MEASURES WHOSE RANGE IS A BALL

Neil W. Rickert

It has been shown by R. P. Kaufman and the author that if μ is a measure of total variation 1 with values in R^{n}, then there is a measurable set E with

$$
|\mu(E)| \geqq \frac{1}{2 \pi^{1 / 2}} \frac{\Gamma(n / 2)}{\Gamma((n+1) / 2)} .
$$

The main purpose of this paper is to determine for which measures μ there is no set E with

$$
|\mu(E)|>\frac{1}{2 \pi^{1 / 2}} \frac{\Gamma(n / 2)}{\Gamma((n+1) / 2)} .
$$

It will be shown that they are the measures which satisfy the following two conditions:
(i) The measure of the whole space is zero.
(ii) The induced probability measure $\alpha \circ f(|\mu|)$ on the projective space P^{n-1} is orthogonally invariant, where $f=$ $d \mu / d|\mu|$ maps the measure space to the sphere S^{n-1} and α is the natural map of S^{n-1} onto P^{n-1}.

A different, more geometric proof of the first inequality above has been given by Schwarz [5].

It is clear that condition (i) is equivalent to the centre of the range of μ being 0 . It will be shown that for $n \geqq 2$, condition (ii) is equivalent to the range of μ being a ball of radius

$$
\frac{1}{2 \pi^{1 / 2}} \frac{\Gamma(n / 2)}{\Gamma((n+1) / 2)} .
$$

Of course for $n=1$ condition (ii) is trivially satisfied by every measure with range in R^{1} since P^{0} consists of one point.

Let X be a space, Σ a σ-field of subsets of X, and μ a measure on Σ with values in R^{n}. By the range of μ we mean the set $\{\mu(E) ; E \in \Sigma\}$. For E in $\Sigma,|\mu|(E)$ will denote the total variation of μ on the set E. Note that $|\mu|$ is a positive measure on $\Sigma \cdot\|\mu\|$ will denote $|\mu|(x)$.

If X^{\prime} is another space, and Σ^{\prime} a σ-field of subsets of X^{\prime}, and if f is a map of X into X^{\prime}, f will be called measurable if $f^{-1}(E) \in \Sigma$ whenever $E \in \Sigma^{\prime}$. If f is measurable, and if μ is a measure on Σ, then $f(\mu)$ is that measure on Σ^{\prime} defined by $f(\mu)(E)=\mu\left(f^{-1}(E)\right)$. When X^{\prime} is a topological space (such as a sphere or a projective space) we shall always understand that we are using the σ-field of Borel sets. By abuse of language we shall speak of measures on X, or
measures on X^{\prime} when we should be speaking of measures on Σ on Σ^{\prime}.
If f denotes the Radon-Nikodym derivative $d \mu / d|\mu|, f$ is a measurable map of X into R^{n}. By redefining f on a set of $|\mu|-$ measure zero if necessary, we may assume that f maps X into the sphere S^{n-1}. Thus $f(\mu)$ and $f(|\mu|)$ are Borel measures on S^{n-1}. Note that $f(\mu)$ and $f(|\mu|)$ are related by $f(\mu)(d x)=x f(|\mu|)(d x)$. It is easily seen from this that $|f(\mu)|=f(|\mu|)$ and $\|f(\mu)\|=\|\mu\|$.

If $x \in S^{n-1}$ we denote by H_{x} the hemisphere determined by x. That is $H_{x}=\left\{y \in S^{n-1} ;\langle y, x\rangle \geqq 0\right\}$. For μ an R^{n} valued measure on X we denote by ρ_{μ} the function defined on S^{n-1} by $\rho_{\mu}(x)=\left\langle\mu\left(f^{-1}\left(H_{x}\right)\right), x\right\rangle$ where $f=d \mu / d|\mu|$.

