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HILBERT TRANSFORMS FOR THE p-ADIC
AND p-SERIES FIELDS

KeiTH PHILLIPS

In this paper, a class of singular integral transforms of
the Calderon-Zygmund type is constructed for the spaces
L p, 2); ¥, is the p-adic or p-series field, 2 is additive Haar
measure, » > 1. The transforms have the form

Lfty) = lim | (@ @)y — 2)dia)

(m(z)<p—Fk)

where m is the modular function for the field and
E w(x)di(x) =0 .
{m(x)=1}

The fundamental result is the existence of the £,-limit and
the M. Riesz inequality || Lf ||, < 4, || f|l.. Several examples
of functions w defining transforms L are given. In particular,
subsets @ of ¥, such that ? n — & = @ and 0 U — @ = ¥ ,\{0}
together with functions w satisfying w(—x)= —w(x) yield
transforms which are analogues of the classical Hilbert trans-
form. Multipliers for L are also discussed. A preliminary
theorem of independent interest states that the 2£,-Fourier
transform on certain 0-dimensional locally compact Abelian
groups converges pointwise.

The construction of singular integrals is in §3; the main result
is (3.13). Section 2 contains preliminary results and § 4 gives examples
and calculations. Section 3 begins with a notational review for the
fields Z,. Other notation is, generally, as in [5]. We also refer to
[5] for the required background material from abstract harmonic
analysis. For a locally compact Hausdorff space Y, €(Y) is the com-
plex-valued continuous functions on Y; €(Y) and €,(Y) denote, respec-
tively, continuous functions which are “small” outside of compact sets
and continuous functions with compact support. The symbol Z denotes
the integers, Z+ the positive integers, and R the real numbers. The
characteristic function of a set A is denoted by &,; its complement by
A’. The Fourier transform of a function f on a locally compact Abelian
group G is denoted by f,JV” denotes the inverse Fourier transform,
defined on the character group X of G. For a given Haar measure
on G, we always assume that Haar measure on X is chosen so that

(F) =1, if Fe(X).

2. Three preliminary theorems. In this section, we single out
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three results ((2.1), (2.2), and (2.8)) which will be used frequently in
the constructions of § 3. The results are of some interest in themselves.

Let F' be a nondiscrete locally compact field with additive Haar
measure ) and modular function m; hence,

|, f@a)ina) = [m(@] | s@ire)

for fe&(F, ) and a e F\{0}. The measure ¢ = \/m is a multiplicative
Haar measure for F\{0}. For t > 0,let V,={xe F:m(x) £t}. The
family {V.,},s, is a neighborhood base at 0 for the topology of F'; see
[1], pp. 32-34. The equalities below are easily verified:

1
MV3)

me(y) = Vm(:czl) and m(ﬁ'}) = X(Vmw)) .

(2.1) THEOREM. The function m~'&y; is in &,(F,\) if and only
if r>1;m7Ey is in &(F,N) if and only if r < 1.

Proof. Since p(F') = = (F'is not compact), at least one of m='&,,
and m~'&y; is not in &(\). By the inversion invariance of g, both
are not in &,(\). The “only if” statements follow from the inequali-
ties m(x) <1 and m(x) > 1 for x€ V, and 2z e V|, respectively.

Since -V, = U{Vynw: m(x) < t}, we have

MV = sup (M Vi) m(x) < t} = MV,) sup {m(x); m(x) < t}:

thus, MV,) < MV))t. Using this inequality and supposing r > 1, we
have

o

L ned)dtdN@)

1 tr+1

L o] v = | g |

vy Lm(x)

“( 1
- 81 SFZT_HSVi(x)EVt(%)dk(x)dt

<7 rix(vt)dt < (V) r%dt < oo

T A 1

(Fubini’s theorem applies because (x, t) — &y (%) is product-measurable.)
The result for 0 < » < 1 follows from that for » > 1 by inversion
invariance; if » < 0, then m~" is bounded on the compact set V..
We will use the following theorem of Edwards and Hewitt |3]
on differentiation of indefinite integrals.

(2.2) THEOREM. Let G be a locally compact group with left
Haar measure N. Suppose that there is a sequence (U)o, of Borel
subsets of G satisfying the following conditions:



HILBERT TRANSFORMS FOR THE p-ADIC AND p-SERIES FIELDS 331

(i) Every mneighborhood of e contains some U,,and U,,,C U,
for n=1,2,...
(ii) There is a constant C such that

0< MU UM< CONMU),m=1,2, -
Then the equality

(iif) 1

lim
nee MUL)

|, fdn =
holds l.a.e. for each fe&,,. (G) and a.e. for each fe& (G).

For the proof of (2.2), see [3]; we will apply it to certain 0-dimen-
sional, locally compact, Abelian groups. If such a group is first coun-
table, the conditions (2.2.1) and (2.2, ii) are met; in fact, the U,’s can
be taken as subgroups.

