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THE CHARACTERISTIC FUNCTION OF A HARMONIC
FUNCTION IN A LOCALLY EUCLIDEAN SPACE

WILLIAM LEE JOHNSON

We define the characteristic function for each harmonic
function having prescribed singularities in a locally Euclidean
space and the class of harmonic functions with bounded char-
acteristic. The main result is that any harmonic function of
bounded characteristic can be represented as the difference of
two positive harmonic functions with prescribed singularities.
Thus the well-known theory of the characteristic functions
associated with meromorphic functions has an analogue for
harmonic functions in locally Euclidean spaces.

!• Preliminaries*

2. Let V be a locally Euclidean n-space (n > 2). By definition
V is an ^-manifold for which the defining homeomorphisms rj of open
sets 0 with π-balls of Rn are isometries. We shall use the same
symbol z for the point of V and for its parametric image. Properties
of a function u(z) are always to be understood in terms of the para-
meter. Expressions such as "an w-ball centered at a" and "\z — α|,
the distance between z and α" refer to the parametric representation.

3. Let C denote the unit ball in Rn and P a coordinate hyper-
plane. A region G c V is a bordered region if

(B-l) B = dG is compact,

(B-2) for any ze B there is a neighborhood N(z) and a diffeomor-
phism φ of N(z) with C such that φ(N n B) = C Π P and ψ(N Π G) is
one of the two half-balls of C — P.

A bordered region G c F i s regular if

(R-l) G is compact,

(R-2) B = d(V-G),

(R-3) all components of V — G are noncompact.

The flux of a function ueC1 on the border B of a bordered region
G is

(du/dn)dS ,

where dS is an area element on B and d/dn is the exterior normal
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derivative.

4. The standard properties of harmonic functions which are true
for locally Euclidean spaces are used without qualification. In par-
ticular we have Green's formulae, the mean value properties, the
Poisson formula, and Harnack's inequality.

The characteristic singularity ([2], p. 241) for a function ueH
in G — a is

( 1 ) 8(z) = \z-a\*-"/ωn(n-2),

where ωn is the area of the unit sphere in Rn. The flux of s(z)
across a sphere centered at a is — 1.

The capacity function pσ of G with singularity (1) at a has a
constant value on dG such that the regular part of pQ tends to zero
at α. For u e H in G, we have

( 2 ) u{a) = \ u(z)(dp(z, a)/δn)dS .

2* Harmonic functions of bounded characteristic*

5. Let L denote the class of harmonic functions regular in V
except for singularities of the type

( 3 ) λ, I z ~ zά \2~n/ωn(n - 2) , j = 1, . . , m ,

where the λy are real numbers, and the z3- are arbitrary points of V.
The subclass of positive functions in L is denoted by LP.

Given a function he L in V which is finite at ae U, choose a
regular region β c F containing α. Let xΩ

 +(z) be the solution of the
Dirichlet problem in Ω with boundary values h+ = max (h, 0) on 3Ω.
By (2)

+(z) = \ h+(t)(dp0(t, z)/dn)dS ,

where the capacity function pΩ has its singularity at z. Similarly
x^(z)eH in Ω with boundary values h~ = max( — h, 0) on dΩ, and

( 5 ) XΪ(Z) = \ h~(ί)(dpΩ(t, z)/dn)dS .
JdΩdΩ

Let the positive and negative singularities of h be α̂  and bά respec-
tively, and define

VQ(Z) ΣiHeΩ *>i90(z, α*) , λ, > 0 ,
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ttί(s) - xi(z) + yi(z) ,

^ϊ(z) = XQ(Z)

Here gΩ(z, t) is the Green's function of Ω with singularity at t.
We call C(β, h) = ui(ά) the characteristic function of A, with

respect to a and £?. The class LC of functions of bounded char-
acteristic consists of he L with

C(Ω, h)^M

for some M < oo and all 1 3 c F , Note that C(β, —h) = uΩ(a). It is
a consequence of Theorem 1 below that the class of LC is independent
of the point a chosen.

