ABELIAN OBJECTS

Mary Gray

In a category with a zero object, products and coproducts and in which the map

$$
A+B \xrightarrow{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)} A \times B
$$

is an epimorphism, we define abelian objects. We show that the product of abelian objects is also a coproduct for the subcategory consisting of all the abelian objects. Moreover, we prove that abelian objects constitute abelian subcategories of certain not-necessarily abelian categories, thus obtaining a generalization of the subcategory of the category of groups consisting of all abelian groups.
2. Definition and properties of Abelian objects. The direct product is not a coproduct in the category of groups as it is in the category of abelian groups. What is lacking is a canonical map from the product, i.e., the sum map of abelian groups; in particular, we need a map $A \times A \rightarrow A$ which when composed with $(1,0)$ or $(0,1)$ is the identity on A. For abelian groups this is the map $\left(1_{A}+1_{A}\right)$ (where $(a, b)(f+g)=a f+b g)$. On the other hand if such a map x exists, then for $a, b \in A$, since $(0, a)+(b, 0)=((0+b),(a+0)), a+b=$ $((0, a)+(b, 0)) x=((0+b),(a+0)) x=b+a$ since $(1,0) x=(0,1) x=1_{A}$, i.e., A is abelian.

This suggests that if we consider only objects where there is always a unique morphism from the product of the object with itself to either component which composes with either $(1,0)$ or $(0,1)$ to give the identity, we should get a generalization of abelian groups, provided the original category has certain properties which the category of groups has. Isbell [3] has also considered the existence of this map.

Let \mathscr{C} be a category with a zero object, products and coproducts and in which the map

$$
A_{1}+A_{2} \xrightarrow{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)} A_{1} \times A_{2}
$$

is an epimorphism for each $A_{1}, A_{2} \in \mathscr{C}$. We assume that all categories considered are sufficiently small that the (representatives of) subobjects (and quotient objects) of a given object form a set.

Definition. Let \mathscr{A} be the full subcategory of \mathscr{C} determined by those $A \in \mathscr{C}$ which have a morphism j from $A \times A \rightarrow A$ such that $(1,0) j=(0,1) j=1_{A}$. We call the objects of \mathscr{A} abelian objects.

Theorem 1. The product of abelian objects is abelian.

Proof. Suppose $A_{1} \times A_{2}$ is the product of abelian objects A_{i} with projection maps $p_{i}, i=1,2$. We form the following products:

$$
\begin{aligned}
\left(A_{1} \times A_{2}\right)_{k} & \longrightarrow\left(A_{1} \times A_{2}\right) \times\left(A_{1} \times A_{2}\right) \xrightarrow{p_{i}^{\prime}}\left(A_{1} \times A_{2}\right)_{i} \\
\left(A_{i}\right)_{k} & \longrightarrow A_{i} \times A_{i} \xrightarrow{p_{i}^{j}}\left(A_{i}\right)^{j} \\
A_{k} \times A_{k} & \longrightarrow\left(A_{1} \times A_{1}\right) \times\left(A_{2} \times A_{2}\right) \xrightarrow{p_{i}^{\prime \prime}} A_{i} \times A_{i}
\end{aligned}
$$

$i=1,2, j=1,2, k=1,2$, and we use the symbol $A_{k} \rightarrow A_{1} \times A_{2}$ to mean the $\operatorname{map}\left(1_{A_{1}}, 0\right)$ for $k=1,\left(0,1_{A_{2}}\right)$ for $k=2$. Then we have

$$
z_{i}=\left(p_{1}^{\prime} p_{i}, p_{2}^{\prime} p_{i}\right):\left(A_{1} \times A_{2}\right) \times\left(A_{1} \times A_{2}\right) \longrightarrow A_{i} \times A_{i}
$$

so that

$$
\begin{aligned}
&\left(A_{1} \times A_{2}\right)_{k} \longrightarrow\left(A_{1} \times A_{2}\right) \times\left(A_{1} \times A_{2}\right) \xrightarrow{z_{i}} A_{i} \times A_{i} \xrightarrow{p_{i}^{j}}\left(A_{i}\right)^{j} \\
&=\left(A_{1} \times A_{2}\right)_{k} \longrightarrow\left(A_{1} \times A_{2}\right) \times\left(A_{1} \times A_{2}\right) \xrightarrow{p_{j}^{\prime}}\left(A_{1} \times A_{2}\right)_{j} \xrightarrow{p_{i}} A_{i}
\end{aligned}
$$

