we know that $|G|=|B|=|A|$. By Theorem A we have $G=L \oplus F$ and $A=$ $A^{\prime} \oplus F$, where $|L|=\operatorname{maximum}\left\{\boldsymbol{\aleph}_{0}, \operatorname{rank}(G / A)\right\}$. Since A and B are disjoint basic subgroup of G we know G cannot be bounded. Now $(G / A)[p] \supset[(A \oplus B) / A][p]$ and $|[(A \oplus B) / A][p]|=|B|$ which must be at least \aleph_{0}. Thus rank $(G / A) \geqq \boldsymbol{K}_{0}$, and therefore

$$
|L|=\operatorname{rank}(G / A)<|G|
$$

We can write each $x \in B$ as $x=y_{x}+f_{x}$, where $y_{x} \in L$ and $f_{x} \in F$. Since $|B|=|A|=|G|>|L|$ and B is a subgroup, there must exist some $y \in B$ such that $y \in F$, but $F \subset A$ which contradicts $A \cap B=0$. Thus rank $(G / A)=|G|$, and similarity $\operatorname{rank}(G / B)=|G|$.

We are now in a position to state the results of the original questions in Theorem 6 and Theorem 7.

Theorem 6. A necessary and sufficient condition for a reduced Abelian p-group to possess disjoint basic subgroups is that final $\operatorname{rank}(G)=|G|$.

Proof. If final $\operatorname{rank}(G)=|G|$ then Theorem 3 completes the proof. If A and B are disjoint basic subgroups of G then by Theorem 5 we have $r(G / A)=r(G / B)=|G|$. But final $\operatorname{rank}(G) \geqq$ $\operatorname{rank}(G / M)$ for any basic subgroup M of G. Thus final $\operatorname{rank}(G) \geqq$ $\operatorname{rank}(G / A)=|G|$, and since $|G| \geqq$ final rank (G) we have final rank $(G)=|G|$.

Theorem 7. If G is a reduced Abelian p-group such that final $\operatorname{rank}(G)=|G|$, and A is a basic subgroup of G, then there is a basic subgroup of G which is disjoint from A if and only if A is a lower basic subgroup of G.

Proof. If A is a lower basic subgroup then Lemma 2 assures the existence of a disjoint basic subgroup. If G possesses a basic
subgroup B disjoint from A then by Theorem 5 we have $\operatorname{rank}(G / A)=$ $|G|$ and by hypothesis final $\operatorname{rank}(G)=|G|$ thus $\operatorname{rank}(G / A)=$ final rank (G) and A is a lower basic subgroup.

Bibliography

1. L. Fuchs, Abelian Groups, Pergamon Press, New York, 1960.
2. John M. Irwin, High subgroups of abelian torsion groups, Pacific J. Math. 11, (1961), 1375-1384.
3. Irving Kaplansky, Infinite Abelian Groups, The University of Michigan Press, Ann. Arbor, 1954.
4. A. Richard Mitchell, and Roger W. Mitchell Some structure theorems for infinite abelian p-groups. Journal of Algebra vol. 5, no. 3 (1967), 367-372.

Received July 14, 1966.

