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CONGRUENCES ON REGULAR SEMIGROUPS

N. R. REILLY AND H. E. SCHEIBLICH

For any regular semigroup S the relation θ is defined on
the lattice, A(S), of congruences on S by: (p, τ)eθ if and only
if p and τ induce the same partition of the idempotents of S.
Then 0 is an equivalence relation on ΛίS) such that each
equivalence class is a complete modular sublattice of A(S).
If S is an inverse semigroup then θ is a congruence on A(S),
A(S)/Θ is complete and the natural homomorphism of A(S) onto
A(S)/Θ is a complete lattice homomorphism.

Any congruence on an inverse semigroup S can be char-
acterized in terms of its kernel, namely, the set of congruence
classes containing the idempotents of S. In particular, any
congruence on S induces a partition of the set Es of idempo-
tents of S satisfying certain normality conditions. In this
note, those partitions of Es which are induced by congruences
on S and the largest and smallest congruences on S correspond
ing so such a partition of Es are characterized.

l Preliminary results and definitions* We adopt the notation
and terminology of Clifford and Preston [2]. A semigroup S is called
regular if a e a Sa, for all ae S. If, for all α e S , there exists an
element be S such that aba = a and bob = b then we say that b is an
inverse of a and that (α, b) is a regular pair [11]. In a regular
semigroup, every element has an inverse. An inverse semigroup is
a semigroup in which each element has a unique inverse. The ele-
mentary properties of regular and inverse semigroups can be found in
[2]. In particular, a semigroup S is an inverge semigroup if and only
if it is regular and its idempotents commute ([2], Th. 1.17). The
inverse of an element a is then denoted by or1. For any idempotent
e, e"1 — e, and, for any elements α, b of S

(α-1)-1 = α, (ab)-1 = b-ιa~λ .

If (a, a') is a regular pair, then aar and a'a are both idempotents
but are not always equal (even in an inverse semigroup).

A regular (inverse) subsemigroup T of a semigroup S is just a
subsemigroup of S which is a regular (inverse) semigroup in its own
right.

For any semigroup S we shall denote by Es the set of idempo-
tents of S. The set E8 can be partially ordered by defining e <̂  / if
and only if ef — fe — e. Of course, if S is an inverse semigroup then
this reduces to ef = e and Es then becomes a semilattice, with e Λ / =
ef, called the semilattice of idempotents of S.
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We shall call a subset A of a partially ordered set B convex if
x ^ y ^ zf x, ze A implies that y e A.

If p is a congruence on a semigroup S then we shall denote by
p \Es the partition of Es induced by p, that is p \Es = p Π ( ^ x -E*), and
by α^ the <o-class containing the element α. We shall also make use
of the fact that, in an inverse semigroup, if (α, b)e p then (a~\ b~ι) e p
([4] Corollary 2.3) and, consequently, (αα~\ bb~ι) e p.

Clearly a homomorphic image of a regular semigroup is regular
and it was established in [12] that a homomorphic image of an in-
verse semigroup is an inverse semigroup.

Finally, two elements of a semigroup S are said to be J^f- (&-)
equivalent if they generate the same principal left (right) ideal of S.
Clearly j*f and & are equivalence relations on S, as is the relation

, defined by 2έf = ^ Π ^ .

2* Maximal regular subsemigroups* In this section we shall
generalize the well known result that for any idempotent e of a semi-
group S there is a unique maximum subgroup of S with identity β.

LEMMA 1.1. Lei (α, a') and (6, 6') δβ regular pairs in a semigroup
S. Then α'α 66' αwd 66' α'α are idempotents of S if and only if (aδ,
δ'a') is a regular pair.

Proof. Let a'a 66' and 66' a'a be idempotents. Then

(α6)(6'α')(α6) = aa'abb'a'abb'b = αα'αδδ'6 = αδ

and

(δ'α')(αδ)(δ'αr) - 6'δδ'α'αδδ'α'αα' = δ'δδ'α'αα' - δ'α'

as required.