Fix an arbitrary point x_{0} in S^{n-1}. We denote by G the group $S O(n)$ and K the subgroup of G consisting of those elements which fix x_{0}. If we choose an orthonormal basis $e_{1}, e_{2}, \cdots, e_{n}$ for R^{n} such that $e_{1}=x_{0}$, then G consists of orthogonal metrices of determinant 1, while K consists of matrices

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & \cdots
\end{array}\right) 00
$$

where A is an $(n-1) \times(n-1)$ orthogonal matrix of determinant 1 .
The projective space P^{n-1} is the space obtained from S^{n-1} by identifying antipodal points. We shall denote by α the natural projection of S^{n-1} onto P^{n-1}.

We denote by m the unique probability measure on S^{n-1} which is invariant under orthogonal transformations. Up to a scalar factor m is the usual surface measure on S^{n-1}. Note that $\alpha(m)$ is the invariant probability measure on P^{n-1}.

Lemma 1. ρ_{μ} is a continuous function on S^{n-1} and

$$
\int_{s^{n-1}} \rho_{\mu}(x) m(d x)=\frac{1}{2 \pi^{1 / 2}} \frac{\Gamma(n / 2)}{\Gamma((n+1) / 2)}
$$

if μ is an valued measure of total variation 1 on X.
Proof. The second assertion was essentially proved in the proof of Theorem 3 of [3]. For the first assertion observe that

$$
\begin{aligned}
& \rho_{\mu}(x)-\rho_{\mu}(y)=\left\langle x, \mu\left(f^{-1}\left(H_{x}\right)\right)\right\rangle-\left\langle y, \mu\left(f^{-1}\left(H_{y}\right)\right)\right\rangle \\
& \quad=\int_{X} \max (0,\langle x, f(t)\rangle)|\mu|(d t)-\int_{X} \max (0,\langle y, f(t)\rangle)|\mu|(d t) \\
& \quad \leqq \int_{X}\langle x-y, f(t)\rangle|\mu|(d t) \leqq|x-y|
\end{aligned}
$$

The continuity of ρ_{μ} follows immediately.

Lemma 2. Let λ be a probability measure on S^{n-1} and suppose that $\left\langle x, \int_{H_{x}} y \lambda(d y)\right\rangle$ is independent of x. Suppose furthermore that λ is K-invariant (i.e. $\lambda(k E)=\lambda(E)$ for $k \in K$). Then $\alpha(\lambda)$ is the invariant probability measure on P^{n-1}.

The proof of Lemma 2 will require some properties of spherical functions, so we postpone the proof until the end of this paper.

Lemma 3. Let μ be an R^{n} valued measure of total variation 1 on Σ, a σ-field of subsets of X. Then a necessary and sufficient condition that ρ_{μ} be a constant function on S^{n-1} is that $\mu(X)=0$ and $\alpha\left(f(|\mu|)\right.$ is the invariant probability measure on P^{n-1}.

Proof. Suppose first that $\mu(X)=0$ and $\alpha(f(|\mu|)$ is the invariant probability measure on P^{n-1}. Let x be an element of S^{n-1}. Define the function h on P^{x-1} by $h(\alpha(y))=\langle x, y\rangle$ if $y \in H_{x}$. Note that if y and z are in H_{x}, and if $\alpha(y)=\alpha(z)$ it follows that $\langle x, y\rangle=0=\langle x, z\rangle$ whence it follows that h is well defined. Since $\alpha(f(|\mu|))=\alpha(m)$ it follows that

$$
\begin{aligned}
& \frac{1}{\pi^{1 / 2}} \frac{\Gamma(n / 2)}{\Gamma((n+1) / 2)}=\int_{P^{n-1}} h(p) \alpha(m)(d p) \\
& \quad=\int_{P^{n-1}} h(p) \alpha(f(|\mu|)(d p) \\
& \quad=\int_{H_{x}}\langle x, y\rangle f(|\mu|)(d y)-\int_{H_{-x}}\langle x, y\rangle f(|\mu|)(d y) \\
& \quad=\left\langle x, \int_{H_{x}} y f(|\mu|)(d y)\right\rangle+\left\langle-x, \int_{H_{-x}} y f(|\mu|)(d y)\right\rangle \\
& \quad=\rho_{\mu}(x)+\rho_{\mu}(-x)
\end{aligned}
$$

