TWO SOLVABILITY THEOREMS

I. M. ISAACS

In this paper we prove two theorems which have certain similarities.

THEOREM J. Let G be a group with a cyclic S_p subgroup P such that every p'-subgroup of G is abelian. Then either G has a normal p-complement or else $P\Delta G$.

THEOREM II. Let G be a group and let $p \neq 2$ and q be primes dividing |G|. Suppose for every H < G which is not a q-group or a q'-group that p ||H|. If q^a is the q-part of |G| and $p > q^a - 1$ or if $p = q^a - 1$ and an S_p of G is abelian then no primes but p and q divide |G|.

Both theorems are proved by studying minimal counter-examples and in both cases contradictions are obtained for p > 3 without the use of character theory. When p = 3 both minimal counterexamples satisfy the hypotheses of the same character theoretic proposition which is actually a special case of Theorem II, and this yields the desired contradictions.

Both theorems imply that the respective groups in question are solvable. In the first case the Schur-Zassenhaus Theorem (see 9.3.6 of [5]) is used and in the second case Burnside's p^iq^j theorem (see 12.3.3 of [5]) yields the solvability.

1. In this section we prove the character theoretic proposition which is a special case of Theorem II and which is used to prove both of our main results. We begin by giving a lemma which is a restatement of some of the restlts of § II of [1].

LEMMA 1. (Brauer-Fowler) Let G be a group of even order which has only one class of involutions K_0 with $m = |K_0|$. Let $K_i, 1 \leq i \leq r$ be the remaining nonidentity real classes in G. Then

$$m^{\scriptscriptstyle 2} = um + \sum\limits_{i=1}^{r} v_i \, | \, K_i \, |$$

where u is the number of involutions in the centralizer of an involution and v_i is the number of involutions which transform x to x^{-1} when $x \in K_i$.

PROPOSITION. Let G be a group with an abelian S_3 subgroup P with the properties

 $(1) \quad |\mathfrak{N}_{\mathfrak{G}}(P)| = 4 |P|, |\mathfrak{C}_{\mathfrak{G}}(P)| = 2 |P|,$

(2) $\mathbb{G}_{\theta}(P)$ is a *T.I.* set and

(3) if H < G has even order then |H| | (4 | P|).

Then G is not simple.

Proof. Suppose G is simple. It is clear that the order of an S_2 of G is 4 and thus by Burnside's theorem it must be elementary and all of its involutions are conjugate in its normalizer. Put

$$S = \mathbb{G}_{g}(P) = P imes \langle s
angle \quad ext{and} \quad N = \mathfrak{N}_{g}(P) = S \langle t
angle,$$

where s and t are commuting involutions. Since G is simple and P is abelian, we have $P \bigcap \mathfrak{Z}(\mathfrak{N}(P)) = 1$ by 13.5.5 of [5] and thus $\mathfrak{C}_P(t) = 1$ and t acts on P with no nontrivial fixed points. Therefore t transforms every element of P and thus also of S into its inverse. Clearly $S \bigtriangleup N$ and $P \bigtriangleup \mathfrak{N}_{d}(S)$ and thus $N = \mathfrak{N}_{d}(S)$. If two elements of S are conjugate in G they are conjugate in N since S is a T. I. set and if they are distinct they are inverses. Since the only elements of S equal to their inverses are s and 1, the remaining 2|P| - 2 elements of S span |P| - 1 classes of G.

If $y \neq 1$ is a real element of G which is not an involution then $\mathfrak{M}_{\mathfrak{q}}(\langle y \rangle) < G$ has even order and thus y has order divisible by 3 and centralizes some element of order 3. By taking conjugates we may suppose that this element is in P and therefore $y \in N$. Since no element of N - S centralizes any element $\neq 1$ in P, we conclude that $y \in S$. Therefore the |P| - 1 classes spanned be the nonself-inverse elements of S are the classes K_i of the lemma and r = |P| - 1.