Conversely, if (αδ, δ'α') is a regular pair, then

(α'αδδ')(α'αδδ') = α'(α6)(δ'α')(αδ)δ' = α'αδδ'

and similarly 66'α'α is an idempotent.

LEMMA 1.2. ([5] Lemma 1.1) 1/ β and f are idempotents in a
regular semigroup S then, for some idempotent g in S, (g, ef) is a
regular pair.

LEMMA 1.3. For a regular semigroup S the following are equiv-
alent:

(1) ESES^ES;
( 2 ) β G Es, (e, x) a regular pair implies that x e Es\
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(3) (α, α') and (δ, br) regular pairs implies that (αδ, b'a') is a
regular pair.

Proof. (1) imples (2). (Cf. [11] Th. 1.) Let eeEs and (e, x) be
a regular pair. Then x = xex = xeexeEsEs ξΞ=Es. (2) implies (1).
Let e,fzESi then by Lemma 1.2, for some idempotent g, {g, ef) is a
regular pairs and so efeEs.

(1) implies (3) by Lemma 1.1.
(3) implies (1). Let e,feEs. Then, since (e, e) and (/,/) are

regular pairs, (ef,fe) is also a regular pair. Then ef = (ef)(fe)(ef) =
(β/)(β/) and β/etf*.

LEMMA 1.4. Lei S be a regular semigroup such that Es is a
subsemigroup. Then, for any regular pair (a, α')

aEsa
r g Es .

Proof. Let (α, α') be a regular pair and e e Es. Since

afae e £7^* g ^ ,
we have

(aea')2 = aearaeaf — aaraearaear = aa'aea' — aeaf .

THEOREM 1.5. Lei i? δe α^ idempotent subsemigroup of a semi-
group S. Then Ec = {xeS: for some x'', (x, a;') is α regular pair,
xx', x'x 6 £/, xfe' £ E and xfEx ξΞ: E} is the largest regular subsemi-
group of with E as its set of idempotents.

Proof. Let a,beEc and let α', br be elements of S such that
α, α' and 6, 6' satisfy the conditions of membership for a and δ, re-
spectively. Then clearly α', 6' e Ec. Moreover, since a'a, W e E, we
have a'abb' and bb'a'a contained in E and so, by Lemma 1.1, (α6, bfaf)
is a regular pair. Also

abb1 a' e aEar g £7, δ'α'αδ

and

abEbraf g α^α' g £7, ̂ 'α'^α^ Qb'Eb^E.

Thus abeEG and iϊ^ is a subsemigroup of S. Since, as pointed out
above, for each aeEc some inverse of α is also in EG, Ec is a regular
subsemigroup of S.

To show that EEc = E, let a be an idempotent in E° and let
(α, α') be a regular pair with α, α' e EG. Then

α' = α'αα' = a'aaa' e EE e i?
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and so

a = aa'a = aa'a'a e EE £ E .

Hence EEc — E, since clearly E £ EEc.
Now suppose that T is a regular subsemigroup of S such that

Eτ = E. Then, for any x e T, there exists an xf e T such that (x, x')
is a regular pair in T and so xx', x'x e Eτ — E. Then, since EE £ E,
we have, by Lemma 1.4,

xEx' £ £7 and x'Ex £ # .

Thus xeEc.

COROLLARY 1.6. Let E be a subsemigroup of commuting idem-
potents of a semigroup S. Then Ec (defined as in Theorem 1.5) is
the largest inverse subsemigroup of S with E as its set of idem-
potents.

Proof. By Theorem 1.5, Ec is the largest regular subsemigroup
with E as its set of idempotents. Since the elements of E commute,
E° is, in fact, an inverse subsemigroup and so is clearly the largest
such.

3* The lattice of congruences on a regular semigroup* For
any semigroup S we denote by Λ(S) the lattice of congruences on S.

If σ and p are congruences on a semigroup S such that σ £ p
then the relation p/σ on S/σ defined by

p/σ = {(xσ, yσ) e S/σ x S/σ :(x,y)eρ}

is a congruence on S/σ. Moreover, the mapping p —• p/σ is a one-to-

one order preserving mapping of the congruences p on S containing σ

onto the congruences on S/σ, as is easy to show.

