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ABELIAN OBJECTS

MARY GRAY

In a category with a zero object, products and coproducts
and in which the map

(1 0\
\0 1

A + B >A x B
is an epimorphism, we define abelian objects. We show that
the product of abelian objects is also a coproduct for the
subcategory consisting of all the abelian objects. Moreover,
we prove that abelian objects constitute abelian subcategories
of certain not-necessarily abelian categories, thus obtaining
a generalization of the subcategory of the category of groups
consisting of all abelian groups.

2» Definition and properties of Abel ian objects* The direct

product is not a coproduct in the category of groups as it is in the
category of abelian groups. What is lacking is a canonical map from
the product, i.e., the sum map of abelian groups; in particular, we
need a map A x A—> A which when composed with (1, 0) or (0,1) is
the identity on A. For abelian groups this is the map (1^ + 1A) (where
(α, b)(f + g) = af + bg). On the other hand if such a map a; exists,
then for α , δ e i , since (0, a) + (6, 0) = ((0 + &), (α + 0)), a + b =
((0, a) + (δ, 0))x = ((0 + 6), (a + 0))x = b + a since (1,0)a? - (0,l)α> - lA,
i.e., A is abelian.

This suggests that if we consider only objects where there is
always a unique morphism from the product of the object with itself
to either component which composes with either (1, 0) or (0,1) to give
the identity, we should get a generalization of abelian groups, provided
the original category has certain properties which the category of
groups has. Isbell [3] has also considered the existence of this map.

Let ^ be a category with a zero object, products and coproducts
and in which the map

n o\

is an epimorphism for each Au A2e <&. We assume that all categories
considered are sufficiently small that the (representatives of) subobjects
(and quotient objects) of a given object form a set.

DEFINITION. Let sf be the full subcategory of ^ determined
by those A G ^ which have a morphism j from A x A —> A such that
(1, 0)j = (0, l)j = 1 .̂ We call the objects of Sf abelian objects.
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THEOREM 1. The product of abelian objects is abelian.

Proof. Suppose Ax x A2 is the product of abelian objects A{ with
projection maps piy i = 1, 2. We form the following products:

Pi

(Ax x A2)k > (Ax x A2) x (Ax x A2) > {Aι x A2);

Ak x Ak > (Ax x Aλ) x (A2 x A2) > A* x A*

i = 1, 2, j = 1, 2, k = 1, 2, and we use the symbol Afc —> Ax x A2 to
mean the map (1^, 0) for k = 1, (0,1^2) for k = 2. Then we have

z* = (2>ίPo 2>2Pi): (Λ x Λ) x (Λ x A) > At x A{

so that

{Aι x A2)fc > (Ax x A2) x (Ax x A2) — ^ A{ x A4 —

- (A, x A2)k > (Ax x A2) x (A, x A2) ^U (A, x A2)y - ^ A,

(by definition of ^^ and this is equal to

(A, x A2)k - ? ΰ (A,)fc ^ . x Λ - ^ (A<y

since both are projections or zero depending upon whether or not
j = Λ. Moreover, the p( are right cancellable since the results hold
for both j = 1, j — 2, and Ai x A{ is a product. Since the At are
abelian, there is a morphism sc<: A^ x Ai-^Ai such that (1^^, 0 ) ^ =
(0, l^.)Xi - l ^ r So we define y = {pϊxl9 p'2'x2), z = (^, «2). Then we
have

A A
 X2

 A
Jx2 X -rL2 > A-2

\Jxχ X A2) X \-A-i X <Ά2) \-̂ -l X -̂ M/ X V^-2 X ^-2/ ^ -"Ί X -"-2

I"
id N/ y4 >• A_

commutat ive from t h e definitions of zi9y and z. B u t by t h e above
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(A1 x A2)k > (Aλ x A2) x (Ax x A2) > (A1 x AJ x (A2 x A2)

— / A \y A \ v / A \/ A \ \y ( A \/ A \ v A \/
— \ *^-l s^ -*-*-2//c V ^^l ^ •^•2/ ^ \ ̂ "1 ^ "^* 2/ •i^-i ^

ί — 1, 2, ft = 1, 2. Now the p^ are right cancellable since the equations
hold for i = 1, 2. Hence (l^x^, 0 ) ^ = l^iX^2 and (0, lΛίXΛ2)zy = lAιXΛi,
i.e., zy is the desired map.