Since $\mathbb{C}_{d}(s) \supseteq N$ and $|\mathbb{C}_{d}(s)|| (4 | P|)$ we must have $\mathbb{C}(s) = N$. Every element of N - S is an involution and therefore in the lemma we have u = 2 |P| + 1. Since $\mathbb{C}(s) = N$, m = [G:N] = |G|/4 |P|. If $x \in S$ and $x \neq 1$, s then $\mathbb{C}_{d}(x) = S$ and $|K_{i}| = [G:S] = 2m$. Finally, the only involutions transforming x to x^{-1} are the elements of N - S and hence each $v_{i} = 2 |P|$ and the lemma yields

$$m^2 = (2 \mid P \mid + 1)m + (\mid P \mid - 1)(2 \mid P \mid)(2m)$$

and therefore $m = 4 |P|^2 - 2 |P| + 1$ and |G| = 4 |P|m.

Now G has |P| + 1 real classes and thus by Theorem 12.4 of [4] it has |P| irreducible, nonprincipal real valued characters, χ_i , $1 \leq i \leq |P|$. Since G has m involutions,

$$m = \sum\limits_{i=1}^{|P|} \chi_i(1) arepsilon_i$$

where $\varepsilon_i = \pm 1$ by Theorem 3.6 of [4]. Therefore $m \leq \sum_{i=1}^{|P|} \chi_i(1)$ and we have

282

$$m^2 \leq \left[\sum_{i=1}^{|P|} \chi_i(1)
ight]^2 \leq |P| \sum_{i=1}^{|P|} \chi_i(1)^2 = |P| \left[|G| - \sum \psi_j(1)^2 - 1
ight]$$

where the ψ_j are the irreducible nonreal valued characters. Thus

$$|P| \sum \psi_j(1)^2 \le |P| (|G| - 1) - m^2 \le m(4 |P|^2 - m)$$

since |G| = 4 |P| m. Since $4 |P|^2 - m = 2 |P| - 1 < 2 |P|$, we have $\sum \psi_j(1)^2 < 2m$. Because G contains elements of order prime to 6, not every class of G is real and thus some ψ exists with $\psi \neq \overline{\psi}$ and hence $\psi(1)^2 < m$.

Now [N:S] = 2 and S is abelian and thus all nonlinear irreducible characters of N have degree 2. Since t acts without fixed points on P, it is clear that N' = P and N has exactly 4 linear characters and thus has |P| - 1 distinct irreducible characters of degree 2, say $\lambda_1, \dots, \lambda_{|P|-1}$. Since [N:S] = 2 and $\lambda_i | S$ is reducible, it follows that λ_i vanishes on N - S and we may apply Theorem 38.16 of [3] since S is a T. I. set. Therefore G has irreducible characters

$$\zeta_1, \zeta_2, \cdots, \zeta_{|P|-1}$$

and there is $\varepsilon = \pm 1$ with $\lambda_i^g - \lambda_j^g = \varepsilon(\zeta_i - \zeta_j)$. Since each λ_i^g is real valued, the same is true of the ζ_i and thus we have the inner product $[\psi, (\lambda_i^g - \lambda_j^g)] = 0$. Therefore

$$[\psi,\lambda^{\scriptscriptstyle G}_i]=[\psi,\lambda^{\scriptscriptstyle G}_j]$$

and by Frobenius Reciprocity, $[\psi | N, \lambda_i] = [\psi | N, \lambda_j]$. We conclude that the multiplicities of each λ_i in $\psi | N$ are equal. Since ψ is faithful and N is nonabelian, $\psi | N$ has some nonlinear constituent and thus this common multiplicity is ≥ 1 and therefore $\psi(1) \geq 2(|P|-1)$. Since $\psi(1)^2 < m < 4 |P|^2$, we have $\psi(1) < 2 |P|$ and thus

$$\psi(1) = 2 \, |\, P \,|\, -2 \quad ext{or} \quad 2 \, |\, P \,|\, -1 \; .$$

Let q be the largest prime divisor of $\psi(1)$. If q = 2 then since $\psi(1) \mid \mid G \mid$ we must have $\psi(1) = 4 = 2 \mid P \mid -2$ and $\mid P \mid = 3$. In this situation m = 31 and $\mid G \mid = 12 \cdot 31$ and since no simple group can have this order, we have a contradiction. Thus $q \neq 2$ and since $3 \mid \mid P \mid$, q > 3. Since $q \mid \mid G \mid$ we must have $q \mid m$ and $4 \mid P \mid^2 - 2 \mid P \mid + 1 \equiv 0 \mod q$. Since $2 \mid P \mid \equiv 1$ or $2 \mod q$, we have $4 \mid P \mid^2 - 2 \mid P \mid + 1 \equiv 1$ or $3 \mod q$. Since q > 3 this is our final contradiction.