It is s t ra ight forward to verify t h a t if σ, p,τ e Λ(S) and σ £ p,τ

then

(p Π τ)/σ = p/σ n τ/σ and (p V τ)σ = (p/σ) V (τ/σ) .

It is convenient to point out here that, for any semigroup S,
A(S) is complete ([2] p. 24) and that if C is a nonvoid subset of
Λ(S) then VPec P m&Y be characterized as {(x,y)eS x S: there exist
xl9 , xn e S and pu , pn+1 e C (not necessarily all distinct) such
t h a t (α, xx) e ρl9 (xl9 x2) e p2, -, (»n, y) e ρn+1}.
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In order to show that a sublattice R of Λ(S) is a modular sublat-
tice, it follows from ([1] Th. 3, p. 86) that it suffices to show that
the congruences in R commute; that is, that p,τ eR implies that
po T = Top.

We shall call a sublattice R of Λ(S) a complete sublattice if, for
C C Ry VpβoP and f\Peo P n ° t o n l y exist in Λ(S), but also belong to
R.

LEMMA 3.1. Let S be a semigroup and R = {p{: i e 1} be a subset
of Λ(S) such that σ — f]iei p{e R. If R/σ = {pjσ : ie 1} is a sublat-
tice (sublattice of commuting congruences, complete sublattice) of
A(S/σ) then R is a sublattice (sublattice of commuting congruences,
complete sublattice) of Λ(S).

Proof. Let pl9 p2e R. Then pλ/σ Π p2/o and pjσ V p2/σ belong to
R/σ, as R/σ is a sublattice of Λ(S/σ). Now,

pjσ Π pjσ = (ρλ Π p2)/σ and ρx/σ V ρ2/σ = (ρ1 V p2)/σ

and so, by the one-to-one nature of the mapping p-^p/σ, it follows
that px Π p2 and px V p2 belong to R. Thus R is a sublattice of Λ(S).

Now let R/σ be a sublattice of commuting congruences of Λ(S/σ),
let ρ,τ e R and let (a, b) e p o τ. Then for some c e S, (a, c)e p and
(c, b) e τ. Hence (aσ, cσ) e p/σ and (cσ, bσ) e τ/σ. Since the elements
of R/σ commute it follows that p/σ o τ/σ — τ/σ o p/σ and, consequently,
that there exists a dσ e S/α* such that (ασ, dσ) e τ/σ and (dσ, bσ) e p/σ.
H e n c e (a, d ) e τ a n d ( d , b ) e ρ ; t h a t i s , (a, b ) e τ o p . T h u s p o τ ^ τ o p
and likewise ^ o τ £Ξ τo 1o. Hence ^ r = τ o ^ and i? is a sublattice of
commuting congruences of Λ(S).

Finally, let R/σ be a complete sublattice and let C C R̂. Then
V'PeoP/σ exists and is contained in i2/σ, say, τ/α1 = VPeσP/σ- Then
/G/0" S τ/v, for all p e C and so p s τ. On the other hand, p ^τr, for
all p e C implies that p/σ g τ'/σ, for all p e C, and hence that

r/o1 — V /̂(7 S τ'/σ .

Thus τ C τ' and Vpeσ = τ e R.
The verification that Πlpeσ ̂  e i? is even simpler. Thus 1? is a

complete sublattice of

Note. It is almost immediate that if, in Lemma 3.1, R is a
sublattice (sublattice of commuting congruences, complete sublattice)
of Λ(S) then R/σ is a sublattice (sublattice of commuting congruences,
complete sublattice) of A(S/σ).
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LEMMA 3.2. ([6] Lemma 2.2) Let p be a congruence on a regular
semigroup S. Then each idempotent p-class contains an idempotent
of S.

For any semigroup S, let Σ(Sίf) = {peA(S):ρS <^}.
From [8] Lemmas 1 and 3, we have,

LEMMA 3.3. Let S be a regular semigroup. Then Σ(J%?) is a
sublattice of A(S) of commuting congruences with a greatest and
least element.

We call a congruence p on a semigroup S idempotent separating
if each ft-class contains at most one idempotent.