If fis a function in &,(R), then the functions f, = f&_,,,; converge
pomtw1se and in the &, norm to f. Thus the &, Fourier transforms
7. converge in the €, norm to f. It is an open question whether 7,
always converges pointwise a.e. [For a discussion see [9], p. 85. The
analogous question for the circle group has recently been answered
affirmatively by L. Carleson.] The following theorem asserts that
for certain locally compact groups [not R!] the analogous question has
an affirmative answer. We recall that every neighborhood of the unit
¢ in a 0-dimensional, locally compact group contains a compact open
subgroup; ([5] Th. (7.7), p. 62). For a subset @ of the character group
X of a locally compact group G, A(G, @) denotes the annihilator of @
in G. Throughout this paper, convolution (x) is taken with respect
to Haar measure.

(2.3) THEOREM. Let G be a locally compact Abelian group with
Jirst countable and 0-dimensional character group X, and let{®@,}:, be
a basis at ec X consisting of compact open subgroups such that
@,.,C@,. Suppose \ and pt are mormalized Haar measures for G
and X, respectively. If fef,(\) and f, = f&ia0,, then

Fo =lmf.  ae.

Proof. The subgroups A(G, @,) of G are compact as the groups
@, are both compact and open (see [5], p. 369); we have

gA(G,(D,,L)(X) = SGSA(a,a),L)(x)%(—m)de) .

If ye@,, then y(x) =1 for all xe A(G, @,); and so the value of the
above integral is MA(G, @,)). If y¢ @,, then Y| s4,0m 18 @ non trivial
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character of the compact group A(G, @,). A Haar measure on this
group is simply A restricted to it, and so in this case the integral is
zero ([5], (23.19), p. 363). Thus we have proved that

(1) Euiaro, (1) = MA(G, 0,)%,(71) -

Using the identity (p*¢)” = @ 4" (valid for ¢ € (X, p) and 4 € L,(X, 1))
and the inversion formulas, it is easy to see that (¢f)~ = §+f whenever
g € 8,(G) is such that § € 8,(X). Taking g = &,4,0,, and using (1), we obtain

fn = Cuaopf) = éA(G,a:n)*f = MA(G, D)), *J? .

By Plancherel’s theorem, we have ||&ug0, |2 = [|Eiao,|l% thus,
MA(G, 2,)) = [MA(G, 2,))M@,). Hence we have MA(G, 2,)) = 1/i(2,),
and it follows that

1
@,)

The sets {?,}7., satisfy (2.2.1) and (2.2.1i) for X, and the function f is
in €,,,.(X) as it is in €(X). Thus, by (2.2), we have lim,_..f.(%) = f()
for almost all xey.

We will apply (2.3) when G = (¥, +).

Fal) =

Sm F@dpe) .

3. Hilbert transforms for £, (p-adic field) and ", (p-series
field). As a set, ¥, (2, or I',) is all doubly infinite sequences
x = (%,)i—.. of integers such that 0 <z, < p» — 1 for each » and such
that @, = 0 for almost all negative n. (The fields 2, and 7”, differ in
the definition of multiplication and addition; see [5], § 10 and [7], § 26.)
The mapping

3.1) @ — 2y(w) = exp (io(xy))

where

(3.2) o(x) = 27;%} xp~ton 2, and o(x) = 2nwp™" on I,
i

is a topological isomorphism of ¥, onto its character group. (The
character group of 2, is computed in [5], pp. 400-402, but the func-
tion ¢ is not used there. Minor modifications show the role of ¢ as
described above. With modifications in that computation, the result
for I", can also be obtained. The result is also in [4] and in [6].)
We will usually identify the character group of ¥, with ¥,; thus, ¥,
will be written as y. For a nonzero xe ¥, s(x) denotes the unique
integer such that x,, # 0 and x, = 0 if n < s(x). We use the nota-
tions

3.3) A, = {w:s(@) = k}; 4, = {w:s(@) = kY e = ()i
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ke Z. The family {4,};__.. of compact open subgroups of ¥, forms a
neighborhood base at 0. The multiplicative identity of ¥, is u = u,.
We also record the following identities:

(3.4) m(x) = p~*@ and V. = 4y
dit = Ay @l = dirsr; By = Aprsn; S = —s(2);
(3.5)
s(ry) = s(x) + s(y) .
(3-6) A(wm Ak) = A 411 .

(We note that the function m is a valuation for ¥, and that s is a
logrithmic valuation. We will not use any valuation theory in this
paper.)

Normalization of Haar measure » on ¥, so that the companion
Haar measure on the character group (= ¥,) is the same requires
(by the proof of (2.3) and (3.6)) that A\ (4,) = [M4)]™. Since A(A,)
= pn(4,), we must have N4, = p~¥:. It is then immediate that
Md,) = p~mrW2 for all integers n. With these notational preliminaries,
we can give the definition of singular integrals.