Also $\rho_{\mu}(x)-\rho_{\mu}(-x)=\langle\mu(X), x\rangle=0$. Thus

$$
\rho_{\mu}(x)=\frac{1}{2 \pi^{1 / 2}} \frac{\Gamma(n / 2)}{\Gamma((n+1) / 2)}
$$

and ρ_{μ} is a constant function.
Conversely suppose that ρ_{μ} is constant. For $x \in S^{n-1}$, since

$$
\begin{aligned}
& \left\langle x, \mu\left(f^{-1}\left(H_{x} \cap H_{-x}\right)\right\rangle=0,\right. \\
\langle x, \mu(X)\rangle & =\left\langle x, \mu\left(f^{-1}\left(H_{x}\right)\right)\right\rangle+\left\langle x, \mu\left(f^{-1}\left(H_{-x}\right)\right)\right\rangle \\
& =\rho_{\mu}(x)-\rho_{\mu}(-x)=0 .
\end{aligned}
$$

Thus $\mu(X)=0$.

Now let λ be the probability measure on S^{n-1} defined by

$$
\lambda(E)=\int_{K} f(|\mu|)(k E) d k,
$$

so that if φ is a continuous function on S^{n-1},

$$
\int_{S^{n-1}} \varphi(y) \lambda(d y)=\int_{K} \int_{S^{n-1}} \varphi\left(k^{-1} y\right) f(|\mu|)(d y) d k
$$

Note that λ is K-invariant, and that

$$
\begin{aligned}
& \left\langle x, \int_{H_{x}} y \lambda(d y)\right\rangle=\int_{H_{x}}\langle x, y\rangle \lambda(d y)=\int_{S^{n-1}} \max (0,\langle x, y\rangle) \lambda(d y) \\
& \quad=\int_{K} \int_{S^{n-1}} \max \left(0,\left\langle x, k^{-1} y\right\rangle\right) f(|\mu|)(d y) \\
& \quad=\int_{K} \int_{S^{n-1}} \max (0,\langle k x, y\rangle) f(|\mu|)(d y)=\int_{K} \rho_{\mu}(k x) d k
\end{aligned}
$$

Since ρ_{μ} is constant it follows that λ satisfies the hypotheses of Lemma 2. We may thus conclude that $\alpha(\lambda)$ is the invariant measure $\alpha(m)$ on P^{n-1}. We then conclude that if h is a continuous function on P^{n-1} whose value at a point y depends only on the distance from y to $\alpha\left(x_{0}\right)$

$$
\int h(y) \alpha(f(|\mu|))(d y)=\int h(y) \alpha(\lambda) d y=\int h(y) \alpha(m) d y
$$

By x_{0} was an arbitrary point of S^{n-1}, so the same assertion is true as long as the value of h at y depends only on the distance from y to some point x in P^{n-1} (where x depends on h but not y). But linear combinations of such continuous functions are dense in all continuous functions on P^{n-1} (see [4]) so we conclude that $\alpha(f(|\mu|))=\alpha(m)$, as required.

Theorem 1. Let μ be an R^{n}-valued measure ($n \geqq 2$) of total variation 1 on Σ, a σ-field of subsets of X. Then the following conditions are equivalent:
(1) If $f=d \mu / d|\mu|$ and α is the natural projection of S^{n-1} onto P^{n-1}, then $\mu(X)=0$ and $\alpha(f(|\mu|))$ is the invariant measure on P^{n-1}.
(2) The range of μ is the ball with centre 0 and radius

$$
\frac{1}{2 \pi^{1 / 2}} \frac{\Gamma(n / 2)}{\Gamma((n+1) / 2)} .
$$

(3) The convex hull of the range of μ is a ball with centre 0 .
(4) For each $E \in \Sigma,|\mu(E)| \leqq\left(1 / 2 \pi^{1 / 2}\right)(\Gamma(n / 2) / \Gamma((n+1) / 2)$.