(by definition of z_{i}) and this is equal to

$$
\left(A_{1} \times A_{2}\right)_{k} \xrightarrow{p_{i}}\left(A_{i}\right)^{k} \longrightarrow A_{i} \times A_{i} \xrightarrow{p_{i}^{j}}\left(A_{i}\right)^{j}
$$

since both are projections or zero depending upon whether or not $j=k$. Moreover, the p_{i}^{j} are right cancellable since the results hold for both $j=1, j=2$, and $A_{i} \times A_{i}$ is a product. Since the A_{i} are abelian, there is a morphism $x_{i}: A_{i} \times A_{i} \rightarrow A_{i}$ such that $\left(1_{A_{i}}, 0\right) x_{i}=$ $\left(0,1_{A_{i}}\right) x_{i}=1_{A_{i}}$. So we define $y=\left(p_{1}^{\prime \prime} x_{1}, p_{2}^{\prime \prime} x_{2}\right), z=\left(z_{1}, z_{2}\right)$. Then we have

commutative from the definitions of z_{i}, y and z. But by the above

$$
\begin{aligned}
&\left(A_{1} \times A_{2}\right)_{k} \longrightarrow\left(A_{1} \times A_{2}\right) \times\left(A_{1} \times A_{2}\right) \xrightarrow{z}\left(A_{1} \times A_{1}\right) \times\left(A_{2} \times A_{2}\right) \\
& \xrightarrow{y}\left(A_{1} \times A_{2}\right) \xrightarrow{p_{i}} A_{i} \\
&=\left(A_{1} \times A_{2}\right)_{k} \longrightarrow\left(A_{1} \times A_{2}\right) \times\left(A_{1} \times A_{2}\right) \xrightarrow{z_{i}} A_{i} \times A_{i} \xrightarrow{x_{i}} A_{i} \\
&=\left(A_{1} \times A_{2}\right)_{k} \longrightarrow\left(A_{i}\right)^{k} \xrightarrow{l} A_{i} \times A_{i} \xrightarrow{x_{i}} A_{i}=A_{1} \times A_{2} \xrightarrow{p_{i}} A_{i} \\
&= A_{1} \times A_{2} \xrightarrow{1} A_{1} \times A_{2} \xrightarrow{p_{i}} A_{i},
\end{aligned}
$$

$i=1,2, k=1,2$. Now the p_{i} are right cancellable since the equations hold for $i=1$, 2. Hence $\left(1_{A_{1} \times A_{2}}, 0\right) z y=1_{A_{1} \times A_{2}}$ and ($\left.0,1_{A_{1} \times A_{2}}\right) z y=1_{A_{1} \times A_{2}}$, i.e., $z y$ is the desired map.

Proposition. X is abelian if and only if every morphism $\binom{f}{g}: A_{1}+A_{2} \rightarrow X$ can be factored through $A_{1} \times A_{2} . \quad\left(A_{1}, A_{2}\right.$ not necessarily abelian)

Proof. If X is abelian we have $\binom{f}{g}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)(f, g) x$, where $X \times X \xrightarrow{x} X$ is the abelianess map. If X has the given property, it is abelian by virtue of factorization of $\binom{1}{1}$.

Theorem 2. The product of abelian objects in \mathscr{C} is also their coproduct in the subcategory of abelian objects.

Proof. If A_{1} and A_{2} are abelian, so is their product and since $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is an epimorphism the factorization of the proposition above is unique.
3. Abelian subcategories. We now define a type of category in which it will be shown that the abelian objects form an abelian subcategory.

Definition. The image of a map $A \rightarrow B$ is the smallest subobject of B such that $A \rightarrow B$ factors through the representative monomorphisms.

We define coimage dually.
Definition. Let \mathscr{S} be a category with a zero object, products and coproducts, satisfying the following conditions:
(1) If $K \rightarrow A$ is a kernel and $A \rightarrow B$ is an epimorphism, then
image $(K \rightarrow B)$ is a kernel.
(2) Any morphism of \mathscr{S} may be factored into (representatives of) its coimage followed by its image.
(3) Every epimorphism is a cokernel.

Then \mathscr{S} is called a nearly abelian category.
Clearly the category of groups and group homomorphisms satisfies these conditions.