First, w will denote a bounded X \-measurable function on 4,
satisfying

(3.7) SA w(@)d\a) = 0;

w is extended to all of ¥, by letting w(x)(x* = au_,,y € 4,) if x =0,

and w(0) = 1. The kernels + which define the transforms are defined
by

(3.8) y(w) = 2@
m(x)

we let v, = &, ,keZ. (The function m on ¥, is a precise analogue
of the function 2 — |x| on R. The real number analogue of 4, is the
two-element set {— 1, 1}; and, the condition (3.7) for w is like demand-
ing that w(l) + w(— 1) = 0, if w were a function on {— 1,1}. Such
a function defines the classical Hilbert transform.)

If » > 1, the convolution fxyr, is in €, for all fe&,; and, if
fe&, it is defined a.e. and is in &, forall » > 1. (4,€&,r > 1, by
(2.1).) In either case, we let

(3.9) Ly f = feie = xS .

We will show that, under an additional restriction on w, the linear
operators L, carry £.(¥,) boundedly into &,.(%,) for every r > 1; and,
furthermore, that the sequence of operators (L,);., converges to a
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bounded operator L from L, into Z,. The properties of the &, Fourier
transform (Plancherel’s theorem; inversion) make the 2, case easy, and
we begin with it.

(3.10) THEOREM. Swuppose that w(x) = w(®y, &y, **+, &,); t.6., that
w(x) depends only on a finite number of the coordinates of x. Then
for every fe&¥,), the functions L, f, k =1,2, ---, are in L(¥,) and
converge in the &, morm to a function Lf. The mapping L so defined
18 @ bounded linear operator from 2y(¥,) to ¥y(¥,). The linear oper-
ators L, are uniformly bounded: there is a constant A,, independent
of f, such that

(1) Liflls = A 1]
Jor k=1,2,.... We also have
(i) WLfl. = A M f ]2

Proof. Letting vy, = ¥4&,, for n = -1, -2, —-3,.-- and k =
1,2,8, ..., we have lim,, .., = 4, both pointwise and in the %,
norm. The functions +,,, are in £,(\), so that

Fon®) = | w@lm(@)] exp (— io@y)ir@) .

’

15,04,
By the invariance of the multiplicative Haar integral, we can write
this, for y = 0, as

Fea¥) = st(y”‘m){m(x)]“‘ exp (—1o(x))d\Mw) :k+g—l de T

j=n+s(¥)

where S = 4}, N 4,150 @nd the missing integrands are as in the
previous expression. (When we use multiplicative invariance in this
way, we make strong use of field properties of ¥,. We have used
(3.5) in obtaining the set S.) Theorem (2.3) applied to the functions
Ve (take @, = 4,., and use (3.6)) gives the equality lim,,_ovi,.(y) =

Ji(y) a.e.; thus, §(y) = Sktsw- Sl a.e. The equality

J

L'w(y“Iw)[m(vc)]‘1 exp (—i0(z))dM@) = L w(y*'x) exp (— 10 (wu;))dMw)

and (3.7) show that S =0 for 7 > 0. For any y == 0, there are k’s
4
such that & + s(y) — 1 > 0; hence,

=-—00

(1) o@) =lm () = by Sd_w(y“w)[m(w)]“‘ exp (—i0(x))dn(®)

exists a.e. A calculation like that given above shows that +,,,(0) = 0
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for all » and k.

We will show that the convergence of +,,, to 4, and of +, to @
are actually everywhere and that the sequences (+4,) and (Jr, — ¥s,n)
are uniformly bounded. The hypothesis on w implies that the range of
w is finite; say w(y,) = {ai, @, + -+, @y}, With o’s distinct. Each y == 0
defines a partition [I(y) = {7, (y)}i=, of 4,, where

T(y) = {w e d:wy* ') = a} .

Since II(y) is determined by the first ¢ + 1 coordinates of y, there are
at most (p — 1)p? distinct partitions; call them {/I,}. For a given y = 0,
we have

min(0skd s(y)—1) [ H

(2) e = S exp(—iowm)ds].

j=n+s(¥y)

Each of the sets {y # 0; II(y) = II;} has infinite measure. Therefore
each of these sets contains a point y for which +,,.(y) converges in
n for all k > 0. If I1(2) = I(y), then r,(z) = lim,_,_.7,,,(?) must also
exist; it differs from +,(y) by the sum of a finite series. Thus, ,,.(v)
converges to +,(y) for all y. It follows also that +,(y) converges
to o(y) for all y. Letting n— — o in (2), we see that | ,(y)| has a
bound depending only on /I(y). Therefore, since there are only finitely
many 1(y)’s, (| ¥.(¥) |)i= is uniformly bounded, say by M. The bound

l min(0,n+s(y)—1) H
]

(8) 1) = Fra®) | = | S §Wexp<—w<ujx»dx -

also holds.