That any congruence p on a semigroup such that p S Sif is
idempotent separating follows from [2], Theorem 2.15, and the fact
that every idempotent separating congruence on a regular semigroup
is contained in Sff follows from Theorem 2.3 of [6]. Thus, for any
regular semigroup S, Σ(£ίf) is the set of idempotent separating con-
gruences on S.

Now any convex subset, with a largest and smallest member, of
a complete lattice is clearly a complete sublattice. Hence, by Lemma
3.3, for any regular semigroup S, since Σ(Sίf) is clearly a convex
subset of Λ(S), it follows that Σ(Sίf) (the set of idempotent separating
congruences on S) is a complete sublattice of Λ(S).

THEOREM 3.4. Let S be a regular semigroup and let

θ = {(̂ >lf ft) e A(S) x A(S): eft Π Es = eρ2 n E3, for each e e Es)

- {(ft, p2) e A(S) x A(S) :p1\Es = p2\ Es} .

Then
(i) θ is a meet compatible equivalence on A(S);
(ii) each θ-class is a complete modular sublattice of A(S) (ivith

a greatest and least element).

Proof, (i) Clearly θ is an equivalence relation on A(S). Let
(pi, P2) e θ and pΛ e Λ(S). Then

ft Π (Es x Es) = ft Π ( ^ x E8)

and so

ft n ft n (Eg x .Ê ) = ft n ft n (Eg X ES)

that is (ft Π ft, ft Π ft) e θ.
(ii) Let A be a β-class, let o = C\τeAτ and let (OGA. For
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e,feEs, let (e,f)eρ. Then (e,f)eτ, for all τeA and so (e,f)eσ.

Conversely, a s α g p , (e, /) e cr implies that (β, /) e p. Thus <o \Es =
σ | B s and σ G A. Thus A has a least member.

Now, for any peA, p/σ is idempotent separating. For suppose
that /i and f2 are idempotents of S/<7 such that (fu f2) e p/σ. By
Lemma 3.2, /x = eλσ and /2 = e2σ for some idempotents βx, e2 of S.
Thus ( β ^ , e2σ) e p/σ and so (el9 e2) e p. But ρ\Es = σ \Es and so

= exσ = e2σ = / 2

Hence /̂tf is idempotent separating.
On the other hand, for any congruence τ on S/σ,

τf = {(α, b)eS x S: (aσ, bσ) e τ)

is a congruence on S. Suppose that τ is idempotent separating. If,
for e,feE8, we have (e,f)eτ', then (eσ,fσ)eτ and so, as r is
idempotent separating, eσ = /σ. Thus r' |^5 = σ 1^ and τ' e A. Now
τ'lσ = τ and so {p/σ : p G A} is just the sublattice of idempotent separat-
ing congruences on S/σ. Since this, by Lemma 3.3 and the remarks
following it, is a complete sublattice of Λ(S/σ) of commuting congru-
ences, we conclude from Lemma 3.1 that A is a complete sublattice
of Λ(S) of commuting congruence and so a complete modular sublat-
tice of A(S).

Finally, since A is a complete sublattice of A(S), \/PeAp£ A and
A has a greatest member.

4* Congruences on inverse semigroups* In this and the fol-
lowing sections we consider inverse semigroups, for which we are
able to improve on the results of the previous sections.

DEFINITION 4.1. Let S be an inverse semigroup and

P = {Ea: a e J}

be a partition of Es. Then P is a normal partition of Es if
(i) a, β eJ implies that there exists a γ e J such that EaEβ gΞ Ey

(ii) aeJ and ae S implies that there exists a β eJ such that

If, for an inverse semigroup S, P = {Ea :aeJ} is a normal parti-
tion of E8, then Ea is convex for each aeJ. For if β, g e Ea with
β ^ / ^ # and / G £7/3, then ef = e implies that EaEβ § i?α and so / =
gfeEaEβ^Ea. Moreover, we shall denote by πP the equivalence
relation on E8 induced by P and show in the following theorem that
there exists a congruence p on S such that p \Es = TΓP. In fact, we
give characterizations of the largest and smallest such congruences.
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THEOREM 4.2. Let P — {Ea: ae J} be a normal partition of the
semίlattice of idempotents of an inverse semigroup S. Let σ =
{(a, b) e S x S: there exists an aeJ with aa"1, δίr 1 e Ea and, for
some e e Ea, ea — eb} and p = {(a, b) e S x S: aeJ implies that, for
some β e J, aEaOr1, bEJ)"1 S Eβ}. Then σ and p are, respectively, the
smallest and largest congruences on S such that σ \Es = p \Es = πP.