Theorem 3. Let \mathscr{S} be a nearly abelian category. The subcategory \mathscr{A} of abelian objects of \mathscr{S} is an abelian category.

Proof. A zero object is clearly abelian.
Products and coproducts are abelian by Theorems 1 and 2 and the following lemma:

Lemma 0. In a category \mathscr{C} with zero object, products, coproducts, and satisfying conditions (2) and (3).

$$
A_{1}+A_{2} \xrightarrow{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)} A_{1} \times A_{2}
$$

is an epimorphism, for each $A_{1}, A_{2} \in \mathscr{C}$.
We first prove
Lemma 1. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are such that g and $f g$ have images, then the image of $f g$ is contained in the image of g.

Proof. Let $I \rightarrow C$ be the image of g. Then $A \rightarrow B \rightarrow I \rightarrow C=$ $A \rightarrow B \rightarrow C$ so that $I \rightarrow C$ contains the image of $f g$.

Lemma 2. In a category \mathscr{C} with coproducts and images the subobjects of a given object form a complete lattice.

Proof. Let $\left\{s_{j}: A_{j} \rightarrow A \mid j \in J\right\}$ represent an arbitrary set of subobjects of $A \in \mathscr{C}$. Let $\left\{u_{j}: A_{j} \rightarrow \Sigma A_{j} \mid j \in J\right\}$ be the coproduct of the A_{j}. Let u be the unique morphism $\Sigma A_{j} \rightarrow A$ whose composition with u_{j} is s_{j} for each j. Let $I \rightarrow A$ be the image of u. Then we have

$$
A_{j} \xrightarrow{u_{j}} \Sigma A_{j} \xrightarrow{\nearrow_{u}^{I} \searrow} A
$$

so that

$A_{j} \rightarrow I$ is a monomorphism since s_{j} is. Hence $I \rightarrow A$ is an upper bound.
Suppose $s^{\prime}: A^{\prime} \rightarrow A$ is an upper bound for the s_{j}. Let s_{j}^{\prime} be such that

Let v be the unique morphism $\Sigma A_{j} \rightarrow A^{\prime}$ whose composition with u_{j} is s_{j}^{\prime} for each j. Then we have $u_{j} v s^{\prime}=u_{j} u$; therefore $v s^{\prime}=u$ by definition of coproduct. Hence the image of $u=$ the image of $v s^{\prime}$ is contained in s^{\prime} by the preceding lemma. Thus the image of u is the l.u.b.

Let $\left\{s_{k}^{\prime}: A_{k}^{\prime} \rightarrow A \mid k \in K\right\}$ be the set of monomorphisms $s^{\prime}: A^{\prime} \rightarrow A$ with s^{\prime} contained in s_{j} for all $j \in J$. Then there exists $s^{\prime \prime}$, the l.u.b. of $\left\{s_{k}^{\prime} \mid k \in K\right\}$ (as constructed above), and $s^{\prime \prime}$ is the g.l.b. of $\left\{s_{j} \mid j \in J\right)$.

Proof of Lemma 0. We have

$$
A_{1} \xrightarrow{u_{1}} A_{1}+A_{2} \xrightarrow{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)} A_{1} \times A_{2} \xrightarrow{p_{1}} A_{1}=A_{1} \xrightarrow{(1,0)} A_{1} \times A_{2} \xrightarrow{p_{1}} A_{1}
$$

and similarly for p_{2}. Then $u_{1}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=(1,0)$ since the equations hold for both projections. Similarly $u_{2}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=(0,1)$. By the construction of Lemma 2, the l.u.b. of $(1,0)$ and $(0,1)$ is image $\left(A_{1}+A_{2} \rightarrow A_{1} \times A_{2}\right)$. Hence by definition of product, domain image ($A_{1}+A_{2} \rightarrow A_{1} \times A_{2}$) is (isomorphic to) $A_{1} \times A_{2}$. Thus

$$
\begin{aligned}
A_{1}+ & A_{2} \rightarrow A_{1} \times A_{2} \\
& =\text { coimage }\left(A_{1}+A_{2} \longrightarrow A_{1} \times A_{2}\right)\left(A_{1} \times A_{2} \longrightarrow A_{1} \times A_{2}\right) \\
& =\left(A_{1}+A_{2} \xrightarrow{\left(\begin{array}{ll}
1 & 0 \\
0
\end{array}\right)} A_{1} \times A_{2}\right)\left(A_{1} \times A_{2} \longrightarrow A_{1} \times A_{2}\right)
\end{aligned}
$$

and since $A_{1} \times A_{2} \rightarrow A_{1} \times A_{2}$ is right cancellable,

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\text { coimage }\left(A_{1}+A_{2} \longrightarrow A_{1} \times A_{2}\right)
$$

and hence it is an epimorphism.
It now remains to show only that every morphism has both a kernel and a cokernel and that every monomorphism is a kernel and that every epimorphism is a cokernel.