2. In this section we prove the first of our main results. We begin with a lemma.

LEMMA 2. Let H be an abelian group with a collection of proper subgroups $\{K_i\}$ such that $H = \bigcup K_i$ and $K_i \bigcap K_j = 1$ if $i \neq j$. Then H is an elementary abelian p-group for some prime p.

Proof. If $x, y \in H^*$ have different orders m and n respectively, with m > n, choose K_i with $x \in K_i$. Then $1 \neq (xy)^n = x^n \in K_i$. If $xy \in K_j$ then $(xy)^n \in K_i \bigcap K_j$ and therefore i = j and $xy \in K_i$. Thus $y \in K_i$. If $z \in H^*$ is arbitrary then the order of z is different from at least one of m and n and thus $z \in K_i$. Thus $K_i = H$ and this contradiction shows that all elements of H^* have equal orders and the result follows.

THEOREM I. Let G be a group with a cyclic S_p subgroup P such that every p'-subgroup of G is abelian. Then G has a normal p-complement or else $P \triangle G$.

Proof. Suppose the theorem is false and let G be a minimal counterexample. Let $N = \mathfrak{N}_{G}(P)$ and let K be an $S_{p'}$ (p-complement) of N whose existence is guaranteed by the Schur-Zassenhaus Theorem (9.3.6 of [5]). If any element $x \in K$ centralizes a nonidentity element of P, then because P is cyclic, x centralizes all of P. (See for instance 20.1 of [4]).

Every proper subgroup of G satisfies the hypotheses and thus has either a normal S_p or $S_{p'}$. If $L \triangle G$ and $p \nmid |L|$ then G/L satisfies the hypotheses and does not have a normal $S_{y'}$ and therefore if L > 1, $PL \triangle G$. By Burnside's theorem, $K \triangle N$ and thus NL does not have a normal $S_{v'}$ and if NL < G, L normalizes P and P is characteristic in PL and thus is normal in G. This contradiction shows that NL = G. Now put $M = \bigcap_{x \in G} N^x \triangle G$. Since x = uv for some $u \in N$ and $v \in L$ we have $N^x = N^{uv} = N^v \supseteq K^v$. However KL is a p'-subgroup and thus is abelian and $K^v = K$. Since x was arbitrary, $M \supseteq K$ and thus $M \supseteq K^u$ for all $u \in N$. Since K is an $S_{p'}$ of the solvable group M we may conclude that K^{u} is conjugate to K in M by P. Hall's theorem (9.3.10 of [5]) and therefore there exists $w \in M$ with $uw^{-1} \in \mathfrak{N}_{N}(K)$. If $\mathfrak{N}_{N}(K) > K$ then $\mathfrak{N}_{P}(K) > 1$. This group is normalized and thus centralized by K and thus all of P is also. This contradiction shows that $\mathfrak{N}_{N}(K) = K$, $uw^{-1} \in K$, and thus N = MK. Since $p \nmid |K|, P \subseteq M$ and we have M = N and thus all N^* are equal and $N \triangle G$. Thus $P \triangle G$ and we have a contradiction. Our assumption on the existence of L is therefore invalid and $\mathfrak{D}_{v'}(G) = 1$.

If $P_0 \triangle G$ is a *p*-group, put $C = \mathbb{G}_{\mathfrak{G}}(P_0) \triangle G$. If C = G then K centralizes P_0 and therefore K centralizes all of P and we have a contradiction. Thus C < G and since $P \subseteq C$, C does not have a normal S_p . Therefore C is not a *p*-group and has a normal $S_{p'}$ and this contradicts $\mathfrak{D}_{p'}(G) = 1$ and we conclude that $\mathfrak{D}_p(G) = 1$. If $L \neq 1$

is any proper normal subgroup of G then either an S_p or an $S_{p'}$ of L is normal in G and is >1 and this contradiction shows that G is simple.

If P and P^* are two S_p subgroups of G and $P_0 = P \bigcap P^* > 1$, then since P is cyclic, $U = \mathfrak{N}_{\mathbf{G}}(P_0) \supseteq N$ and U < G. Since N fails to have a normal $S_{p'}$, the same is true of U and thus the S_p P of U is normal and $P = P^*$. Therefore P is a T. I. set. Now let

$$S = \mathfrak{C}_q(P) \subseteq N$$
.