Proof. (4) \Rightarrow (1). It follows from (4) that

$$
\rho_{\mu}(x) \leqq \frac{1}{2 \pi^{1 / 2}} \frac{\Gamma(n / 2)}{\Gamma((n+1) / 2)}
$$

for $x \in S^{n-1}$. But ρ_{μ} is continuous, and

$$
\int_{S^{n-1}} \rho_{\mu}(x) m(d x)=\frac{1}{2 \pi^{1 / 2}} \frac{\Gamma(n / 2)}{\Gamma((n+1) / 2)}
$$

as was shown in Lemma 1. It follows that ρ_{μ} is constant, and (1) now follows from Lemma 3.
$(1) \Rightarrow(4)$. Assume that (1) is true. Suppose that there is a set $E \in \Sigma$ with $|\mu(E)|>\left(1 / 2 \pi^{1 / 2}\right)(\Gamma(n / 2) / \Gamma((n+1) / 2))$. Then there is an $x \in S^{n-1}$ such that $\langle x, \mu(E)\rangle>\left(1 / 2 \pi^{1 / 2}\right)(\Gamma(n / 2) / \Gamma((n+1) / 2))$. But clearly $\left\langle x, \mu\left(f^{-1}\left(H_{x}\right)\right)\right\rangle \geqq\langle x, \mu(E)\rangle$ so $\rho_{\mu}(x)>\left(1 / 2 \pi^{1 / 2}\right)(\Gamma(n / 2) / \Gamma((n+1) / 2))$ contradicting what was proved in Lemma 3. It follows that (4) must be true.
$(1) \Rightarrow(2)$. From the implication $(1) \Rightarrow(4)$ we know that the range of μ is contained in the ball with centre 0 and radius

$$
\frac{1}{2 \pi^{1 / 2}} \frac{\Gamma(n / 2)}{\Gamma((n+1) / 2)} .
$$

Also from (1) it follows that μ is an atom free measure, since $\alpha(f(|\mu|))$ is atom free. Hence the range of μ is convex (see [1]). It suffices to show therefore that every point on the surface of the ball is in the range of μ. But from (1) and Lemma 3 it follows that for $x \in S^{n-1}, \rho_{\mu}(x)=\left(1 / 2 \pi^{1 / 2}\right)(\Gamma(n / 2) / \Gamma((n+1) / 2))$. Whence we conclude, using (4), that

$$
\mu\left(f^{-1}\left(H_{x}\right)\right)=\frac{1}{2 \pi^{1 / 2}} \frac{\Gamma(n / 2)}{\Gamma((n+1) / 2)} x .
$$

Thus (2) is true.
$(2) \Rightarrow(3)$. Obvious.
$(3) \Rightarrow(1)$. Assume that the convex hull of the range of μ is the ball with centre 0 , radius r. Since the range of μ is closed (see [1]) it includes every extreme point $r x$, for $x \in S^{n-1}$. But if $\mu(E)=r x$,

$$
\left\langle x, \mu\left(f^{-1}\left(H_{x}\right)\right)\right\rangle \geqq\langle x, \mu(E)\rangle=r .
$$

On the other hand $\left|\mu\left(f^{-1}\left(H_{x}\right)\right)\right| \leqq r$, so it follows that $\rho_{\mu}(x)=r$ for $x \in S^{n-1}$. Applying Lemma 3, we see that (1) is true.

Remark. From the implication $(3) \Rightarrow(2)$ of the above theorem, it follows that if the convex hull of the range of a measure is a ball with centre 0 , then the measure is nonatomic, and the range is
actually convex. In fact this can be seen directly, and does not depend on the centre of the ball being 0 . For if there were an atom, the convex hull of the range of μ would have a straight edge-that is there would be a line segment on the boundary of the convex hull of the range. This is not the case when the convex hull of the range is a ball, whence we conclude that μ is atom free, and has a convex range.

We now turn our attention to characterizing measures with range a ball whose centre need not be 0 .