Lemma 2*. In a category with products and coimages the quotient objects of a given object form a complete lattice.

Proof. The proof is dual to that of Lemma 2.
Lemma 3. If every morphism of a category \mathscr{C} with a zero object and coproducts (products) can be factored into an epimorphism followed by a monomorphism, then every morphism has a kernel (cokernel).

Proof. We prove the coproducts and kernels case; the other proceeds dually. Let $A \rightarrow B$ be a morphism of \mathscr{C}. Consider the coproduct ΣA_{j} of all subobjects of A such that $A_{j} \rightarrow A \rightarrow B=0$. Then $\Sigma A_{j} \rightarrow A \rightarrow B=0$ by definition of coproduct so let $\Sigma A_{j} \rightarrow A=\Sigma A_{j} \rightarrow$ $I \rightarrow A, \Sigma A_{j} \rightarrow I$ an epimorphism, $I \rightarrow A$ a monomorphism, i.e., we have

Then $\Sigma A_{j} \rightarrow I \rightarrow A \rightarrow B=0$ and since $\Sigma A_{j} \rightarrow I$ is an epimorphism, $I \rightarrow A \rightarrow B=0$. Moreover, $I \rightarrow A$ is an upper bound for the A_{j}, for there is a map $A_{j} \rightarrow I=A_{j} \rightarrow \Sigma A_{j} \rightarrow I$ such that

for each A_{j}. Hence $I \rightarrow A$ is the desired kernel.
Lemma 4. In a category \mathscr{C} with kernels and cokernels in which every epimorphism is a cokernel, if $A \rightarrow B$ factors through an epimorphism $A \rightarrow C$ and a monomorphism $C \rightarrow B$, this factorization is unique up to equivalence.

Proof. Suppose $A \rightarrow C^{\prime} \rightarrow B$ and $A \rightarrow C \rightarrow B$ are two factorizations of $A \rightarrow B$ into an epimorphism followed by a monomorphism. Let $K \rightarrow A$ be the kernel of $A \rightarrow C$; then $A \rightarrow C$ is the cokernel of $K \rightarrow A$ and similarly for $K^{\prime} \rightarrow A$ and $A \rightarrow C^{\prime}$. Then $K \rightarrow A \rightarrow C^{\prime} \rightarrow B=0$
and $K \rightarrow A \rightarrow C^{\prime}=0$ since $C^{\prime} \rightarrow B$ is right cancellable. Hence $K \rightarrow A$ is contained in $K^{\prime} \rightarrow A$ and hence $A \rightarrow C$ contains $A \rightarrow C^{\prime}$. Similarly $A \rightarrow C^{\prime}$ contains $A \rightarrow C$. Now we have

Since $A \rightarrow C^{\prime}$ is an epimorphism, $C^{\prime} \rightarrow C \rightarrow B=C^{\prime} \rightarrow B$ and similarly $C \rightarrow C^{\prime} \rightarrow B=C \rightarrow B$. Hence $C^{\prime} \rightarrow B$ and $C \rightarrow B$ are also equivalent.

Lemma 5. In a category as in Lemma 0 if $f: A \rightarrow B$ is an epimorphism and $g: B \rightarrow C$, then image of $f g=$ image of g.

Proof. Let $I \rightarrow C$ be the image of $B \rightarrow C$. Then $A \rightarrow I$ is the composition of epimorphisms

and hence an epimorphism. Thus by Lemma 4 it is the coimage of $A \rightarrow C$ and $I \rightarrow C$ is the image of $A \rightarrow C$.