If P^* is another S_p of G and $S^* = \mathfrak{C}(P^*)$, suppose that $S_0 = S \bigcap S^* > 1$. Now S_0 is not a *p*-group for otherwise $S_0 \subseteq P \bigcap P^* = 1$, and thus there is some $x \neq 1$ in S_0 which is a *p*'-element. Since

$$P, P^* \subseteq \mathfrak{C}_q(x) < G,$$

 $\mathfrak{C}_{d}(x)$ has a normal $S_{p'}L$. Since x is a p'-element of N we may suppose that $x \in K$ and hence $K \subseteq \mathfrak{C}(x)$ because K is abelian. Thus $K \subseteq L$ and $K = \mathfrak{N}_{L}(P)$. Since P normalizes L, it also normalizes K and this is a contradiction. Therefore $S_{0} = 1$ and S is a T. I. set.

Now let A be any maximal p'-subgroup of G and B a p'-subgroup with $A \bigcap B \neq 1$. If $V = \mathbb{C}_{d}(A \bigcap B) < G$ then $A, B \subseteq V$. If V has a normal $S_{p'}$ L then $A \subseteq L$ and by maximality A = L and $B \subseteq A$. If V has a normal $S_{p} P_{0}$ then V has a possibly not normal $S_{p'}$ L and since V is solvable, we may suppose that $A \subseteq L$ by P. Hall's theorem. Thus A = L and some conjugate of B is contained in A. In this situation, since A normalizes P_{0} and P is a T. I. set we may conclude that A normalizes some S_{p} of G.

If q is a prime, $q \mid |A|$, let Q be an S_q of G with $Q \bigcap A \neq 1$. Then some conjugate of Q is $\subseteq A$ and thus A is a Hall subgroup of G. If A^* is another maximal p'-subgroup of G with $q \mid |A^*|$ then A^* meets some conjugate of A and we may conclude that A^* is conjugate to A and $|A| = |A^*|$. If A does not normalize an S_p of G then A is disjoint from all other maximal p'-subgroups of G and A is a T. I. set. In this situation let $Q \subseteq A$ be an S_q of G. Since A is abelian, $Q \bigtriangleup \Re_q(A)$ and since A is a T. I. set, $\Re_q(Q) = \Re_q(A)$ and thus by Burnside's theorem, $\Re_q(A) > A$. By the maximality of A it follows that $p \mid |\Re(A)|$ and some element of order p normalizes A.

Continuing with the situation where A does not normalize an S_p of G, suppose some element y of order p centralizes some $a \neq 1$ in A. We may suppose $y \in P$ and since $y \in P^a$ also, we conclude that $P = P^a$ and we may suppose $a \in K$. Then $K \bigcap A \neq 1$ and therefore $K \subseteq A$. Since A is a T. I. set, y normalizes A and $K = \mathfrak{N}_A(\langle y \rangle)$ and thus y normalizes and hence centralizes K and therefore K centralizes all of P and we have a contradiction. Thus no $a \in A$ different from 1 commutes with any element of order p and since A is normalized by such an element we have $|A| \equiv 1 \mod p$.

Let A_0, A_1, \dots, A_s be a collection of maximal p'-subgroups of G with all $|A_i|$ distinct and including all posibilities and with $K \subseteq A_0$. If q ||G| and $q \neq p$ then some A_i contains an S_q of G and if $q ||A_j|$ also, then A_j meets some conjugate of A_i and as we have seen this implies that $|A_j| = |A_i|$ and thus j = i. Therefore

$$|\,G\,|\,=\,|\,P\,|\prod_{i=0}^{s}|\,A_{i}\,|$$
 .

Since $K \subseteq A_0$, no A_i for i > 0 can normalize an S_p of G and if $A_0 > K$, the same is true of A_0 . In this situation no *p*-element commutes with a *p*'-element nontrivially and thus $\mathbb{C}_{d}(P) = P$ and K is isomorphic with a subgroup of the automorphisms of P and since P is cyclic and $p \nmid |K|, |K| \leq p - 1$. Continuing with the assumption that $A_0 > K$ we see that all $|A_i| \equiv 1 \mod p$ and thus $|G|/|P| \equiv 1 \mod p$. By Sylow's theorem, $|G|/|K| |P| \equiv 1 \mod p$ and therefore $1 \equiv |G|/|P| \equiv |K| \mod p$. Since |K| < p we must have |K| = 1 and this is a contradiction by Burnside's theorem. Therefore $A_0 = K$ and K is a maximal *p*'-subgroup.