3* The decomposition theorem*

6. THEOREM 1. A necessary and sufficient condition for h e LC
in V is that

h = u — v ,

where u,ve LP in V.

We first prove that C(Ω, h) is an increasing function of Ω.

LEMMA 1. Let he L in V and Ω c Ωf regular subregions of V
with a e Ω. Then

uΩ

 +(z) ^ uΩ, +(Z) .

Proof. The function h — yt + yΩ e C° in Ω, e H in Ω, and has
boundary values h on dΩ. From (2) we have

( 8 ) h(z) - yi(z) + vΈ(z) = \ h(t)(dpo(t, z)/dn)dS .

Here we assume that no singularity of h lies on dΩ. An appeal to a
continuity argument will give the same result if this is not the case.

On separating h into h+ and h~, the right side of (8) is xi(z) —
XQ(Z). Hence

( 9 ) h(z) = ui(z) - uo(z) .

Since uΩ(z) ^ 0, (9) gives for all Ω c V

(10) h+(z) ^ ui(z) .

By virtue of (4), (10), and (2), we have
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x+(z) = \ h+{t){dpΩ{t, z)/dn)dS
JdΩ

^ [ uUt)(dpΩ(t,z)/dn)dS

- yi(t)](dpΩ(tf z)!dn)dS

We conclude that ui(z) ^ u&(z).

7. LEMMA 2. If heLC in V, then — heLC.

Proof. Choose ae V with h(a) Φ co. The characteristic func-
tion of — h is Uo(a). Using (9) with argument a we see that the
boundedness of uϊ(a) guarantees the same for UQ(O), and —heLC.

8. Proof of Theorem 1. Let heLC in V. The function ui(z),
which increases with Ω by Lemma 1, is harmonic on Ω — {α*}. The
limit function u(z) is either harmonic or + oo in V — {a,;}. The former
must hold since ui(a) is bounded for all Ω by assumption. Analogously,
UΈ(Z) tends to v(z) e H in V — {bj}. Formula (9) implies in the limit
that

h(z) = u(z) — v(z)

in V, and u,ve LP.

To establish the converse, suppose that h(z) = uλ{z) — ^(2;) with
u11v1eLP. Since 1̂ (2) ^ 0, (9) implies that all positive singularities
of ui are among those of uλ. Thus ux — u£ is superharmonic in Ω
and takes its minimum on dΩ. This minimum is nonnegative, and,
consequently, ui(z) <£ ̂ (2) in Ω. If tt^α) is finite, then h e LC.

If ux{a) = 00, Ietu2(^) = ^i(^) — ^9Ω(Z, a), where λ is the order of
singularity of ux at α. Similarly let v2(z) = vλ{z) — μgΩ(z, a), where μ
is the order of the singularity of v2(z) at a. Then

h(z) = %2(ί25) - v2(z) + (λ - /i)flrfl(«, α) .

It X ^ μf then uj(α) ^ u2(α) < co, and h e LC. If λ > μ, then —he
LC, and h e LC by Lemma 2.

4* Extremal decomposition*

9. THEOREM 2. Lei h eLC in V and let u, v be the functions
constructed in the proof of Theorem 1. For any decomposition h =
uL — vu with uu vx e LP, we have u ^ ul9 v <S vx.
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Proof. For β c F w e have

h(z) = u^z) — vλ{z) — ui(z) — UQ(Z) .

By the reasoning of 8,

ut(z) ^ uλ{z) ,

^ vλ(z) .

Since the inequalities hold for all Ω c V, the limit functions u and v
are dominated by ux and i;x respectively.

10. Suppose there is an h e LP in V. For any α e f i c F the
Green's function with singularity at a exists. Since gΩ vanishes on
dΩ, h — gΩ is superharmonic. The gΩ increase with ί2, and we conclude
that the Green's function gv of V exists.