PROPOSITION. X is abelian if and only if every morphism
J \:Aι-\-A2—>X can be factored through A1 x A2. (Al9 A2 not
iy /

necessarily abelian)

Proof. If X is abelian we have I = I )(/, g)x, where
\ 9 I \0 1/

X x X >X is the abelianess map. If X has the given property,

it is abelian by virtue of factorization of (Λ.

THEOREM 2. The product of abelian objects in & is also their
coproduct in the subcategory of abelian objects.

Proof. If A1 and A2 are abelian, so is their product and since

is an epimorphism the factorization of the proposition above is
0 1

unique.

3* Abelian subcategories* We now define a type of category
in which it will be shown that the abelian objects form an abelian
subcategory.

DEFINITION. The image of a map A —* B is the smallest subobject
of B such that A-^B factors through the representative monomorphisms.

We define coimage dually.

DEFINITION. Let y be a category with a zero object, products
and coproducts, satisfying the following conditions:

(1) If K-^ A is a kernel and A~+B is an epimorphism, then
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image (K—*B) is a kernel.
(2) Any morphism of S? may be factored into (representatives

of) its coimage followed by its image.
(3) Every epimorphism is a cokernel.

Then Sf is called a nearly abelian category.
Clearly the category of groups and group homomorphisms satisfies

these conditions.

THEOREM 3. Let Sf be a nearly abelian category. The subcategory
jzf of abelian objects of S^ is an abelian category.

Proof. A zero object is clearly abelian.

Products and coproducts are abelian by Theorems 1 and 2 and
the following lemma:

LEMMA 0. In a category & with zero object, products, coproducts,
and satisfying conditions (2) and (3).

(o l)

is an epimorphism, for each Al9 A2 e
 <^p.

We first prove

LEMMA 1. If f:A-+B and g:B-+C are such that g and fg
have images, then the image of fg is contained in the image of g.

Proof. Let I->C be the image of g. Then A—>B—>I-+C =
A—*B-^C so that I-+C contains the image of fg.

LEMMA 2. In a category & with coproducts and images the
subobjects of a given object form a complete lattice.

Proof. Let {sά: A5-^ A\jeJ) represent an arbitrary set of
subobjects of A e &. Let {uά\ Aβ—>ΣAό \je J} be the coproduct of
the Aj. Let u be the unique morphism ΣAj—^A whose composition
with Uj is Sj for each j . Let I —> A be the image of u. Then we have

so that
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I commutes.

Aj —• / is a monomorphism since s, is. Hence / —> A is an upper bound.
Suppose s': A! —> A is an upper bound for the s3 . Let s'3 be such

that

Aό-^A

Sjϊ /
A! commutes.

Let v be the unique morphism ΣAά—*A! whose composition with u3-
is s'j for each j . Then we have udvs' = uάu\ therefore vs' — u by
definition of coproduct. Hence the image of u = the image of vsf is
contained in s' by the preceding lemma. Thus the image of u is the
l.u.b.

Let {sk: Ak—> A\ke K} be the set of monomorphisms s':A'—>A
with s' contained in sy for all j e J. Then there exists s", the l.u.b.
of {s'k\keK} (as constructed above), and s" is the g.l.b. of (ss\jeJ).

Proof of Lemma 0. We have

(1 0\
Ui ^ \0 1/ pi _ (1,0) 39i

/I 0\
and similarly for p2. Then uA j = (1, 0) since the equations hold

/I 0\
for both projections. Similarly u2l = (0, 1). By the construction

of Lemma 2, the l.u.b. of (1, 0) and (0,1) is image (Ax + A2-^A1 x A2).
Hence by definition of product, domain image (A± + A2 —* Ax x A2) is
(isomorphic to) Aλ x A2. Thus

Λ I Λ v Λ \y A
S±l -f S±2

 > -tt l Λ -TL2

= coimage (A1 + A2 > Aλ x A2)(AX x A2 • Aλ x A2)

(1 0\
/ . . V0 1) . Λ \ . . . . Λ x

= (Ax + A2 > Ax x A2 J(Aχ x A2 > Ax x A2)

and since A1 x A2—>Aλ x A2 is right cancellable,

(1 0\
= coimage (A2 + A2 > A x x A 2)
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and hence it is an epimorphism.
It now remains to show only that every morphism has both a

kernel and a cokernel and that every monomorphism is a kernel and
that every epimorphism is a cokernel.

LEMMA 2*. In a category with products and coimages the quotient
objects of a given object form a complete lattice.