Lemma 4. If μ is an R^{n} valued measure on X, then the range of μ contains 0 and is symmetric about $\mu(X) / 2$.

Proof. The measure of the empty set is 0 , and the map

$$
\mu(E) \longrightarrow \mu(X-E)
$$

is a symmetry of the range of μ about $\mu(X) / 2$.
Lemma 5. Assume μ is an R^{n} valued measure on X, and that F is a measurable set. Define the measure λ on X by

$$
\lambda(E)=\mu(E-F)-\mu(E \cap F) .
$$

Set $f=d \mu / d|\mu|$ and $g=d \lambda / d|\lambda|$. Then $\alpha(f(|\mu|))=\alpha(g(|\lambda|))$.
Proof. Clearly $|\mu|=|\lambda|$ and $g(t)=f(t)$ or $g(t)=-f(t)$ depending on whether $t \in X-F$ or $t \in F$. Since $\alpha(x)=\alpha(-x)$ it follows that $\alpha(f(t))=\alpha(g(t))$ for $t \in X$. Since $|\mu|=|\lambda|$ the result follows.

Theorem 2. Let μ be an R^{n} valued measure on X, and define $f=d \mu / d|\mu|$. Let α be the natural projection of S^{n-1} onto P^{n-1}. A necessary and sufficient condition that the range of μ be a ball is that the measure $\alpha(f(|\mu|))$ on P^{n-1} be invariant under orthogonal transformations. In this case the centre of the ball is $\mu(X) / 2$ and its radius is $\left(1 / 2 \pi^{1 / 2}\right)(\Gamma(n / 2) / \Gamma((n+1) / 2))\|\mu\|$.

Proof. Without loss of generality we may assume that $\|\mu\|=1$. We may also assume that the range of μ is convex (see the remark following Theorem 1). Thus there is a measurable set F with $\mu(F)=\mu(X) / 2$. Define λ by

$$
\lambda(E)=\mu(E-F)-\mu(E \cap F)
$$

Notice that if E is any measurable set,

$$
\lambda((E-F) \cup(F-E))=\mu(E)-\mu(X) / 2
$$

and

$$
\lambda(E)=\mu((E-F) \cup(F-E))-\mu(X) / 2 .
$$

It follows that the range of λ is just the range of μ translated by $-\mu(X) / 2$. Note also that $\lambda(X)=0$. The result now follows easily from Theorem 1 and Lemmas 4 and 5.

We turn our attention now to the proof of Lemma 2. We shall need to investigate certain properties of spherical functions. A more general discussion of spherical functions on spheres can be found in [4] and [2]. S^{n-1} is a symmetric space (seen [2] for the definition of symmetric spaces) and can be written as G / K where G and K are the groups introduced earlier in the paper. Likewise P^{n-1} is a symmetric space. For technical reasons part of our discussion will apply only to the case $n \geqq 3$, although the arguments could be suitably modified to apply to the case $n=2$. In any case Lemma 2 was already proved for the case $n=2$ in [3].

Since the G-invariant differential operators on S^{n-1} are all polynomials in the Laplace-Beltrami operator Δ (see [2] p. 397), a function f on S^{n-1} is a spherical function if and only if
(i) f is K-invariant (that is $f(k x)=f(x)$ for $k \in K$).
(ii) $f\left(x_{0}\right)=1$.
(iii) f is an eigenfunction of the operator Δ.

To determine the spherical functions we coordinatize S^{n-1} as follows. A point x in S^{n-1} is given coordinates $\left(r, z_{1}, z_{2}, \cdots, z_{n-2}\right)$. Here r is the distance from x_{0} to x measured along the surface of S^{n-1} (that is r is the angle between the vectors x_{0} and x, so that $\left\langle x_{0}, x\right\rangle=\cos r$). If we project x onto the $n-1$ dimensional plane orthogonal to the vector x_{0}, and then produce the corresponding vector until it intersects the sphere in the plane, we obtain a point in S^{n-2}. Then (z_{1}, \cdots, z_{n-2}) are coordinates of this point in some local coordinates for S^{n-2}. In this way we obtain coordinates for S^{n-1} except at $r=0$ or $r=\pi$.