Lemma 6. In a category such as in Lemma 0, if $m_{1}: A_{1} \rightarrow A$, $m_{2}: A_{2} \rightarrow A$ are monomorphisms and $f: A \rightarrow C$, then
image $\left(\left(\right.\right.$ l.u.b. $\left.\left.\left\{m_{1}, m_{2}\right\}\right) f\right)=$ image (l.u.b. \{image $m_{1} f$, image $\left.m_{2} f\right\}$).
Proof. Let $u_{i}: A_{i} \rightarrow A_{1}+A_{2}, u_{i}^{\prime}: A_{i}^{\prime} \rightarrow A_{1}^{\prime}+A_{2}^{\prime}$, where $A_{i}^{\prime} \rightarrow C$ is the image of $m_{i} f$. Then we have

$$
\begin{aligned}
& A_{i} \xrightarrow{u_{i}} A_{1}+A_{2} \xrightarrow{\left.\begin{array}{c}
\left.\begin{array}{c}
\text { coimage }\left(m_{1} f\right) u_{1}^{\prime} \\
\text { coimage }\left(m_{2} f\right) \\
\end{array}\right) \\
u_{2}^{\prime}
\end{array}\right)} A_{1}^{\prime}+A_{2}^{\prime} \xrightarrow{\binom{\text { image }\left(m_{1} f\right)}{\text { image }\left(m_{2} f\right)}} C \\
& =A_{i} \xrightarrow{\text { coimage }\left(m_{i} f\right)} A_{i}^{\prime} \longrightarrow A_{1}^{\prime}+A_{2}^{\prime} \xrightarrow{\left.\begin{array}{c}
\text { image }\left(m_{1} f\right) \\
\text { image }\left(m_{2} f\right)
\end{array}\right)} C \\
& =A_{i} \xrightarrow{\text { coimage }\left(m_{i} f\right)} A_{i}^{\prime} \xrightarrow{\text { (image } \left.m_{i} f\right)} C \\
& =A_{i} \xrightarrow{u_{i}} A_{1}+A_{2} \xrightarrow{\binom{m_{1}}{m_{2}}} A \xrightarrow{f} C .
\end{aligned}
$$

Since these equations hold for u_{1} and $u_{2},\binom{\operatorname{coimage}\left(m_{1} f\right) u_{1}^{\prime}}{\operatorname{coimage}\left(m_{2} f\right) u_{2}^{\prime}}\binom{\operatorname{image}\left(m_{1} f\right)}{$ image $\left(m_{2} f\right)}=$ $\binom{m_{1}}{m_{2}} f$. Then image $\left(A_{i} \xrightarrow{u_{i}} A_{1}+A_{2} \rightarrow A_{1}^{\prime}+A_{2}^{\prime}\right)$ is contained in the
image of $A_{1}+A_{2} \rightarrow A_{1}^{\prime}+A_{2}^{\prime}$. But by the factorization above and the fact that $A_{1}+A_{2}$ is a coproduct, the image of $A_{i} \rightarrow A_{1}+A_{2} \rightarrow A_{1}^{\prime}+A_{2}^{\prime}$ is u_{i}^{\prime}. Thus since the l.u.b. of the $u_{i}^{\prime} \mathrm{s}$ is $A_{1}^{\prime}+A_{2}^{\prime} \rightarrow A_{1}^{\prime}+A_{2}^{\prime}$, this identity is the image of $A_{1}+A_{2} \rightarrow A_{1}^{\prime}+A_{2}^{\prime}$ and $A_{1}+A_{2} \rightarrow A_{1}^{\prime}+A_{2}^{\prime}$ is its own coimage and hence an epimorpism. Then the image of $\binom{$ coimage $\left(m_{1} f\right) u_{1}^{\prime}}{$ coimage $\left(m_{2} f\right) u_{2}^{\prime}}\binom{$ image $\left(m_{1} f\right)}{$ image $\left(m_{2} f\right)}$ is the image of the second map by Lemma 5.

Also we have

$$
\text { image }\left[\binom{m_{1}}{m_{2}} f\right]=\text { image }\left[\left(\operatorname{image}\binom{m_{1}}{m_{2}}\right) f\right]
$$

since the coimage of $\binom{m_{1}}{m_{2}}$ is an epimorphism. We have

Then

$$
\begin{gathered}
\text { image }\left[\left(\text { image }\binom{m_{1}}{m_{2}}\right) f\right]=\text { image }\left(\left(\text { l.u.b. }\left\{m_{1}, m_{2}\right\}\right) f\right) \\
\left.\left.\quad=\text { image (l.u.b. \{image }\left(m_{1} f\right), \text { image }\left(m_{2} f\right)\right\}\right)
\end{gathered}
$$