Proof. Clearly a is an equivalence relation. So let (α, b) e σ and
ce S, where aa~~ι, bb~ι e Ea and ea — eb, for some e e Ea. Now suppose
that (acXac)-1 = acc^a"1 e Ey while {bc)φc)~ι = bcc~λb-χ e Eδ. Then,
since (aa^iacc^a'1) = acc~λa~λ and {aa~γ){acc~Ύa~λ) e EaEy, it follows
that EaEy S Ey. Likewise EaE8 g E8. Now, eacc~Ύa~x = eacc~ιa~ιe =
ebcc~λb~ιe = ebcc^b"1 where eacc-χa~x e EaEy Q Ey and ebcc1^1 e EaE8 S
J^θ. Hence i?y = E'δ. Now, for any feEy, fe e EaEy S £7y and

(/e)αc = f(ea)c = f(eb)c = (/β)6c .

Thus (αc, 6c) e σ.
For some T e J, cEac-λ g J2y and so (cα)(cα)~1 = cαα"1^"1 e cEac~ι £

£;y and (c6)(c6)-1 - c&δ-1^1 e c ^ c " 1 S £7y. Also, if / = caa^ec-1 then
fecEac~λ QEy and

/cα = caa~ιec~xca —

= caa~ιc~ιceb — caa~τec~ιcb — fcb .

Thus (ca, cb) e σ and σ is a congruence on S. Moreover, it is evident
t h a t σ \Es — Up.

Now suppose that τ is any congruence on S such that

τ* U5 =
 σ

 \ES = ^

and let α, 6 be as above. Then aa~ιτ — bb~ιτ = eτ and so

aτ — {aa~~λa)τ = {aa~λ)τaτ — eτaτ = (eα)τ = (eb)τ

— ezbτ — bb~ιτbτ — bτ .

Thus σ S τ and σ is the finest congruence on S such that σ L = τrP.
o

The verification that /? is the largest such congruence is similar
but simpler and so we omit it.

We devote the remainder of this section to obtaining an alterna-
tive characterization of the congruences σ, p of Theorem 4.2 in terms
of kernel normal systems.

DEFINITION 4.3 [9]. Let S be an inverse semigroup. We call
<sV~ a kernel normal system of S if ^ f is a collection of inverse
subsemigroups of S, <Λ" — {Na : aeJ} such that, if Ea = ENa then
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(1) {Ea : aeJ} is a normal partition of Es;
(2) aa~\ bb~λ e Ea and α, ab*1 e Na implies that beNa;
(3) aa~\ bb-1 e Ea, ab~λ e Na and aEβa~ι Q Ey implies that aNβb~ι £

Ny.
Then we have

THEOREM 4.4. (Preston [9], Th. 1). Let S be an inverse semi-
group and let ^ = {Na: aeJ} be a kernel normal system of S.
Let pjr — {(a, b) e S x S: aa"1, bb~ι e Ea and ab~λ e Na for some a e J}.
Then p^r is a congruence on S and {Na:aeJ} is the set of idem-
potent s in Sjp^r.

Conversely, let p be a congruence on S. Then /̂/~ — {ep: e e Es}
is a kernel normal system of S and p = p^r.

Thus a congruence on an inverse semigroup is uniquely determined
by the congruence classes which contain the idempotents.