Assume that on S^{n-2} the Riemannian metric is $\sum a_{i j} d z_{i} d z_{j}$. Then clearly the Riemannian metric on S^{n-1} is $d r^{2}+(\sin r)^{2} \sum a_{i j} d z_{i} d z_{j}$. Denoting by $\left(b_{i j}\right)$ the $(n-2) \times(n-2)$ matrix inverse to $\left(a_{i j}\right)$ the Laplace-Beltrami operator is given by

$$
\Delta f=\frac{1}{(\sin r)^{n-2}} \frac{\partial}{\partial r}\left((\sin r)^{n-2} \frac{\partial f}{\partial r}\right)+\frac{1}{(\sin r)^{2} A} \sum_{k} \frac{\partial}{\partial z_{k}} \sum_{j} b_{j k} A \frac{\partial f}{\partial z_{j}}
$$

where $A^{2}=\operatorname{det}\left(\alpha_{i j}\right)$.
But if f is K-invariant it is a function only of r and we then have

$$
\Delta f=\frac{\partial^{2} f}{\partial r^{2}}+(n-2) \frac{\cos r}{\sin r} \frac{\partial f}{\partial r}
$$

Now if f is a spherical function it satisfies $\Delta f+\lambda f=0$ for some complex number λ. Making a change of variables, we set $f(r)=$ $\varphi(\cos r)$ for some function φ. Then if f is a spherical function φ will satisfy

$$
(1-t)^{2} \frac{d^{2} \varphi}{d t^{2}}-(n-1) t \frac{d \varphi}{d t}+\lambda \varphi=0
$$

On the other hand suppose that φ is twice continuously differentiable on $[-1,1]$ and satisfies the above differential equation. The function f defined by $f(x)=\varphi(\cos r)=\varphi\left(\left\langle x_{0}, x\right\rangle\right)$ will then be twice continuously differentiable on S^{n-1} and except at x_{0} and $-x_{0}$ it will satisfy

$$
\Delta f+\lambda f=0
$$

By continuity this equation will also be satisfied at the exceptional points. From the proof on p. 400 of [2] it can be seen that $f\left(x_{0}\right) \neq 0$ unless f vanishes identically, so after a suitable normalization f is a spherical function. We therefore seek solutions of the equation

$$
\left(1-t^{2}\right) \frac{d^{2} \varphi}{d t^{2}}-(n-1) t \frac{d \varphi}{d t}+\lambda \varphi=0
$$

If φ is a polynomial of degree k then necessarily $\lambda=k(n+k-2)$ as is readily verified by checking the term of degree k. If we can show that for every nonnegative integer k there is a polynomial φ_{k}^{n-1} of degree k which satisfies the equation with $\lambda=k(n+k-2)$ and such that $\varphi_{k}^{n-1}(1)=1$ (this last condition is equivalent to the corresponding spherical function being 1 at x_{0}, and can be achieved by a suitable normalization), then these φ_{k}^{n-1} will give rise to spherical functions on S^{n-1}. Furthermore using essentially the argument on p. 404 of [2] it can be deduced that all spherical functions arise in this way.

Notice that φ_{k}^{1} satisfies $\varphi_{k}^{1}(\cos r)=\cos k r$. Thus

$$
\varphi_{k}^{1}(t)=\sum_{j \leqq k / 2}\left(2_{j}^{k}\right) t^{k-2 j}\left(t^{2}-1\right)^{j}
$$

Notice also that φ_{k}^{2} is just the Legendre polynomial

$$
\varphi_{k}^{2}(t)=(\text { constant })\left(\frac{d}{d t}\right)^{k}\left(t^{2}-1\right)^{k}
$$

By differentiating the differential equation, observe that

$$
\varphi_{k-1}^{n+2}(t)=(\text { constant }) \frac{d}{d t} \varphi_{k}^{n}(t) .
$$