Let fe (). By the bound (3) and the dominated convergence
theorem, the sequence (V. f )as., converges in 2, to f Hence
Ve f(= (F..F)7) converges in £, to (#:.F)7. But y,,,.*f also converges
uniformly to «r,xf; hence, (4, f )" = arxf a.e. In particular, we have
proved that L,fe, for all ke Z*. Applying dominated convergence
and taking inverse Fourier transforms again, we see that

Lf =1lim L,f

koo

exists in €, and that (Lf) = @f. We have
L1l = Nl @1k < sup lp(2) |17 1l -

Taking A, = Sup,ev, |p(®) |, we get (i) and (ii). The linearity of @ is
an immediate consequence of the linearity of each L.
To prove the analogue of (3.10) for » == 2, we require some pre-

1 The equality (Lf"):go}‘ means that ¢ is an S-multiplier for 8. We will see
later (3.14) that it is also an £,-multiplier if 1< »r <2,
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liminaries on equimeasurable functions and a 0-dimensional covering
lemma.

(3.11) PRELIMINARIES ON EQUIMEASURABILITY. For an extended
real-valued p-measurable function f on a measure space (X, 7, p),
we let f* denote a decreasing function on ]0, [ that is equimeasurable
with f. Such a function has the properties

(i) | g =\ ran | gap = [,

for B p-measurable and M\ Lebesgue measure. For fe L. (X)(r = 1),
we define, as in [3],

(ii) Bs(s) = % S:f*(t)dt, s> 0.

The function B, is continuous, is constant on 0, s,| for some s, = 0,
and is strictly decreasing on [s,, co[. Let y, = lim,+., Bs(s), and define

B7 on 0, o[ as the inverse of 8, on ]o, ¥, as 0 on Jy,, <[, and s, at
Y,. We have

(iii) B7(B(s)) = s for all s >0 and BB (y)) = for all y < y,;
@iv) lim B4(s) = lim 8/(y) = 0 and lim B8/(y) = o .

The properties of 57 and B, of course depend only on the proper-
ties of f¥;i.e., that it is a decreasing function in £/(]0, «[), and not
on f. For X = ]0, [, the facts are contained in [3].

The following lemma is a 0-dimensional analogue of Lemma 1 of
[3], p. 91.

(3.12) CoVERING LEMMA. Let G be a locally compact Abelian
group having a metghborhood basis of the tdentity of the form
{H,Yp-_.., where the H,’s are compact open subgroups of G satisfying
H,.cH,andJz-_.H,=G. Let k,=[H,_,; H,). For fe&f\)(r=1,x
Haar measure) and t >0, there are a subset P, of Z* X Z and a
mapping (m, n) — %,,, of P, into G such that {x,,.H,: (m,n)ec P}
is pairwise disjoint and the following inequalities hold:

. 1
(i) 'S S AN =tk (m, m) € P)
(i) MD,) £ B(t) < oo, where D, = LPJ CponH,
(iii) f)y st a.e.in D]

(iv) D, < SD fdn .
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If k, < C(C constant, ne Z), then
(v) D) = | fdn = COND,) .
Dy

Proof. By (3.11.iv), we have 8,(s) <t for all sufficiently large
s. If there are n’s such that B,(\(H,)) = ¢, let N be the largest
integer such that 8,(MHy)) < t. If B8,(MH,) <t for all n, let N = 0.
A countable number of disjoint cosets of H, cover G, say Up—1Vn,y Hy-
For each of these cosets, we have

1 1 S)\(HN)

MHy) §vm,NHNf W=y ), Sde = BiH) <t

0

Write H, = U 2,,v11Hy.., Where the cosets in the union are disjoint.
For each v,,y, we have

ky+1
,v'm,NHN = U ?]m,sz,I\7+1HN+1 y
j=1

and the family {v,, y2;, -1 Hy+:} i8 pairwise disjoint. Relabel those sets in
{2, v1Hys} for which the average of f over the set is less than ¢ as

Y - S Sy

>\/(Hv+1) Vm> N +1“[\ +lf

There are finitely many remaining cosets v,,,2;,y+1Hy:1 (use Holder’s
inequality to prove this, if » > 1), and these we label as

eN+1
(@ vr Hy sy sy

If ey, =0, then the family {w, y Hy. ;25" is void. If ey., >0,
suppose that «,,yHy., Cv,vHy. We have

v |, fin < MHDE = M)

Sf"m,N+1HN+1 1,NHN

so that

t= MHy™ | fO < Feyint
T, N+1HN+1
We inductively define nonnegative integers e, and sets {v,,.}o., and
{Zmntmey (n = N+ 1, N + 2, ..+) such that the families {x,,,,H,};~, and
{Vm,nH, }u-: are disjoint for each n, each of these families is pairwise
disjoint for each %, and the following relations hold:

en+1

( 1 ) mgvm,an = (mgvm,n+lHn+l> u < U mm,n+1Hn+1>y n:N1N+1y' ty

m=1
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(2) M;I%)Svm,wfdx<tform:1,2,--~andn:N,N+1,--o;
)

3) t< A\ < ket form = 1,2, -

( ) —K(Hn) mm,anf < orm

and w=N-+1, N+ 2, ...,

(If e, = 0, (3) holds vacuously.) The inductive step differs only in
notation from the construction above giving the sets {z,, ..} and
{Vm, v+ satisfying (1)—@3) for n = N + 1.