Proof. The proof is dual to that of Lemma 2.

LEMMA 3. If every morphism of a category <& with a zero
object and coproducts (products) can be factored into an epimorphism
followed by a monomorphism, then every morphism has a kernel
(cokernel).

Proof. We prove the coproducts and kernels case; the other
proceeds dually. Let A—>B be a morphism of <ĝ  Consider the
coproduct ΣAj of all subobjects of A such that As —> A —> B = 0. Then
ΣAj —> A —»B = 0 by definition of coproduct so let ΣAj —• A — ΣAj —>
I —• A, ΣAj —* I an epimorphism, / ^ A a monomorphism, i.e., we have

\
• A • B = 0 commutative.

Then ΣAj —>I —> A —+ B = 0 and since ΣAj~>J is an epimorphism,

/—>A—>B = 0. Moreover, / — > A is an upper bound for the Aj9 for

there is a map Aό —• / = Aά —• 2Ά y —> I such t h a t

Aj commutative,

for each Ay. Hence I—>A is the desired kernel.

LEMMA 4. In a category & with kernels and cokernels in which
every epimorphism is a cokernel, if A—+B factors through an
epimorphism A —• C and a monomorphism C —» B, this factorization
is unique up to equivalence.

Proof. Suppose A —> C" —> B and A-+C —>B are two factorizations
of A—>B into an epimorphism followed by a monomorphism. Let
K —• A be the kernel of A—>C; then A —> C is the cokernel of K —• A
and similarly for JRΓ'—>A and A—>C. Then K-+A—*C'-+B = 0
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and K —• A —>C = 0 since C—>J3 is right cancellable. Hence K-+A
is contained in JBC —>A and hence A—>C contains A—> C . Similarly
A —> C" contains A —-> C. Now we have

A >C >B

\
\

C" where both triangles commute.

Since A—>C is an epimorphism, C —>C-+B = C"—*B and similarly
C—>C'—>B = C~->B. Hence C-+B and C->£ are also equivalent.

LEMMA 5. Iw α category as in Lemma 0 if f:A—+B is an
epimorphism and g: B —> C, ί/^e^ image of fg — image of g.

Proof. Let / —> C be the image of B—>C. Then A —> / is the
composition of epimorphisms

and hence an epimorphism. Thus by Lemma 4 it is the coimage of
A-^C and I —> C is the image of A —• C.

LEMMA 6. In a category such as in Lemma 0, if mλ\ Aλ —+ A,
m2: A2—+ A are monomorphisms and f: A—> C, then

image ((l.u.b. {ml9 m2})f) = image (l.u.b. {image mj, image m2/}) .

Proo/. Let ut Ai->A1 + A2, u\\ A'^ A[ + AJ, where A'^C is
the image of m{f. Then we have

/coimage (mιf)u{\ /image (mi/)
/i Ui Λ \ A ^ c o i m a ^ e (mzfW A t At \image(m2/)

/image (mi/)\
coimage (mi/) \image (m2/)/

coimage (mi/) (image m*/)
>• ^ ^

/mΛ

/coimage ( m j ) ^ ^ /image ( m ^ )
Since these equations hold for ̂  and u2Λ .

Vcoimage (m2f)uf

2) \image (m2/)

( ) / . Then image(Ai—^-> Ax + A2—* AJ + A2) is contained in the
m2) \ )
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is the image of the second map by

image of Ax + A2 —> A[ + A2. But by the factorization above and the
fact that Ax + A2 is a coproduct, the image of A* —»Ax + A2 —» A[ + A2

is w$. Thus since the l.u.b. of the u/s is AJ + A2 —> AJ + A2, this
identity is the image of Aλ + A2 —> A[ + A2 and Ax + A2 —• A[ + A2 is
its own coimage and hence an epimorpism. Then the image of
/coimage (witftu'λ /image (mj)^
\coimage (m2f)u2j \image (m2f) J

Lemma 5.

Also we have

image

since the coimage of ( M is an epimorphism. We have

X

coimage
m i

f

image

Y where everything commutes.