Let $Z = \mathfrak{C}_{\kappa}(P) < K$ and let Q be an S_q of K. Clearly, $K \subseteq \mathfrak{N}_{\mathfrak{q}}(Q)$ and thus by Burnside's theorem, $K < \mathfrak{N}_{\mathfrak{g}}(Q)$ and hence $p \mid |\mathfrak{N}(Q)|$. Since Z < K we may choose q with $Q \not\subseteq Z$. If $\mathfrak{N}(Q)$ has a normal $S_p P_0$ then Q centralizes P_0 and therefore Q centralizes all of some S_p subgroup of G. It follows that Q is contained in some conjugate of Z and thus $Q^u \subseteq Z$. However Q^u is therefore an S_q of the abelian K and $Q^{*} = Q$. This contradicts $Q \not\subseteq Z$ and thus $\mathfrak{N}(Q)$ fails to have a normal S_p and hence has a normal $S_{p'}$ L and $L \supseteq K$. By the maximality of K, K = L and K is normalized by an element x of order p. If $x \in P^*$, an S_p of G, suppose $K \subseteq \mathfrak{N}(P^*)$. Then $K \subseteq \mathfrak{N}(\langle x \rangle)$ and thus x centralizes K and therefore K centralizes all of P^* . Since $KP^* = N_{\sigma}(P^*)$ we have a contradiction and no S_p containing x is normalized by K. In particular, $x \notin P$. We conclude that each of $P, P^x, \dots, P^{x^{p-1}}$ is normalized by K and they are all distinct. Now $\mathfrak{C}_{\kappa}(P^{x^i}) = Z^{x^i}$ and since $\mathfrak{C}_{\sigma}(P)$ is a T. I. set $Z^{x^i} \bigcap Z^{x^j} = 1$ unless i = j.

Put |Z| = c. Since the direct product $Z \times Z^x \subseteq K$ we have $c^2 ||K|$ and we set $|K| = c^2 t$. We have $|K - \bigcup Z^{x^i}| = c^2 t - p(c-1) - 1$. Now K/Z is a p'-group isomorphic with a subgroup of the automorphisms of P and thus is cyclic of order dividing p - 1. Since [K:Z] = ct, we have ct | (p - 1).

If x centralizes any $a \neq 1$ in K then a normalizes and thus centralizes a full $S_p P^*$ of G with $x \in P^*$. If $b \in K$ then $a^b = a$ centralizes

 $(P^*)^b$ and thus $P^* = (P^*)^b$ because $\mathfrak{C}_{\mathfrak{G}}(P^*)$ is a T. I. set and thus K normalizes P^* . We have seen that this is impossible and thus x acts without nontrivial fixed points on K and $p \mid (c^2t - 1)$.

We have then, $p \mid (p - 1 + c^2 t)$ and since $ct \mid (p - 1)$,

$$p\left[\left[rac{p-1}{ct}+c
ight]
ight]$$
 .

Since both p - 1/ct and c divide p - 1, we have (p - 1)/ct + c < 2pand thus (p - 1)/ct + c = p. This implies that $c \mid ((p - 1)/ct - 1)$ and $p - 1/ct \mid (c - 1)$. It follows that either p - 1/ct = 1 or c = 1. If c = 1then t = 1 and thus |K| = 1 and this is a contradiction and therefore p - 1/ct = 1. This yields t = 1 and c = p - 1 and thus $|K| = (p - 1)^2$. We have then $|K - \bigcup Z^{z^i}| = c^2t - p(c - 1) - 1 = 0$ and thus $K = \bigcup Z^{z^i}$. We may therefore apply Lemma 2 to K and conclude that K is an elementary abelian q-group for some prime q. Since K/Z is cyclic of order ct = p - 1, we conclude that p - 1 = q and thus p = 3and q = 2. Therefore $|\Re_q(P)| = |P| |K| = 4 |P|$ and

$$|\mathbb{G}_{d}(P)| = |P| |Z| = 2 |P|$$
.