since we get from the above that

$$
\begin{gathered}
\text { image }\left[\binom{\text { coimage }\left(m_{1} f\right) u_{1}^{\prime}}{\text { coimage }\left(m_{2} f\right) u_{2}^{\prime}}\binom{\text { image }\left(m_{1} f\right)}{\text { image }\left(m_{2} f\right)}\right]=\text { image }\left[\binom{\text { image }\left(m_{1} f\right)}{\text { image }\left(m_{2} f\right)}\right] \\
\quad=\text { image }\left[\binom{m_{1}}{m_{2}} f\right]=\text { image }\left[\left(\operatorname{image}\binom{m_{1}}{m_{2}}\right)\right] f,
\end{gathered}
$$

which proves the lemma.
We now show that any subobject of an abelian object is an abelian object. If in particular the subobject is the kernel in \mathscr{S} of a morphism of \mathscr{A}, then it is in \mathscr{A} and clearly is the kernel in \mathscr{A}. Suppose $k: K \rightarrow A$ is a subobject of an abelian object A. Let $K \times K$ be the product of K with itself, p_{i} its projection morphisms, p_{i}^{\prime} the projection morphisms for $A \times A$. Let x be the morphism $A \times A \rightarrow A$ such that $A_{i} \rightarrow A \times A \xrightarrow{x} A=1_{A}, i=1,2$ Let $y=\left(p_{1} k, p_{2} k\right)$ so that $K_{i} \rightarrow$ $K \times K \xrightarrow{y} A \times A \xrightarrow{x} A=k$ as in Theorem $2 . \quad K \times K \rightarrow K \times K$ is
the l.u.b. of $K_{1} \rightarrow K \times K$ and $K_{2} \rightarrow K \times K$ so
image ((l.u.b. $\left.\left.\left\{K_{1} \longrightarrow K \times K, K_{2} \longrightarrow K \times K\right\}\right) y x\right)=$ image $y x$.
Moreover,

$$
\begin{aligned}
& \text { l.u.b. }\left\{\text { image }\left(K_{1} \longrightarrow K \times K \xrightarrow{y x} A\right) \text {, image }\left(K_{2} \longrightarrow K \times K \xrightarrow{y x} A\right)\right\} \\
& =\text { image } k
\end{aligned}
$$

and by Lemma 6, image $y x=$ image k.
Now we let $x^{\prime}: K \times K \rightarrow K$ be the coimage of $y x$. Then $\left(1_{K}, 0\right) x^{\prime} k=$ $\left(1_{K}, 0\right)$ (coimage $\left.(y x)\right)($ image $(y x))=\left(1_{K}, 0\right) y x=k\left(1_{A}, 0\right) x=k$ (by definition of x) and similarly for $\left(0,1_{K}\right)$. Then k is right cancellable so $\left(1_{K}, 0\right) x^{\prime}=$ 1_{K} and $\left(0,1_{K}\right) x^{\prime}=1_{K}$. Hence x^{\prime} is the desired morphism and $K \in \mathscr{A}$.

Dually to the above, any quotient object of an abelian object is abelian, and in particular the cokernel of a morphism of \mathscr{A} is in \mathscr{A}.

We now show that all monomorphisms of \mathscr{A} are kernels. Suppose $f: A \rightarrow B$ is a monomorphism of \mathscr{A}. Let $B \times B \xrightarrow{p_{i}} B_{i}, A \times B \xrightarrow{p_{1}^{\prime}} A$, $A \times B \xrightarrow{p_{2}^{\prime}} B$ be products. Then we have ($p_{1}^{\prime} f, p_{2}^{\prime}$): $A \times B \rightarrow B \times B$ and $A \xrightarrow{(1,0)} A \times B \rightarrow B \times B=A \rightarrow B \xrightarrow{(1,0)} B \times B$ since followed by either p_{i} they are equal. Moreover, $B \xrightarrow{(0,1)} A \times B \rightarrow B \times B=B \xrightarrow{(0,1)}$ $B \times B$. Let j be the morphism such that $\left(1_{B}, 0\right) j=1_{B}=\left(0,1_{B}\right) j$. Then $B \rightarrow A \times B \rightarrow B \times B \xrightarrow{j} B=B \xrightarrow{(0,1)} B \times B \xrightarrow{j} B=1_{B}$; hence ($p_{1}^{\prime} f, p_{2}^{\prime}$) j is an epimorphism since 1_{B} is. Then

$$
\begin{array}{rl}
A \longrightarrow A \times B & B \times B \xrightarrow{j} B \\
& =A \xrightarrow{f} B \xrightarrow{(1,0)} B \times B \xrightarrow{j} B=A \xrightarrow{f} B .
\end{array}
$$