THEOREM 4.5. Let S be an inverse semigroup and P = {Ea: ae J}
be a normal partition of Es. For each aeJ, let Ta be the largest
inverse subsemigroup of S such that ETa = Ea, let Ma = {x e Ta: ex — e
for some e e Ea} and let Na = {x e Ta: EaEβ S Er implies that xEβx~λ S
Er}. Then ^// = {Ma: aeJ} and ^Γ = {Na: aeJ} are kernel normal
systems of S, p^ = σ and p^r — p, where σ and p are defined as in
Theorem 4.2.

Proof. For each aeJ, let Ua, Va be the σ and ^-classes, respec-
tively, of S containing Ea.

Clearly Ma Q Ua. Also, since EUΛ = Ea, it follows that Ua S Ta.
Hence for x e Ua, we have first that x e Ta. Moreover, from the de-
finition of σ, since x, xx~ι e Ua, that is, (x, xx~ι) e σ, we have that, for
some idempotent ee Eay ex — exx~ι and so exe — exx^e = exx~ι e Ea.
Hence (exe)x = exex — ex — exe and so x e Ma, Ma = Ua and p^ — σ.

For xeNa, we have xx~x e Ea. Now, for any β eJ, xx~λEβxx~λ —
xχ-Έβ S EaEβ S Er, say. Then xEβx~λ Q Er, by the definition of Na,
and so (x, xx~ι) e p. Consequently, x e Va. On the other hand, since
EVφ = Ea, Va S Ta and so x e Va implies that x, ar1 e Ta. For βeJ,
suppose that EaEβ^Er and let eeEay feEβ and geEr. Then
efe e EaEβEa S Er and so (ep)(fp)(ep) = (gp). Hence, since ep = xp =
χ-τρ, (xfχ-λ)ρ = (xρ){fρ)(χ-λp) = gp; that is, xfx~λ e Er. Since P is a
normal partition of Es, it follows that xEβx~x S Er and that x e Na.
Thus Va = Na and p^ = p.

5* The lattice of congruences on an inverse semigroup*

THEOREM 5.1. Let S be an inverse semigroup and let
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θ = {(ft, ft) e A(S) x A(S): ft \Es = ft \Es} .

Then
( i ) θ is a congruence on Λ(S);
(ii) each θ-class is a complete modular sublattices of Λ(S)

(with a greatest and least element);
(iii) the quotient lattice A(S)/Θ is complete and the natural

homomorphism θ* of Λ(S) onto A(S)/Θ is a complete lattice homo-
morphism.

Proof. We already know from Theorem 3.4 that θ is a meet
compatible equivalence on A(S). To establish that θ is a congruence
it only remains to be shown that for (ft, ft) G #, ft e A(S) we have
(ft V ft, ft V ft) e θ. Let eeEs and fee(p, V ft) Π E8. Then feE8

and (β, /) e ft V ft. Hence there exist xl9x2, - — , xke S such that
(e, a?x) G ft, (x2, α2) G ft, , (xk, f) e ft. Thus (e, ^ r 1 ) e ^^x^Γ1, ^^ί"1) G ft,
• , (XkXk1, f) e ft. But (ft, ft) G θ and so (β, ̂ ^r 1) G ft, (OJ^Γ1, ^s^1) e ft,
• , (8*αϊ"\ /) G ft. Consequently, (e, /) G ft V ft and / e β(ft V ft) Π Eg.
Similarly e(p2 V ft) f]EsQ e(ρ1 V ft) Π Es. Hence ft V ft \Es = ft V ft U5

and (ft V ft, ft V ft) € θ.
Part (ii) follows immediately from Theorem 3.4.
(iii) To show that A(S)/Θ is complete and the natural homomor-

phism θ% of A(S) onto A(S)/Θ is complete, (i.e., θ% preserves arbitrary
joins and intersections as well as pairwise joins and intersections) it
is sufficient to show that θ is a complete congruence in the following
sense: if, for some index set I, ft, p\ e A(S) for all iel, and (ft, p\) e θ,
for all iel, then

(a) n
\iei

and

(b) (Vft,
\iei

However, quite minor alterations to the proofs of (i) in Theorem 3.4
and (i) in Theorem 5.1 will establish (a) and (b), respectively. Hence
we have (iii).