If H < G has even order then so does an $S_{p'}$ of H and thus a maximal p'-subgroup containing it has even order and this order must equal $|A_0| = |K| = 4$ and therefore |H| |(4|P|). Since $\mathbb{C}_{g}(P)$ is a T. I. set, the proposition applies and G is not simple. This contradiction proves the theorem.

We note here that an alternate method of completing the proof is to use the theorem of Brauer, Suzuki and Wall [2] instead of the proposition given here in §1. While there are some similarities in the proofs of these two results, the Brauer-Suzuki-Wall theorem is considerably deeper.

3. Here we prove our second theorem.

THEOREM II. Let G be a group and let $p \neq 2$ and q be primes dividing |G|. Suppose for every H < G which is not a q-group or a q'-group that $p \mid \mid H \mid$. If q^a is the q-part of |G| and $p > q^a - 1$ or if $p = q^a - 1$ and an S_p of G is abelian then no primes but p and q divide |G|.

Proof. If the theorem is false, let G be a minimal counter-example. Every H < G which is neither a q-group nor a q'-group satisfies the hypotheses and thus none has order divisible by any prime different from p and q. Suppose $N \triangle G$ with 1 < N < G. If $q \mid \mid N \mid$ then no other prime but p can also divide it and thus some prime

 $r \neq p$, q divides [G:N]. If Q is an S_q of N then $\mathfrak{N}_{g}(Q)N = G$ and since $r \nmid |N|, r||\mathfrak{N}_{g}(Q)|$ and thus G has a subgroup of order r|Q|. This contradiction shows that $q \nmid |N|$. If any $r \neq p$ divides |N|, let R be an S_r of N. Then $\mathfrak{N}_{g}(R)N = G$ and since $q \nmid |N|, q||\mathfrak{N}_{g}(R)|$ and G has a subgroup of order q|R|. This contradiction shows that N must be a p-group.

If Q is any q-subgroup of G then $\mathfrak{N}_{g}(Q) < G$ and thus is not divisible by any prime different from p or q. If for every $Q > 1, \mathfrak{N}_{d}(Q)/\mathfrak{S}_{g}(Q)$ is a q-group then by Frobenius' theorm (see for instance 21.8 of [4]) G has a normal $S_{q'}$ which must be a p-group and this is a contradiction. Thus for some Q, an S_{p} of $\mathfrak{N}_{d}(Q)$ fails to centralize Q and in particular is not normal. Thus an S_{p} of G is not normal and Q is normalized by an element x of order p^{b} which does not centralize it. Some orbit of the elements of Q thus has size $\geq p$ and $q^{a} \geq |Q| \geq p + 1 \geq q^{a}$. We have equality and thus $p + 1 = q^{a}$ and Q is a full S_{q} of G, all of whose nonidentity elements are conjugate under x. Thus since $p \neq 2, q = 2$ and all 2-elements of G are involutions and in one class. Furthermore, by hypothesis, an S_{p} subgroup P of G is abelian.

If G has the proper normal subgroup N then we have seen that N is a p-group but since G does not have a normal S_p , $p \mid [G:N]$. If $N \subseteq H < G$ and $q \mid [H:N]$ then the only other prime which can divide [H:N] is p and thus G/N satisfies the hypothesis and if N > 1 we have a contradiction. This shows that G is simple.

If H < G has even order and an S_2 of H is not normal then H does not have a normal p-complement. If P_0 is an S_p of H then by Burnside's theorem, P_0 is properly contained in its normalizer in H. Therefore $[H:\mathfrak{N}_{H}(P_0)] < [H:P_0] \leq 2^a = p+1$. By Sylow's theorem then, $P_0 \bigtriangleup H$.

Suppose $x \neq 1$ is a real element of G. Then $\mathfrak{N}_{g}(\langle x \rangle) < G$ has even order and since the only 2-elements are involutions, the order of x^{2} is a power of p and x^{2} is a real element. If G has no nonidentity real p-elements then for every real $x \in G$, $x^{2} = 1$. Since the product of two involutions is real, the set $\{x \mid x^{2} = 1\}$ is a normal subgroup of G. Therefore there exists $y \neq 1$, a real p-element. Since y is transformed into its inverse by an element of $\mathfrak{N}_{g}(\langle y \rangle)$, y is not central in that group and thus $\mathfrak{N}_{g}(\langle y \rangle)$ does not have a normal S_{2} . It therefore has a normal S_{p} which is a full S_{p} subgroup, P of G and thus $\mathfrak{N}_{g}(P)$ has even order. It follows that $\mathfrak{N}(P) = PS$ where S is contained in an S_{2} T of G and P is the unique S_{p} of G containing y.