Thus we have proved
THEOREM 3. The spherical functions on S^{n-1} are the functions $f_{l}^{n-1}(x)=\varphi_{k}^{n-1}\left(\left\langle x_{0}, x\right\rangle\right)$ where φ_{k}^{n-1} satisfies

$$
\left(1-t^{2}\right) \frac{d^{2} \varphi}{d t^{2}}-(n-1) t \frac{d \varphi}{d t}+k(n+k-2) \varphi=0
$$

φ_{k}^{n-1} is a polynomial of degree k and $\varphi_{k}^{n-1}(1)=1$. Furthermore φ_{k}^{n-1} is an odd polynomial if k is odd, and is an even polynomial if k is even. If k is even (respectively odd) and if j is an even (respectively odd) integer, $0 \leqq j \leqq k$, then the coefficient of t^{j} in the polynomial $\varphi_{k}^{n-1}(t)$ does not vanish. In particular $\varphi_{k}^{n-1}(0) \neq 0$ if k is even.

If μ is a K-invariant measure on S^{n-1} we recall that its FourierStieltjes coefficients are defined by $\hat{\mu}\left(f_{k}^{n-1}\right)=\int f_{k}^{n-1}(x) \mu(d x)$ (see [2]). Likewise the Fourier coefficients of K-invariant functions on S^{n-1} can be defined. We wish to investigate the Fourier coefficients of the function ψ defined by $\psi(x)=\max \left(0,\left\langle x_{0}, x\right\rangle\right)$.

Lemma 6. For $n \geqq 3, \hat{\psi}\left(f_{k}^{n-1}\right) \neq 0$ if k is even.
Proof. Writing f for f_{k}^{n-1} and φ for φ_{k}^{n-1} we have

$$
\begin{aligned}
\hat{\psi}(f) & =\int_{S^{n-1}} \psi(x) f(x) m(d x) \\
& =\int_{S^{n-1}} \max (0, \cos r) \varphi(\cos r) m(d x) \\
& =K \int_{0}^{\pi} \max (0, \cos r) \varphi(\cos r)(\sin r)^{n-2} d r
\end{aligned}
$$

where K is chosen so that $K \int_{0}^{\pi}(\sin r)^{n-2} d r=1$. Thus

$$
\begin{aligned}
\hat{\psi}(f) & =K \int_{-1}^{1} \max (0, t) \varphi(t)\left(1-t^{2}\right)^{(n-3) / 2} d t \\
& =K \int_{0}^{1} t \varphi(t)\left(1-t^{2}\right)^{(n-3) / 2} d t
\end{aligned}
$$

Integrating twice by parts yields

$$
\begin{aligned}
& \int_{0}^{1} t \varphi(t)\left(1-t^{2}\right)^{(n-3) / 2} d t \\
& =\frac{1}{n-1} \varphi(0)+\frac{1}{n-1} \int_{0}^{1}\left(1-t^{2}\right)^{(n-1) / 2} \varphi^{\prime}(t) d t \\
& =\frac{1}{n-1} \varphi(0)+\frac{1}{n-1} \int_{0}^{1} t\left(1-t^{2}\right)^{(n-1) / 2} \varphi^{\prime \prime}(t) d t+\int_{0}^{1} t^{2}\left(1-t^{2}\right)^{(n-3) / 2} \varphi^{\prime}(t) d t
\end{aligned}
$$

Substituting from the differential equation

$$
\left(1-t^{2}\right) \varphi^{\prime \prime}(t)-(n-1) t \varphi^{\prime}(t)+k(n+k-2) \varphi(t)=0
$$

we see that

$$
(1-k(n+k-2) /(n-1)) \int_{0}^{1} t \varphi(t)\left(1-t^{2}\right)^{(n-3) / 2} d t=\frac{1}{n-1} \varphi(0) .
$$

But when k is even, $\varphi(0)=\varphi_{k}^{n-1}(0) \neq 0$ so the desired conclusion follows.