6. Kernel normal systems* Let S be an inverse semigroup and
define θ on A(S) as in Theorem 5.1.

DEFINITION 6.1 [3]. Let T be a semigroup, p a congruence on T,
and BQT. Then [B]p = {x \ (6, x) e p for some b e B}.

The proofs of the following two lemmas are based on the methods
of Goldie [3] and Preston [9].
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LEMMA 6.2. Let T be a semigroup, pl9 p2 congruences on T, and
T. Then [[B]ρx]p2 = [[J?]/02]|θi implies that [[E\ρ^p2 = B(ρ1 V ρ2).

Proof, (i) It is immediate from the definition that [[-B]fθι]/02 gΞ

, V p2).
(ii) L e t x e [B](p1 V p2). T h e n (b9x)ep1\/ p2 for s o m e 6 e B so

that there exist ajlf sc2, , xk e T such that (6, α̂ ) G pu (xl9 x2) e ρ2, ,

(a?Λ, a;) e ρ2. Hence α̂  G [E\ρx and so x2 G [[-BJ/oJft = [[-BlflJ^i. Thus
^ 3 e [[[-Blftl/oJjO! = [[-Blfal/Oi = [[-B]^i]|θ2. Proceeding by induction, it is
easy to see that x e

LEMMA 6.3. Let p,σeΛ(S) be such that (p,σ)eθ and let
{Na \ae J}, {Ma \ae J} be the kernel normal systems of p and σ,
respectively. Define (N V M)a — {k | kk~ι e Ea and kn ~ m for some
neNa and m e Ma}. Then (N V M)a = [Na]σ = [Ma]ρ.

Proof. ( i ) (NV M)aQ [Na]σ f) [Ma]ρ. Let ke(Nv M)a. Then
kk~λ e Ea and kn = m for some neNa and meMa. Thus ΛAr1,
(^"^(w"1)""1 e £7α and /b(/^~1)~1 e Ma so that (A;, n~λ) e σ and hence k e [Na]σ.

Now, A e [Na]σ implies that (k,a)eσ, for some aeNa and so
{k~λk, a~λa) e σ, where a~ιa e Ea. Hence k~λk e Ea and (k~ιk, n) e p.
Then (A, m) = (kk~ιk, kn) e p or k e [Ma]p.

(ii) [Na]σ s (iVV Λf )α. Let fc e [iVα]σ. Then (ft, w) e σ for some
n in Na. Thus ftft""1, o " 1 e Eβ and ft^"1 G Mβ for some /5 e J. But
neNa and so ^m"1 e J^α so that Ea = Eβ. Now ft^"1 e ikία implies that
ke(NV M)a.

(iii) [M]aρ S [iSΓ V M] α . Let ft e [Ma]ρ, say (ft, m) e p where
m e Ma. Then, as mm"1 e Ea, we have ftft"1 e Ea. Also, (ft-1, m"1) e p
and m " ^ G £7a imply that k~ιm e Na, say k~ιm = neNa. Then ftw =
ftft-χm G Jϊ;αMα S Λία or ft e (N V M)α.

THEOREM 6.4. Let {Na \ a e J} and {Ma \ a e J} denote the kernel
normal systems of p and σ, respectively, where (p, σ) e θ. Let
(N V M)a = {ft I ftft"1 G Ea and kn — m for some neNa and m e Ma)
and (N A M)a = Na Π Ma. Then {(N V M)a \ a e J} is the kernel
normal system of p V o and {(N A M)a \ a e J} is the kernel normal
system of p ft σ.

Proof. It is immediate that {(N A M)a \ a e J} is the kernel normal
system of p f] σ since for each e e Ea, e(p Π o) = ep n eσ = Na Π Ma.

If e G Eai then e^ = [Ea]p = iVα and eσ = [Ea]σ = ikΓα. Since the
^-classes are sublattices of Λ(S),eeEa implies that e(p V o) —
[Ea](p V o). Lemma 6.3 shows that [[£α]|θ]0" = [[-&α]̂ ]|0 and hence
Lemma 6.2 implies that [Ea](p V σ) = [[Ea]p]σ = [Na]σ = (N V M)a.
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