Denote by P, the subset of Z+ x Z defined by the condition that
(m, n) e P, if an element x,,, appears in the above construction. Note
that it is possible that P, = @,i.e., ey = €y = +++- = 0. If this is
the case, let D, = @; otherwise, let D, = Upr2u,.H,. We have seen
that {x,,.H,};», is pairwise disjoint for every =, and it is also clear
that (x,.., . H,) N (@, H,) = @ if w' % n. Thus the family

{wm,an: (m’ n) € Pt}

is pairwise disjoint.
The function f is in £.(G), and therefore also in 2,,,. Clearly
@G is o-compact, so that “l.a.e.” and “a.e.” coincide. Hence, by (2.2)

we have limn_,wx(Hn)‘lg fdx = f(x) for almost all . If xe D], then

THy
for every w < N 2z is in some 9,,,H,; thus, 2H, =v,,.H,. By (2),

the inequality x(Hn)-lS fdn <t holds for n = N,N+1,---; and
I,

(iii) is established.
If P, =D, = ¢, the remaining assertions of the lemma are trivial.
For P, = @ and F' a finite subset of P,, we have

x

= Pl =3y [ o

%"m nllpn
= BASMa, 1)) .

Taking the inverse A7 in this inequality (see (3.11.iii)) gives
SeMe, H ) = B7(t) for all finite subsets ' of P,; (ii) follows.
The inequalities in (i), (iv), and (v) follow from those in (3).

We now prove the main theorem of the paper.

(3.13) THEOREM. Let w be as in (3.10); 'LeS wdr = 0, and w(x)
4

depends on only finitely many of the coordinatesoof x. Suppose that
r>1. For every fe.(¥,), the functions L,f (ke Z*) are in L (T,).
The linear operators L, from L.(¥,) to L(¥,) are uniformly bounded:
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there is a constant A,., independent of f and of k, such that

(1) LSl = AL

for k=12 +... For every feR.(¥,), the sequence (L, [)r-, converges
wn the &, norm to a function Lf. The inequality

(ii) WL, = AL FI,
holds for all fe&¥,).

Proof. The function w is bounded and m™é, (ke Z) is in all &,
spaces (s >1). It follows that L,fe@, if fe&,r > 1; and that
L,fe&, for all s > 1, if fel,.

We give the proof in three steps. In some portions of the proof
we will include the case » = 1.

Step 1. Suppose for now that 1<+ <2, and let ke Z* and
fe&; be fixed. For t >0, define @, = {xc ¥, |L,f(x)]| > t}.

The heart of the proof lies in estimating the measure of @,.
Following Calderén and Zygmund [3], we will prove that there are
constants ¢, and ¢,, independent of k£ and ¢, such that

(1) Me) =2\ (F1ydn + esf)
where
_ (f@) it f@) <t
O A

The subgroups 4, (ne Z) of ¥, satisfy the conditions of the H,’s in
(3.12). Since k, =[4,_,:4,] =p for all neZ, we may take C =p
in (3.12.v).

Let

MA,)

1 g far if xex,,, + 4, D,
h,(x) = L2
f(@) if xeD;,

and set g(x) = f(x) — h(x); thus, f(x) = h(x) + g(x) for all xc ¥, and
g(x) = 0 for x e D). Define
N t N t
O = {o:| L) > L} and 0., = for| L) | > L}

We obtain (1) by estimating \(@,,) and M@, .). The function A



340 KEITH PHILLIPS

is bounded on D, by ¢p (3.12.1) and on D; by #(3.12.iii). Since the
set D, has finite measure and » = f on D;, it follows that A is in 8}.
Hence ¢ is in &,. Furthermore, we have

S hdn < sup|h(oc)|2‘TS hrdx .
7, z€Y, 7,
Thus % €8, and the inequalities

Mo )L < g | Loh §S | Lok Pdn < Aig hed
4 24,1 L v

P

yield the estimate A\ (@,,) < 4A§t“25 h*dx. Finally, we have

¥p
S hidn = S hidn +S Fdn < pM(D)) +g (If1)dn .
v, D, D; v,
Thus we get our estimate for \(@,,):