11. The extremal functions u and v of Theorem 2 have a further
decomposition.

THEOREM 3. he LC in V if and only if

(11) h = (x+ + y+) - (x- + 2Γ),

where the x-functions are regular harmonic in V and

(12) y+ = Σα,6F λ ^ F ( z , α<), i/~ - Σ δ . eF λ ^ F ( ^ , 6, ) .

REMARK. The Green's function for V exists by 10 and will be
constructed in the course of the proof.

Proof. If h has the asserted decomposition, then h e LC by
Theorem 1.

Conversely, let h e LC and choose regular regions Ωo c Ω c V.
The function y% — #ί0 is harmonic in Ωo and nonnegative on dΩ0. By
the minimum principle yio(z) ^ 2/ί(«) in Ωo. Similarly yΩo(z) ^ yΩ(z) in
β0. Let ?/+ and y be the respective limit functions as Ω—>V. The
singularities of yi are among those of u, and 2/ί(«) ^ %(«) in β. The
limit function y+ is therefore harmonic in V — {αj. Also y~ e H in
F - {6,}.

We show next that lim^y yi(z) = Σαi6F \9v(z, a;). The proof of
the corresponding result for y^ is similar and will be omitted. We
have
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and consequently

lim sup yi(z) ^ ΣjHer

On the other hand,

^ lim inf Σ α . e β λ<0fl(z, α*) = lim inf yt(z).

On passing to the limit Ωo —> V we obtain

, ad ^ lim inf

and y+ has the asserted decomposition.
We recall that x% = ui — yi —*u — y+. Since the xi are regular

harmonic, it follows that the same is true of the limit function x+ in
V. Similarly x~ e H in V.

5» Classification theory*

12. Given a locally Euclidean τt-space F and a class of functions
T defined in V, we say that VeOτ if the only functions of class T
in V are constants. This definition has been used in the classifica-
tion of Riemann surfaces ([1], [3], [4]) and of locally Euclidean spaces
[6]. We know [6] that the O-classes for HB, bounded harmonic
functions, and for HD, harmonic functions with finite Dirichlet in-
tegral, are related by

OHB c OHD

Since any bounded function becomes positive by addition of a suitable
constant, we also have

OJIP c OHB

where HP is the class of positive harmonic functions. By definition
VeO& if V has no Green's function.

By considering the classes LC and LP defined in 5 we can in-
corporate the corresponding O-classes into the inclusion chain. We
find beginning in 13 that

(13) OQ c OLO c OLP c OHP c OHB c OΠΏ .

The first three classes are in fact equal, and the inclusions

OQ c OHP and OHP c OHB

are strict. The strictness of the last inclusion in (13) is an open
question.
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13. Let h e LC in V. To show that OQ c OLC we may assume
that h has at least one positive singularity at ae V. For any regular
Ω a V with αefi, let go(z, a) be the Green's function of Ω with singul-
arity at a. There exists a decomposition h = u — v, where u, v e LP
in V. The function u — gΩ is superharmonic in Ω and nonnegative
on dΩ. Hence gQ <̂  u throughout Ω. Since gΩ increases with Ω, we
conclude that gv exists and that OG c OL£7.

Since LP c LC, we have Oi(7 c OLP. It is clear that HP c LP
and hence OLJP c O#P.

14. Since L is a class of functions which have singularities of
the type | z — a \2~n, a space V has L functions if and only if it has
a Green's function. The inclusion OQ c OLP is thus an equality, and
the first three 0-classes in (13) are equal.

15. The inclusion OQ c OHP is obviously strict. Also OHP is
strictly contained in OHB, as is easily seen by considering V = Rn — {0}.
A single point is a removable singularity for HB functions, an easy
consequence of Harnack's inequality. Hence an HB function in V
has a harmonic extension to all of Rn and must therefore be constant.
On the other hand, the Green's function for Rn with singularity at
0 is a nonconstant HP function in V. Thus V 6 OHB and the in-
clusion OHP c OHB is strict.
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