Then

image ^image = image ((l.u.b. {mu m2})/)

= image (l.u.b. {image ( w j ) , image (m2/)})

since we get from the above that

image Kcoimage (m^u'λ /image {mu

coimage (m2f)u'J \image (m2f)J_

Γ
= image L

/image (mJΆΊ

LVimage {mj))\

= image (image
:;))>•

which proves the lemma.
We now show that any subobject of an abelian object is an abelian

object. If in particular the subobject is the kernel in £f of a morphism
of j ^ , then it is in s/ and clearly is the kernel in j y \ Suppose
k: K —> A is a subobject of an abelian object A. Let K x K be the
product of K with itself, Pi its projection morphisms, p\ the projection
morphisms for Ax A. Let a? be the morphism A x A—> A such that

A = 1^, i = 1, 2. Let 7/ = (pxfc, p2k) so that

K x K- A x A - A = k as in Theorem 2. K x K~*K x K is
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the l.u.b. of Kx -> K x K and K2 — K x K so

image ((l.u.b. {Kx > K x K, K2 • K x K})yx) — image yx .

Moreover,

image ί i ^ • if x if • A\, image lK2 > K x K • A)>

= image ft

and by Lemma 6, image yx = image ft.
Now we let x': K x K —> K be the coimage of yx. Then (1^, ϋ)x'k =

(1^, 0)(coimage (yx))(image (yx)) = (1^, 0 ) ^ = ft(l^, 0)x = ft(by definition
of x) and similarly for (0,1^). Then ft is right cancellable so (1^, 0)x' =
1^ and (0, lκ)x' = lκ. Hence x' is the desired morphism and Ke j y \

Dually to the above, any quotient object of an abelian object is
abelian, and in particular the cokernel of a morphism of jy is in sf.

We now show that all monomorphisms of szf are kernels. Suppose

/ : A —> B is a monomorphism of j y . Let B x B — -̂> Biy A x B -^-> A,

A x B-^-> B be products. Then we have (pj/, pj): A x B-+ B x B

and A — -̂> A x ΰ ^ B x ΰ = A - ^ β —~• B x B since followed by

either ^^ they are equal. Moreover, 5 —L-> AxB—*BxB = B —'—+
B x B. Let j be the morphism such that (1B, 0)j = 1B = (0, lB)j.

Then B-^ A x B—> B x B — -̂> B — B — ^ B x B —?-+ B = 1B; hence
ĵ Pθi is an epimorphism since 1B is. Then

A > A x B >B x B-^B

Now A —> A x B is a kernel of A x B-^ B and since A x B —>

B x B —3—+ B is an epimorphism, A - > A x 5 - > 5 x B — -̂> £ = A —•
B = image (A —•> JB) (since A —> JS is a monomorphism) is a kernel by
condition (1).

If f:A~^B is an epimorphism in S? we form its kernel as above
and it is the cokernel of its kernel. It remains to show that if / is
an epimorphism of j ^ , it is an epimorphism of Sf.

Suppose / : A—*B is an epimorphism of Ssf. Then suppose B-+I
is the cokernel of A —> B. Since I is abelian and A —* B is left cancel-
lable in j y , B — > I = 0, i.e., the cokernel of / is zero. Then its
kernel is the image of / , which is then equivalent to B—+B, i.e.,
A —• B is its own coimage and hence an epimorphism.

Thus j y is abelian, completing the proof of Theorem 3.
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4* -fiΓ-spaces* In the category J7~ of topological spaces with base
points and continuous maps taking base points into base points, we
call a mapμ:X x X —>X (Cartesian product) a continuous multipli-
cation. We denote (α, b)μ by ab. The correspondences x—>ax and
x —> xa for a given a e X determine the maps La: X —> X, Ra: X —• X.
A base point α e l i s a homotopy unit if α is idempotent and La and
i?α are homotopic to the identity map relative to a. Ra and La are
continuous by definition and take base points into base points since a
is idempotent. X is an H-space if it has a continuous multiplication
with homotopy unit.

Clearly Ra factors through X x X (which is obviously a product

in this category) as X —'—> X x X—^-> X, and similarlyf or La. If a
is a homotopy unit,

Now consider the functor πλ from the category J7~ to the category
<& of groups and group homomorphisms which assigns to each object
of J7~ its fundamental group. We know that (X x X)πx =

x {X)πλ (group direct product) so we have

(X)π, - ^ - U (X)πx x (X)πλ -^-4 (X)πx = {Ra)πx = (lx)πλ

(since Ra ~ l x ) = l(x)Xι. Moreover, (1, 0)π± = (l(x)JCl, 0) and similarly
for (0,1)^! by definition of product and functor. Hence (μ)πx is the
required map in the definition of abelian objects. Thus we obtain the
well-known result that the fundamental group of an if-space is abelian.

The author wishes to thank the referee for his many helpful
suggestions.
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