If no involution centralizes any nonidentity *p*-element then *S* acts in a Frobenius manner on *P* and being abelian, it must be cyclic and thus have order 2. If $t \in T$ is an involution then $\mathfrak{C}_{d}(t) = T$ and in the terminology of Lemma 1, $m = |G|/2^a$ and $u = 2^a - 1$. If $1 \neq s \in S$ then s inverts every element of P. Therefore each nonidentity element of P is real and thus is contained in a unique S_p and hence P is a T. I. set. Thus if any two elements of P are conjugate in G they are conjugate in $\mathfrak{N}_d(P)$ and thus are inverses and the nonidentity elements of P span (|P| - 1)/2 classes of G. These are the only real classes other than $\{1\}$ and the class of involutions and thus in Lemma 1, r = (|P| - 1)/2. If $x \neq 1, x \in P$ then $\mathfrak{C}_d(x) = \mathfrak{C}_{PS}(x) = P$ and the set of involutions transforming x to x^{-1} is the coset Ps. Therefore in Lemma 1, $v_i = |P|$ and $|K_i| = [G:P]$ for each i. The lemma yields

$$m^2 = m(2^a-1) + rac{\mid P \mid -1}{2} \mid P \mid [G:P] \; .$$

Since |P||m and $2^{\alpha} - 1 = p$, p|P| divides the left side and the first term on the right side but not the remainder of the right side of the above equation and thus we have a contradiction. Therefore an involution centralizes some element of order p.

Now let $C = \mathbb{C}_{d}(T)$ and suppose C > T. Then $C = T \times P_{1}$ where $P_{1} > 1$ is a *p*-subgroup of *G*. Set $A = \mathbb{C}_{d}(P_{1}) \supseteq C$. Either $T \bigtriangleup A$ or an S_{p} subgroup P^{*} of *A* (which is a full S_{p} of *G*) is normal. If $P^{*} \bigtriangleup A$ then since $|A| = |P| |T| \ge |\mathfrak{N}_{d}(P)|, A = \mathfrak{N}_{d}(P^{*})$ and

$$1 \neq P_1 \subseteq P^* \bigcap \mathfrak{Z}(\mathfrak{N}_{d}(P^*))$$

and this is impossible in a simple group by 13.5.5 of [5]. Thus $T \triangle A$. Let $s \in S$, $s \neq 1$ and let $B = \mathbb{G}_d(s)$. If P_2 is an S_p of B then $s \in \mathfrak{N}_B(P_2)$ and thus $[B:\mathfrak{N}_B(P_2)] and <math>P_2 \triangle B$. Since $P_1 \subseteq B$ we have $P_1 \subseteq P_2$ and thus $P_2 \subseteq A$ and thus P_2 normalizes T. Since $T \subseteq B$, Tnormalizes P_2 and thus P_2 centralizes T and $P_2 \subseteq P_1$. Now

$$\mathfrak{C}_{P}(s) = P \bigcap B = P \bigcap P_{2} \subseteq P \bigcap P_{1} \subseteq P \bigcap \mathfrak{Z}(\mathfrak{N}_{\mathcal{G}}(P)) = 1$$

and therefore S acts without nontrivial fixed points on P and every p-element of G is real. In particular $x \in P_1$, $x \neq 1$ is real. However, we have $\mathfrak{N}_{G}(\langle x \rangle) \supseteq A$ and since |A| = |P| |T|, we have equality and x is central in $\mathfrak{N}_{G}(\langle x \rangle)$ and this is a contradiction. We have shown that $C = \mathfrak{G}_{G}(T) = T$.