Now $A \rightarrow A \times B$ is a kernel of $A \times B \rightarrow B$ and since $A \times B \rightarrow$ $B \times B \xrightarrow{j} B$ is an epimorphism, $A \rightarrow A \times B \rightarrow B \times B \xrightarrow{j} B=A \rightarrow$ $B=$ image $(A \rightarrow B)$ (since $A \rightarrow B$ is a monomorphism) is a kernel by condition (1).

If $f: A \rightarrow B$ is an epimorphism in \mathscr{S} we form its kernel as above and it is the cokernel of its kernel. It remains to show that if f is an epimorphism of \mathscr{A}, it is an epimorphism of \mathscr{S}.

Suppose $f: A \rightarrow B$ is an epimorphism of \mathscr{A}. Then suppose $B \rightarrow I$ is the cokernel of $A \rightarrow B$. Since I is abelian and $A \rightarrow B$ is left cancellable in $\mathscr{A}, B \rightarrow I=0$, i.e., the cokernel of f is zero. Then its kernel is the image of f, which is then equivalent to $B \rightarrow B$, i.e., $A \rightarrow B$ is its own coimage and hence an epimorphism.

Thus \mathscr{A} is abelian, completing the proof of Theorem 3.
4. H-spaces. In the category \mathscr{T} of topological spaces with base points and continuous maps taking base points into base points, we call a map $\mu: X \times X \rightarrow X$ (Cartesian product) a continuous multiplication. We denote $(a, b) \mu$ by $a b$. The correspondences $x \rightarrow a x$ and $x \rightarrow x a$ for a given $a \in X$ determine the maps $L_{a}: X \rightarrow X, R_{a}: X \rightarrow X$. A base point $a \in X$ is a homotopy unit if a is idempotent and L_{a} and R_{a} are homotopic to the identity map relative to $a . \quad R_{a}$ and L_{a} are continuous by definition and take base points into base points since a is idempotent. X is an H-space if it has a continuous multiplication with homotopy unit.

Clearly R_{a} factors through $X \times X$ (which is obviously a product in this category) as $X \xrightarrow{(1,0)} X \times X \xrightarrow{\mu} X$, and similarlyf or L_{a}. If a is a homotopy unit,

$$
\begin{aligned}
& X \xrightarrow{(1,0)} X \times X \xrightarrow{\mu} X=R_{a} \simeq l_{X} \\
& X \xrightarrow{(0,1)} X \times X \xrightarrow{\mu} X=L_{a} \simeq l_{X}
\end{aligned}
$$

Now consider the functor π_{1} from the category \mathscr{T} to the category \mathscr{G} of groups and group homomorphisms which assigns to each object of \mathscr{T} its fundamental group. We know that $(X \times X) \pi_{1}=$ $(X) \pi_{1} \times(X) \pi_{1}$ (group direct product) so we have

$$
(X) \pi_{1} \xrightarrow{(1,0) \pi_{1}}(X) \pi_{1} \times(X) \pi_{1} \xrightarrow{(\mu) \pi_{1}}(X) \pi_{1}=\left(R_{a}\right) \pi_{1}=\left(1_{X}\right) \pi_{1}
$$

(since $\left.R_{a} \simeq 1_{X}\right)=1_{(X) \pi_{1}}$. Moreover, $(1,0) \pi_{1}=\left(1_{(X) \pi_{1}}, 0\right)$ and similarly for $(0,1) \pi_{1}$ by definition of product and functor. Hence $(\mu) \pi_{1}$ is the required map in the definition of abelian objects. Thus we obtain the well-known result that the fundamental group of an H-space is abelian.

The author wishes to thank the referee for his many helpful suggestions.

References

1. Peter Freyd, Abelian Categories, Harper and Row, New York, 1964.
2. S. T. Hu, Homotopy Theory, Academic Press, New York, 1959.
3. J. R. Isbell, Natural sums and Abelianizing, Pacific J. Math. 14 (1964), 1265-1282.
4. Saunders MacLane, Categorical Algebra, Pacific J. Math. 14 (1964), 1265-1282.

Received January 6, 1965.
The University of California, Berkeley
California State College, Hayward