(2) MO = S (A1 + BuD)

,

where ¢, and b are constants independent of %, ¢, and f.
To estimate \(@,,,), we write

(3) M2,.) = MDy) + M2, N D),
and consider M@,,, N D;). For each x e ¥,, the functions

Y — 9P — y)g<xm,,,+4n>(y)

converge dominately to the £,-function y — g(y)y.(x — ¥)&p,(¥) as the
finite set F' expands to P,. We thus obtain

(4) L@ =S| s - nidvw

t +4,

for all xe ¥,. Consider a term of this series for x € D;. If (m,n) is

such that (x,,.,+ 4.) N + 4,) = @, then # —y is in 4, for all

Y € %,,n + A,. For these (m, n), we can replace +, by «r in (4). Thus,

using the equality S gdn = 0 (valid for all (m, n) by the defini-
4

4
Tmyn A

tion of g), we can write

Sx » gW)vi(x — y)dMy)
(5) e

= S ) IV (@ — ) — P& — @) ]dy
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Since © — %,,, ¢ 4,(x € D}), we have s(x—¥y) = s(x—2,,,) for y € x,,, +4,;
hence,

(6) |4 =) = 4@ — v | = |2 ~13(>x—_%;<w)—xm,n> |

If w(z) = w(x,, z,, -+, 2,)(x € 4,) and M is a bound for w, let v = ZMEA,W.
The function v satisfies

V() ) < oo -
(A) Saom(oc) WM@) < oo ;
(B) [w®) — wy) | =v(x —y),allw,yed;
(©) 0 < supv(4;) = infv(4;.),5 € Z.*

Still supposing that y € x,,, + 4,, we use (B) and (C) to write

fw@ — ) — w@ — Cp0) | = 7@ — 9)* — (@ = Tp,0)%)
,Y(u—s(x—xmm)(wmyn - y))
é 7((‘” - mmm)—lu’n—l) .

Il

Using this estimate in (6) and the resulting inequality in (5), we obtain

|, 0@ — ndrw)|
(1) e

= M@= L) | jg)] i)
m(x - xm;n) ZmyntAn

for all xeD] and (m,n) such that (x + 4,) N (x,,, + 4,) = @. If
zeD; and (¢ + 4,) N @p,n + 4,) # @, then n is larger than £ and
X — X, 18 in 4,. This implies that © — ye 4, and +,(x — y) = 0 for
YERX,,, + 4,; therefore, (7) is trivial in this case. Using (7) in (4)
and integrating over D, gives

[, | L) ) = 31| KO Lma U [T ay i

pp (T — Dp,p)

SEARR e et |

n

- UAO'Y(x)[m(x)]‘ldx][SDtl o)l dy| = a thl gldn.

. lg(y) | dy]

Zman

2) We single out these properties of the trivial function y because they are all
that is needed in the subsequent analysis. The hypothesis w(x) = w(®o, - -, X¢) is not
used in any portion of the proof except to guarantee the results of (8.10) for the
€2 function & and to establish the conditions (A), (B) and (C) for the y defined here.
Hence the results of this theorem can be proved by starting with any bounded w
for which the essential condition (8.7) is satisfied, for which the results of (3.10)
can be proved, and for which there is a function y satisfying (A), (B), and (C).
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where a is a constant depending only on w. Since
S hdx = S Fd
Dy D¢
and |g| < f + h, the inequalities
[ lolv= 2| fin < 20Dy
D Dy
hold; hence, we have

Ltavw=| L) | due) = 2apD) .

SDE”‘%,Z 1N%%.0

The inequality MD; N @,,,) < 4apn(D,) follows; and this combined with
(3) yields the estimate M®,,) < a,MD,), a, independent of ¢, k, and f.
This final estimate and (2) yield

M) £ MBr) + M0, < ;’—S [F1)dN + D) ;

(
¥p
(1) follows from (3. 12. ii).
Step II. Using the measure estimate (1) and the equality

Sw (Lof 1" dy = rrx(@t)t“ldt r>1),

the proof of (i) for 1 < » < 2 is essentially as in [3], pp. 97-99. The
case 7 > 2 is obtained by a duality argument from the result for
r < 2; this, too, is in [3]. We omit these details.

Step III. It remains to show that the sequence (L,f);.. converges
in the €,-norm, for every fe 8,. We begin by showing that the family
T={rr(x) = DJ.. a8 J@)h where the a;’s are complex numbers and
the ©,’s are compact and open is dense in &, and that each Lt con-
verges. The family & obtained by demanding that the #,’s be mea-
surable of finite measure is dense in %,, so it suffices to show that &
is dense in &, If @ is \-measurable of finite measure and é > 0, then
there is a compact open set 6 satisfying

(8) MO'N@)<d and MOND)<I.