If $x \neq 1$ is a *p*-element centralized by an involution then $\mathbb{G}_{d}(x)$ has even order but does not contain a full S_{2} of G and thus has a normal S_{p} which is a full S_{p} of G. Hence x is contained in a unique S_{p} of G which is normalized by an involution centralizing x. By taking conjugates we may suppose that $x \in P$ is centralized by $s \in S$. Put $E = \mathbb{G}_{P}(s) > 1$. Now $\mathbb{G}_{d}(s)$ has the normal S_{p} $P_{0} \supseteq E$ and since E can meet no S_{p} of G other than P we see that $P_{0} \subseteq P$ and thus

 $\begin{array}{l} P_{0}=E. \ \text{If } P^{*}\neq P \ \text{is an } S_{p} \ \text{of } G \ \text{then } P_{0} \bigcap P^{*}=1 \ \text{and thus } \mathbb{C}_{P*}(s)=1. \\ \text{Choose } t\in S, \ t\neq 1. \ \text{Since all involutions of } T \ \text{are conjugate in } \mathfrak{N}(T), \ \text{choose } u\in\mathfrak{N}(T) \ \text{with } s=t^{u}. \ \text{If } P^{u}\neq P, \ \text{then } 1=\mathbb{C}_{P^{u}}(s)=\mathbb{C}_{P^{u}}(t^{u})=\mathbb{C}_{P}(t)^{u} \ \text{and thus } \mathbb{C}_{P}(t)=1. \ \text{Otherwise, } P^{u}=P \ \text{and } u\in\mathfrak{N}(P)=PS \ \text{so that } u=ry \ \text{for some } r\in S \ \text{and } y\in P. \ \text{Now } S^{u} \ \text{normalizes } P \ \text{and } S^{u}\subseteq T \ \text{and thus } S^{u}\subseteq \mathfrak{N}_{T}(P)=S \ \text{and therefore } S=S^{u}=S^{y} \ \text{and } y\in\mathfrak{N}_{P}(S). \ \text{This group is normalized and thus centralized by } S \ \text{and } y\in P \ \bigcap \mathfrak{Z}(\mathfrak{N}_{d}(P)) \ \text{which as we have seen is trivial. Thus } y=1 \ \text{and } u=r \ \text{and hence } s=t. \ \text{We have therefore shown that } s \ \text{is the only involution in } S \ \text{which centralizes any nonidentity element of } P. \end{array}$

If |S| = 2 then $1 \neq \mathbb{G}_{P}(s) \subseteq P \bigcap \Im(\mathfrak{N}_{d}(P))$ and this is a contradiction. Thus $|S| \geq 4$ and we may find two involutions t and t' in S, both different from s. Then both t and t' invert every element of P. Therefore tt' centralizes P and hence tt' = s and $\langle s \rangle$ has index 2 in S. We have now $|\mathfrak{N}_{d}(P)| = |S| |P| = 4 |P|$ and $|\mathfrak{C}_{d}(P)| =$ $|\langle P, s \rangle| = 2 |P|$. Since we have seen that a nontrivial p-element which is centralized by an involution is in only one S_p , P is a T. I. set. If $P^* \neq P$ is an S_p of G then if $\mathfrak{C}(P) \bigcap \mathfrak{C}(P^*) > 1$ it is not a p-group and thus contains an involution. Because $P \triangle \mathfrak{C}_{d}(s)$ this is impossible and $\mathfrak{C}_{d}(P)$ is a T. I. set. Furthermore, since $T \subseteq \mathfrak{C}(s)$, T normalizes P and T = S. Therefore |T| = 4 = p + 1 and p = 3. If H < G has even order then |H| |(|T| |P|) and the hypotheses of the proposition are satisfied. Since G is simple, we have a contradiction and the theorem is proved.

We note that for p = 2 we can get a counterexample to the theorem by taking $G = A_5$ and q = 3.

References

1. R. Brauer and K. A. Fowler, On groups of even order, Ann. of Math. 62 (1955), 565-583.

2. R. Brauer, M. Suzuki and G. E. Wall, A characterization of the one-dimensional unimodular projective groups over finite fields, Illinois. J. Math. 2 (1958), 718-745.

3. C. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Interscience, New York, 1962.

4. W. Feit, *Characters of finite groups*, Mimeographed notes, Yale University Math. Dept., 1965.

5. W. R. Scott, Group Theory, Prentice Hall, Englewood Cliffs, N. J., 1964.

Received August 8, 1966.

UNIVERSITY OF CHICAGO