We now proceed with the proof of Lemma 2. Thus assume that λ is a K-invariant probability measure on S^{n-1} such that

$$
\left\langle x, \int_{H_{x}} y \lambda(d y)\right\rangle
$$

is independent of x. Let K^{\prime} be the subgroup of G consisting of elements of G which map x_{0} into $-x_{0} . \quad P^{n-1}$ is then the symmetric space G / K^{\prime}. Since λ is K-invariant it is clear that $\alpha(\lambda)$ is K^{\prime}-invariant. Thus to show that $\alpha(\lambda)$ and $\alpha(m)$ are equal it suffices to show that they have the same Fourier-Stieltjes coefficients. But if h is a spherical function on P^{n-1} it is clear that the map $x \rightarrow h(\alpha(x))$ defines a spherical function on S^{n-1}. It follows then that the spherical functions on P^{n-1} are given by $h(\alpha(x))=f_{k}^{n-1}(x)$ for k even. To prove that $\alpha(\lambda)=\alpha(m)$ it thus suffices to show that $\hat{\lambda}\left(f_{k}^{n-1}\right)=\hat{m}\left(f_{k}^{n-1}\right)$ for k even. But $\hat{m}\left(f_{0}^{n-1}\right)=\widehat{\lambda}\left(f_{0}^{n-1}\right)=1$ since both are probability measures, and $\hat{m}\left(f_{k}^{n-1}\right)=0$ for k a positive integer. We must therefore show that $\hat{\lambda}\left(f_{k}^{n-1}\right)=0$ for k an even positive integer. Denote by μ the right K-invariant measure on G which projects to the measure λ on S^{n-1}. (In the notation of [3] $\mu=\tilde{\lambda}$). Then

$$
\begin{aligned}
\langle x, & \left.\int_{H_{x}} y \lambda(d y)\right\rangle=\int_{H_{x}}\langle y, x\rangle \lambda(d y) \\
& =\int_{S^{n-1}} \max \left(0,\left\langle y, g x_{0}\right\rangle\right) \lambda(d y) \\
& \text { (where } \left.g \in G \text { is such that } g x_{0}=x\right) \\
= & \int_{S^{n-1}} \max \left(0,\left\langle g^{-1} y, x_{0}\right\rangle\right) \lambda(d y)=\int_{S^{n-1}} \psi\left(g^{-1} y\right) \lambda(d y) \\
& =\int_{G} \psi\left(g^{-1} g^{\prime} x_{0}\right) \mu\left(d g^{\prime}\right)=\int_{G} \psi\left(\left(g^{\prime}\right)^{-1} g x_{0}\right) \mu\left(d g^{\prime}\right) \\
& =\lambda^{*} \psi\left(g x_{0}\right)=\lambda^{*} \psi(x)
\end{aligned}
$$

where $\lambda^{*} \psi$ is the convolution product of λ and ψ on the symmetric space S^{n-1}. Thus the hypotheses of Lemma 2 guarantee that $\lambda^{*} \psi$ is a constant function on S^{n-1} and so its Fourier coefficients vanish except at the spherical function f_{0}^{n-1}. Thus $0=\widehat{\psi}\left(f_{k}^{n-1}\right) \widehat{\lambda}\left(f_{k}^{n-1}\right)$ for k
a positive even integer, so on account of Lemma $6, \widehat{\lambda}\left(f_{l c}^{n-1}\right)=0$ for k an even positive integer. This completes the proof of Lemma 2.

References

1. P. R. Halmos, The range of a vector measure, Bull. Amer. Math. Soc. 54 (1948), 416-421.
2. S. Helgason, Differential Geometry and Symmetric Spaces, New York, 1962.
3. R. P. Kaufman and N. W. Rickert, An inequality concerning measures, Bull. Amer. Math. Soc. 72 (1966), 672-676.
4. C. Müller, Spherical Harmonics, Berlin, 1966.
5. G. Schwarz, Variations on vector measures, Pacific J. Math. 23 (1967), 373-375.

Received August 22, 1966, and in revised form May 3, 1967. This research supported by Army Research Office (Durham).

Yale University