To prove (8), let ¥ and .7~ be compact and open sets, respectively,
such that Ycodc 9, M@ N9 ) <d, and M¥' N @) < d. For each
e, there is an n, such that « + 4, C.7". A finite union, say 6,
of the sets x + 4, covers I:17 6 c .7 . 'The set @ is clearly com-
pact and open. We have MO ' NP) < NM2I'NO) < and MOND') <
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MI N @) < o; thus (8) holds. For a given A-measurable set @ of
finite measure and a positive ¢, select a compact open set such that
(8) holds with 6 = (1/2)e". Then we have || &, — & ||, < &. For a func-
tion £ = 37, a,4,, in &, select compact open sets 6, (j = 1,2, -+, J)
such that ||&, — &, |l <¢/J|a;|. Letting t =37, a;6, we have
|1€ — 7|, <e. Hence, T is dense in £,.

If © is compact and open, dominated convergence shows that

lim S @ — Y)ANy) = S Y@ — Y)dNy)
jne 6

jr—oo J A

for every k. Using the equality

lim S V@ — P)dny) = 0,
4y

jor—oo

and translating, we can thus write

(9) Li&o(w) = ,lini. SAJ"/f(_y)EA;c(_y)[Se(x + 1Y) — &o(w)]dy .
There is an integer =, and finitely many disjoint cosets {x; + 4, .}/,
with union 6. If ye4,, then y 4 €@ if and only if xe6. Thus,
(9) shows that L,&«(x) = L, Ee(®), for k = n, It follows easily that
for every v X there is an integer n,(z) such that L,z = L, t, when-
ever k = mn, Thus L,r converges to a function Lz both pointwise
and in the €. norm. Finally, let fe &, and suppose ¢ > 0. Select
e & such that || f — 7], < (24,)7'e. We have

Hka_ Lnf“r < HLkT - LnTHr + €,
and so ||L,f — L,f||l, <e for k,n = n(r). Let Lf=Ilim, L,f. The
k—co

inequality (ii) is immediate.

(8.14) THEOREM. The function @ = lim,_.. 4, 1s an &, -multiplier
for L 1< r<L2).

Proof. We first show that &, and ¢, (1 < » < 2) Fourier trans-
forms agree on £, N ®,. Thus, suppose that e, N e, and let A" and
k denote its £, and £, transforms, respectively. The functions 4, =
k&, (n = —1, —2,...) are in &, and lim,__. k,=h a.e. (2.3). Thus,
we have

[, 1 = pan={ tim (& — B pdvs lim | (R Ralrdy = 0;
v, Ip

¥y ns—co n——co

and so, i” = h a.e. We can now drop the » on A, without fear of
ambiguity.
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Let fe&,. Since the functions +,,, (see the proof of (3.10)) con-
verge boundedly to +,, we obtain

(1) llrp ” 'lz;kynf - "Z}kf“r' = Oa
as in the &, case. We now know (3.18) that +,xf is in 2,, so the
Hausdorff-Young inequality implies

(2) Jim ([ (i ) = (e f) |l = 0.

Since (vy,u% )™ = Pt (Yen € 22, (1) and (2) give the equality (v, * f)" =
++7. The functions (v, * f)" converge in £, to (Lf) by the Hausdorft-
Young inequality; and, the functions «, F converge in the £, norm to
@f because 4, converges boundedly to .

4. Examples. We give some examples of w’s defining L’s.

(4.1) @-Kernels. Suppose @ C ¥, satisfies @ U —@ = ¥ ,\{0} and
OoN —@ = @. Let w be a bounded A-measurable funection on 4, such
that w(—x) = —w(x) for all xe 4,; the condition (3.7) is immediate
for such a w. By additive inversion invariance, we can write

(i) L) = = +@LFw + ) — f — Ddn@)

where @, = @ N 4,. If there is a ¢e Z* such that every w(x) depends
on only the first ¢ + 1 coordinates of x, then the hypothesis of Theo-
rem (3.13) is satisfied for w. We call the corresponding kernel + a
@-kernel. If L, is generated by a @-kernel, the functions L,f as
given in (i) converge in the ¥, norm to a function Lf (f €&, (r > 1)).
In particular, we can let w(z) = sgn, () (=1lif xe@and —1if xe —).
If there is a ¢ such that a knowledge of ,, - - -, x, determines whether
2 is in @ or —@, then (sgn,m™ is a @ kernel and

(i) Lfw) =lim, - S Sy + o ;x)f W =2 o).

The limit in (ii) giving the transform L is a precise analogue of the
limit defining the classical Hilbert transform for R; and, Theorem
(3.18) is an analogue of corresponding results for R. The set @ cor-
responds to the positive real numbers and the sets @, to the sets
1/k), o[ (ke Z*).

For a @-kernel 4, the multiplier @ can be written as

00 f—r—o00

(iif) P(y) = lim lim (—2i)§m @) sin (—o(wy))da.
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If w = sgn,, then

(iv) P(y) = lim lim (—2i)S Sin(—0(@y)) g,
koo m—o—oo N4y, m(x)
The limit in (iv) is like the limit
lim lim (—Zi)n"lgm sin(xy) dx = —isgny ,
k—oo m—oo 1/k xr

which is a multiplier for the classical Hilbert transform. See, e.g.,
[9], pp. 119-120.

(4.2) A caleulation. There are many sets @ satisfying the condi-
tions in (4.1). We now consider one of these in more detail. Suppose
that p is odd and define

@:{x:lémsmgp—z—l};

then

_@:{x:pgléxs(x)gp_l}'

(Another natural @ is {x: x,,, is odd}.) Letting w = sgn,, we know
that the limit (4.1.ii) exists for fe 8,. We compute Lf for f = &,m™;
the result is given in (4), infra. Let

Using (4.1.i) then translating, we can write

Loftn =~ 5 p] [20 20 s ]y,
= -2 pj[zgfj%—%)— B L%dw]

(1)

j=—o

If s(y) > j, then we have s(z + y) = s(x — y) = s(x) = j for all z e 4.
In particular, ¢ 4+ v is in 4) if and only if x — y € 4;; and hence the
first expression for L,f(y) in (1) shows that the j** term of the sum
is zero. If s(y) < j, we have s(y + x) = s(y — ®) = s(y) for all e 4,,
and again the j* term of the sum is zero. Thus, if k& > s(y), we
have

Lf(y) = L.f ()

(2) — s Eﬂé(y + ) N EA(,(?J + %)
P [287% m(y + x) a Smy) m(y + x) dx] )

If s(y) = 0, then the equality £4(y + @) = &4(y — «) = 0 holds for all
x € 4,4, and hence Lf(y) = 0 for y € 4,. For the following calculations,
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we suppose that y is fixed, put s(y) = S, and define
Zs; ={wedgs@+y) =S +75};
Esg;={redas@+y)>S+35 (=012 --).
We have

S EA.S(y + ) do —

19 m(y + x) st + SES = PMZ) + SES

=) 222 | 4
P — 1 Zs+1 Es+1

=p'¥p — 2) + p7(p — 1) + (S Tt SZ_I * SE_)‘

Zg+2

If s(x +y) > —1(x + ye 4,), then S = 0; the other integrals in the
E__
last line above are p~'*p — 1). We tlhus obtain
3) | SYED gy — o - 2) + (-5 - D - DI
45 m(Y + )

It remains to calculate the first integral on the right side of (2).
If ye 75, then y + x is 4y for all x€ .75 In this case, we have

En(y + @) 1 _
0 de = 5N\ — —_ml2 —1).
|, s = pMT Y = 7 — )

If ye — 7, then there exists an xe .9 such that s(x + y) > S.
Computing as above, we have

»—1
2 - —8—1
[ +] = 2 |+ 5
Zg Eg D — 1 9=1 JZg+j
2

=20 =3 + (-5 - -1).

S Eny + ) o0
s m(y + @)

Using the two above equalities and (3) in (2) gives
[ —p5 I (p—1) —(p—2) +(S+ 10— 1)eyly) ifyecd
(=05 (p—3)—(p—2)+ (=S —1(p—1)é,(y) ifye—0.

This in turn can be written

(4) Lf(y) = fy)p " (—1 — s(y)(p — 1)) sgn, () .

Lf(y) =

(4.3) Kernels from additive characters. For a character y, of
¥, we have

() |, = | nwdr - | peds.
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If yed, then yx,|, is a nontrivial character of the group 4, and
Xy, = 1. Hence dey(a;)dx =0, SA x,(x)dx = \4,), and S L(@)dae =
) 1 EN
—©(4). Thusg Img y,(x)de = 0; and setting
4o

wy(@) = Img x,(x), yed,, yed,

we obtain a w satisfying the hypothesis of (3.13). Note that w,(x) =
sin (—o(zy)).

If ye;, then y,, and y, |, are nontrivial character of 4, and
4,, respectively. It follows from (i) that the function y, |, defines a
generating function w. In this case, each of the functions « — Re y,(x)
and ¢ — Img y,(®) (x€ 4,) is also a generating function.

(4.4) Kernel’s from characters of 4,. If t is a nontrivial charac-
ter of the multiplicative group 4, then S T(x)dr(z) = 0. Continuity
4y

requires that (v + 4,) = 1 for some ¢ > 0. We can write any z € 4,
in the form « = a'(u + "), where 2’ e 4,, , =0 if k = ¢, and 2" € 4,.
Hence, 7(x) is determined by the 1st ¢ coordinates of x, and so ¢
generates a singular integral for which the results of (3.13) are valid.

Both the author and Professor Mitchell Taibleson have extended
the results of this paper in several directions. These extensions will
be published in due time.
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